Class: CArray

Inherits:
Object
  • Object
show all
Defined in:
lib/carray-calculus/core.rb

Overview


carray/base/calculus.rb

This file is part of Ruby/CArray extension library.
You can redistribute it and/or modify it under the terms of
the Ruby Licence.

Copyright (C) 2005 Hiroki Motoyoshi

Instance Method Summary collapse

Instance Method Details

#differentiateObject



782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
# File 'ext/carray_calculus.c', line 782

static VALUE
rb_ca_differentiate (volatile VALUE self,
                     volatile VALUE vsc, volatile VALUE vx)
{
  volatile VALUE rval = self;
  volatile VALUE out0, out;
  CArray *ca, *cv, *sc, *cx, *co0, *co;
  double *px, *po;
  ca_size_t i;

  Data_Get_Struct(self, CArray, ca);

  sc = ca_wrap_readonly(vsc,  CA_DOUBLE);

  if ( ca_is_any_masked(ca) || ca_is_any_masked(sc) ) {
    rb_raise(rb_eRuntimeError,
             "can't calculate differentiation when masked elements exist");
  }

  if ( ca->elements != sc->elements ) {
    rb_raise(rb_eRuntimeError, "data num mismatch with scale");
  }

  cv = ca_wrap_readonly(rval, CA_DOUBLE);
  cx = ca_wrap_readonly(vx,   CA_DOUBLE);

  co0 = carray_new(ca->data_type, cx->ndim, cx->dim, 0, NULL);
  out = out0 = ca_wrap_struct(co0);
  co = ca_wrap_writable(out, CA_DOUBLE);

  ca_attach_n(4, cv, sc, cx, co);

  px = (double*) cx->ptr;
  po = (double*) co->ptr;

  ca_update_mask(cx);
  if ( cx->mask ) {
    boolean8_t *mx, *mo;
    ca_create_mask(co);
    mx = (boolean8_t *) cx->mask->ptr;
    mo = (boolean8_t *) co->mask->ptr;
    for (i=0; i<cx->elements; i++) {
      if ( ! *mx ) {
        *po = differentiate((double*)sc->ptr, (double*)cv->ptr, 
                            cv->elements, *px);
      }
      else {
        *mo = 1;
      }
      mx++; mo++; px++, po++;
    }
  }
  else {
    for (i=0; i<cx->elements; i++) {
      *po = differentiate((double*)sc->ptr, (double*)cv->ptr, 
                          cv->elements, *px);
      px++, po++;
    }
  }

  ca_sync(co);
  ca_detach_n(4, cv, sc, cx, co);

  if ( rb_ca_is_scalar(vx) ) {
    return rb_funcall(out0, rb_intern("[]"), 1, INT2NUM(0));
  }
  else {
    return out0;
  }
}

#integrateObject



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# File 'ext/carray_calculus.c', line 73

static VALUE
rb_ca_integrate (volatile VALUE self, volatile VALUE vsc)
{
  CArray *sc, *ca;
  double ans;

  ca = ca_wrap_readonly(self, CA_DOUBLE);
  sc = ca_wrap_readonly(vsc, CA_DOUBLE);

  if ( ca->elements != sc->elements ) {
    rb_raise(rb_eRuntimeError, "data num mismatch");
  }

  if ( ca_is_any_masked(ca) || ca_is_any_masked(sc) ) {
    rb_raise(rb_eRuntimeError,
             "can't calculate integrattion when masked elements exist");
  }

  ca_attach_n(2, ca, sc);

  ans = simpson((double*)sc->ptr, (double*)ca->ptr, ca->elements);

  ca_detach_n(2, ca, sc);

  return rb_float_new(ans);
}

#interp_nd_linearObject



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# File 'ext/carray_interp.c', line 235

static VALUE
rb_ca_interpolate_bilinear (int argc, VALUE *argv, volatile VALUE self)
{
  volatile VALUE vscales, vvalues, vs, out;
  CArray *ca, *co, *cs;
  double *scales[CA_RANK_MAX];
  CArray *values[CA_RANK_MAX];
  CArray *scales_ca[CA_RANK_MAX];
  int8_t out_ndim;
  ca_size_t out_dim[CA_RANK_MAX];
  int i;

  rb_scan_args(argc, argv, "2", &vscales, &vvalues);

  Check_Type(vscales, T_ARRAY);
  Check_Type(vvalues, T_ARRAY);

  if ( RARRAY_LEN(vscales) != RARRAY_LEN(vvalues) ) {
    rb_raise(rb_eArgError, "invalid number of values or scales");
  }

  ca = ca_wrap_readonly(self, CA_DOUBLE);

  if ( ca->ndim != RARRAY_LEN(vvalues) ) {
    rb_raise(rb_eArgError, "invalid number of values");
  }

  for (i=0; i<ca->ndim; i++) {
    vs = rb_ary_entry(vscales, i);
    if ( NIL_P(vs) ) {
      scales[i] = NULL;
    }
    else {
      cs = ca_wrap_readonly(vs, CA_DOUBLE);
      scales_ca[i] = cs;
      ca_attach(cs);
      scales[i] = (double *) cs->ptr;
      rb_ary_store(vscales, i, vs);
    }
  }

  out_ndim = 0;
  for (i=0; i<ca->ndim; i++) {
    vs = rb_ary_entry(vvalues, i);
    if ( NIL_P(vs) ) {
      out_dim[out_ndim++] = ca->dim[i];
      values[i] = NULL;
    }
    else {
      values[i] = ca_wrap_readonly(vs, CA_DOUBLE);
      if ( values[i]->obj_type != CA_OBJ_SCALAR ) {
        out_dim[out_ndim++] = values[i]->elements;
      }
      rb_ary_store(vvalues, i, vs);
    }
  }

  if ( out_ndim == 0 ) {
    out = rb_cscalar_new(CA_DOUBLE, 0, NULL);
  }
  else {
    out = rb_carray_new(CA_DOUBLE, out_ndim, out_dim, 0, NULL);
  }

  Data_Get_Struct(out, CArray, co);

  for (i=0; i<ca->ndim; i++) {
    if ( values[i] ) {
      ca_attach(values[i]);
    }
  }

  ca_attach(ca);
  ca_interpolate(ca, scales, values, (double*) co->ptr);
  ca_detach(ca);

  for (i=0; i<ca->ndim; i++) {
    if ( values[i] ) {
      ca_detach(values[i]);
    }
    if ( scales[i] ) {
      ca_detach(scales_ca[i]);
    }
  }

  if ( out_ndim == 0 ) {
    return rb_ca_fetch_addr(out, 0);
  }
  else {
    return out;
  }
}

#interpolateObject



593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
# File 'ext/carray_calculus.c', line 593

static VALUE
rb_ca_interpolate (int argc, VALUE *argv, VALUE self)
{
  volatile VALUE rval = self;
  volatile VALUE vsc, vx, ropt, rtype = Qnil, out0, out;
  CArray *ca, *sc, *cv, *cx, *co0, *co;
  char *typename = NULL;
  int type = 0;
  double *px, *po;
  ca_size_t i;

  Data_Get_Struct(self, CArray, ca);

  rb_scan_args(argc, argv, "21", &vsc, &vx, &ropt);
  rb_scan_options(ropt, "type", &rtype);

  if ( ! NIL_P(rtype) ) {
    Check_Type(rtype, T_STRING);
    typename = StringValuePtr(rtype);
  }

  if ( typename == NULL || ! strncmp("cubic", typename, 5) ) {
    type = 3;
  }
  else if ( ! strncmp("linear", typename, 6) ) {
    type = 1;
  }
  else {
    volatile VALUE inspect = rb_inspect(rtype);
    rb_raise(rb_eRuntimeError, 
             "invalid interpolation type <%s>", StringValuePtr(inspect));
  }

  if ( ! NIL_P(vsc) ) {

    cv = ca_wrap_readonly(rval, CA_DOUBLE);
    sc = ca_wrap_readonly(vsc,  CA_DOUBLE);

    if ( ca_is_any_masked(cv) || ca_is_any_masked(sc) ) {
      rb_raise(rb_eRuntimeError,
               "can't calculate interpolation when masked elements exist");
    }

    if ( cv->elements != sc->elements ) {
      rb_raise(rb_eRuntimeError, "data num mismatch with scale");
    }

    cx = ca_wrap_readonly(vx,   CA_DOUBLE);

    co0 = carray_new(ca->data_type, cx->ndim, cx->dim, 0, NULL);
    out = out0 = ca_wrap_struct(co0);
    co = ca_wrap_writable(out, CA_DOUBLE);

    ca_attach_n(4, cv, sc, cx, co);

    px = (double*) cx->ptr;
    po = (double*) co->ptr;

    ca_update_mask(cx);
    if ( cx->mask ) {
      boolean8_t *mx, *mo;
      ca_create_mask(co);
      mx = (boolean8_t *) cx->mask->ptr;
      mo = (boolean8_t *) co->mask->ptr;
      if ( type == 3 ) {
        for (i=0; i<cx->elements; i++) {
          if ( ! *mx ) {
            *po = interpolate_cubic((double*)sc->ptr, (double*)cv->ptr, 
                                    cv->elements, *px);
          }
          else {
            *mo = 1;
          }
          mx++; mo++; po++; px++;
        }
      }
      else {
        for (i=0; i<cx->elements; i++) {
          if ( ! *mx ) {
            *po = interpolate_linear((double*)sc->ptr, (double*)cv->ptr, 
                                     cv->elements, *px);
          }
          else {
            *mo = 1;
          }
          mx++; mo++; po++; px++;
        }
      }
    }
    else {
      if ( type == 3 ) {
        for (i=0; i<cx->elements; i++) {
          *po++ = interpolate_cubic((double*)sc->ptr, (double*)cv->ptr, 
                                    cv->elements, *px++);
        }
      }
      else {
        for (i=0; i<cx->elements; i++) {
          *po++ = interpolate_linear((double*)sc->ptr, (double*)cv->ptr, 
                                     cv->elements, *px++);
        }
      }
    }

    ca_sync(co);
    ca_detach_n(4, cv, sc, cx, co);

  }
  else {

    
    cv = ca_wrap_readonly(rval, CA_DOUBLE);


    if ( ca_is_any_masked(cv) ) {
      rb_raise(rb_eRuntimeError,
               "can't calculate interpolation when masked elements exist");
    }

    cx = ca_wrap_readonly(vx,   CA_DOUBLE);

    co0 = carray_new(ca->data_type, cx->ndim, cx->dim, 0, NULL);
    out = out0 = ca_wrap_struct(co0);
    co = ca_wrap_writable(out, CA_DOUBLE);

    ca_attach_n(3, cv, cx, co);

    px = (double*) cx->ptr;
    po = (double*) co->ptr;

    ca_update_mask(cx);
    if ( cx->mask ) {
      boolean8_t *mx, *mo;
      ca_create_mask(co);
      mx = (boolean8_t *) cx->mask->ptr;
      mo = (boolean8_t *) co->mask->ptr;
      if ( type == 3 ) {
        for (i=0; i<cx->elements; i++) {
          if ( ! *mx ) {
            *po = interpolate_cubic(NULL, (double*)cv->ptr, 
                                    cv->elements, *px);
          }
          else {
            *mo = 1;
          }
          mx++; mo++; po++; px++;
        }
      }
      else {
        for (i=0; i<cx->elements; i++) {
          if ( ! *mx ) {
            *po = interpolate_linear(NULL, (double*)cv->ptr, 
                                     cv->elements, *px);
          }
          else {
            *mo = 1;
          }
          mx++; mo++; po++; px++;
        }
      }
    }
    else {
      if ( type == 3 ) {
        for (i=0; i<cx->elements; i++) {
          *po++ = interpolate_cubic(NULL, (double*)cv->ptr, 
                                    cv->elements, *px++);
        }
      }
      else {
        for (i=0; i<cx->elements; i++) {
          *po++ = interpolate_linear(NULL, (double*)cv->ptr, 
                                     cv->elements, *px++);
        }
      }
    }

    ca_sync(co);
    ca_detach_n(3, cv, cx, co);    
    
  }

  if ( rb_ca_is_scalar(vx) ) {
    return rb_funcall(out0, rb_intern("[]"), 1, INT2NUM(0));
  }
  else {
    return out0;
  }
}

#interpolate2(x, y, x0, y0) ⇒ Object



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# File 'lib/carray-calculus/core.rb', line 103

def interpolate2 (x, y, x0, y0)
  if x0.is_a?(Numeric) and y0.is_a?(Numeric)
    return _interpolate2(x, y, x0, y0)
  else
    x0 = CArray.wrap_readonly(x0)
    y0 = CArray.wrap_readonly(y0)
    out = CArray.double(x0.size, y0.size)
    x0.each_with_index do |xi, i|
      y0.each_with_index do |yj, j|
        out[i,j] = _interpolate2(x, y, xi, yj)
      end
    end
    return out.compact
  end
end

#normalize(scale = nil) ⇒ Object



15
16
17
18
19
20
21
# File 'lib/carray-calculus/core.rb', line 15

def normalize (scale = nil)
  if scale
    return self / self.integrate(scale)
  else
    return self / self.sum
  end
end

#normalize!(scale = nil) ⇒ Object



23
24
25
26
# File 'lib/carray-calculus/core.rb', line 23

def normalize! (scale = nil)
  self[] = normalize(scale)
  return self
end

#solve(sc, val, type: "cubic", eps: 100 * Float::EPSILON) ⇒ Object



28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# File 'lib/carray-calculus/core.rb', line 28

def solve (sc, val, type: "cubic", eps: 100 * Float::EPSILON)
  func = self - val
  list, output = [], []
  (0...dim0-1).each do |i|
    if func[i] == UNDEF
    elsif func[i].abs < eps and not list.include?(i-1)
      output.push(sc[i])
    elsif func[i+1] == UNDEF
    elsif i < dim0 - 1 and func[i]*func[i+1] < 0
      list.push(i)
    end
  end
  list.each do |i|
    sx = CArray.double(4)
    sy = CArray.double(4)
    sx[0], sx[3] = sc[i], sc[i+1]
    sy[0], sy[3] = func[i], func[i+1]
    sx[1], sx[2] = (2.0*sx[0]+sx[3])/3.0, (sx[0]+2.0*sx[3])/3.0
    sy[1], sy[2] = func.interpolate(sc, sx[1], type: type), func.interpolate(sc, sx[2], type: type)
    output.push(sx.interpolate(sy, 0, type: type))
  end
  return output.uniq
end

#solve2(sc, eps: 100 * Float::EPSILON) ⇒ Object



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# File 'lib/carray-calculus/core.rb', line 52

def solve2 (sc, eps: 100 * Float::EPSILON)
  retvals = []
  self.dim1.times do |j|
    func = self[nil,j].to_ca
    list, output = [], []
    (0...dim0-1).each do |i|
      if func[i] == UNDEF
      elsif func[i].abs < eps and not list.include?(i-1)
        output.push(sc[i])
      elsif func[i+1] == UNDEF
      elsif i < dim0 - 1 and func[i]*func[i+1] < 0
        list.push(i)
      end
    end
    list.each do |i|
      sx = CArray.double(4)
      sy = CArray.double(4)
      sx[0], sx[3] = sc[i], sc[i+1]
      sy[0], sy[3] = func[i], func[i+1]
      sx[1], sx[2] = (2*sx[0]+sx[3])/3, (sx[0]+2*sx[3])/3
      sy[1], sy[2] = func.interpolate(sc, sx[1], :type=>"linear"), func.interpolate(sc, sx[2], :type=>"linear")
      output.push(sx.interpolate(sy, 0))
    end
    retvals << output.uniq
  end
  retvals = retvals.map{|s| s.empty? ? [nil] : s}
  return retvals
end