Module: Abongo::Statistics

Defined in:
lib/abongo/statistics.rb

Constant Summary collapse

HANDY_Z_SCORE_CHEATSHEET =
[[0.10, 1.29], [0.05, 1.65], [0.01, 2.33], [0.001, 3.08]]
PERCENTAGES =
{0.10 => '90%', 0.05 => '95%', 0.01 => '99%', 0.001 => '99.9%'}
DESCRIPTION_IN_WORDS =
{0.10 => 'fairly confident', 0.05 => 'confident',
0.01 => 'very confident', 0.001 => 'extremely confident'}

Class Method Summary collapse

Class Method Details

.conversion_rate(exp) ⇒ Object



50
51
52
# File 'lib/abongo/statistics.rb', line 50

def self.conversion_rate(exp)
  1.0 * exp['conversions'] / exp['participants']
end

.describe_result_in_words(experiment, alternatives) ⇒ Object



58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# File 'lib/abongo/statistics.rb', line 58

def self.describe_result_in_words(experiment, alternatives)
  begin
    z = zscore(alternatives)
  rescue
    return "Could not execute the significance test because one or more of the alternatives has not been seen yet."
  end
  p = p_value(alternatives)

  words = ""
  if (alternatives[0]['participants'] < 10) || (alternatives[1]['participants'] < 10)
    words += "Take these results with a grain of salt since your samples are so small: "
  end

  best_alternative = alternatives.max{|a, b| conversion_rate(a) <=> conversion_rate(b)}
  alts = alternatives - [best_alternative]
  worst_alternative = alts.first

  words += "The best alternative you have is: [#{best_alternative['content']}], which had "
  words += "#{best_alternative['conversions']} conversions from #{best_alternative['participants']} participants "
  words += "(#{pretty_conversion_rate(best_alternative)}).  The other alternative was [#{worst_alternative['content']}], "
  words += "which had #{worst_alternative['conversions']} conversions from #{worst_alternative['participants']} participants "
  words += "(#{pretty_conversion_rate(worst_alternative)}).  "

  if (p.nil?)
    words += "However, this difference is not statistically significant."
  else
    words += "This difference is #{PERCENTAGES[p]} likely to be statistically significant, which means you can be "
    words += "#{DESCRIPTION_IN_WORDS[p]} that it is the result of your alternatives actually mattering, rather than "
    words += "being due to random chance.  However, this statistical test can't measure how likely the currently "
    words += "observed magnitude of the difference is to be accurate or not.  It only says \"better\", not \"better "
    words += "by so much\"."
  end
  words
end

.is_statistically_significant?(p = 0.05) ⇒ Boolean

Returns:

  • (Boolean)


46
47
48
# File 'lib/abongo/statistics.rb', line 46

def self.is_statistically_significant?(p = 0.05)
  p_value <= p
end

.p_value(alternatives) ⇒ Object



32
33
34
35
36
37
38
39
40
41
42
43
44
# File 'lib/abongo/statistics.rb', line 32

def self.p_value(alternatives)
  index = 0
  z = zscore(alternatives)
  z = z.abs
  found_p = nil
  while index < HANDY_Z_SCORE_CHEATSHEET.size do
    if (z > HANDY_Z_SCORE_CHEATSHEET[index][1])
      found_p = HANDY_Z_SCORE_CHEATSHEET[index][0]
    end
    index += 1
  end
  found_p
end

.pretty_conversion_rate(exp) ⇒ Object



54
55
56
# File 'lib/abongo/statistics.rb', line 54

def self.pretty_conversion_rate(exp)
  sprintf("%4.2f%%", conversion_rate(exp) * 100)
end

.zscore(alternatives) ⇒ Object



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# File 'lib/abongo/statistics.rb', line 10

def self.zscore(alternatives)
  if alternatives.size != 2
    raise "Sorry, can't currently automatically calculate statistics for A/B tests with > 2 alternatives."
  end

  if (alternatives[0]['participants'] == 0) || (alternatives[1]['participants'] == 0)
    raise "Can't calculate the z score if either of the alternatives lacks participants."
  end

  cr1 = conversion_rate(alternatives[0])
  cr2 = conversion_rate(alternatives[1])

  n1 = alternatives[0]['participants']
  n2 = alternatives[1]['participants']

  numerator = cr1 - cr2
  frac1 = cr1 * (1 - cr1) / n1
  frac2 = cr2 * (1 - cr2) / n2

  numerator / ((frac1 + frac2) ** 0.5)
end