Class: Google::Cloud::DiscoveryEngine::V1::TrainCustomModelRequest
- Inherits:
-
Object
- Object
- Google::Cloud::DiscoveryEngine::V1::TrainCustomModelRequest
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb
Overview
Request message for SearchTuningService.TrainCustomModel method.
Defined Under Namespace
Classes: GcsTrainingInput
Instance Attribute Summary collapse
-
#data_store ⇒ ::String
Required.
-
#error_config ⇒ ::Google::Cloud::DiscoveryEngine::V1::ImportErrorConfig
The desired location of errors incurred during the data ingestion and training.
-
#gcs_training_input ⇒ ::Google::Cloud::DiscoveryEngine::V1::TrainCustomModelRequest::GcsTrainingInput
Cloud Storage training input.
-
#model_id ⇒ ::String
If not provided, a UUID will be generated.
-
#model_type ⇒ ::String
Model to be trained.
Instance Attribute Details
#data_store ⇒ ::String
Returns Required. The resource name of the Data Store, such as
projects/*/locations/global/collections/default_collection/dataStores/default_data_store
.
This field is used to identify the data store where to train the models.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb', line 72 class TrainCustomModelRequest include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Cloud Storage training data input. # @!attribute [rw] corpus_data_path # @return [::String] # The Cloud Storage corpus data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id, title # and text. Example: # `{"_id": "doc1", title: "relevant doc", "text": "relevant text"}` # @!attribute [rw] query_data_path # @return [::String] # The gcs query data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id # and text. Example: \\{"_id": "query1", "text": "example query"} # @!attribute [rw] train_data_path # @return [::String] # Cloud Storage training data path whose format should be # `gs://<bucket_to_data>/<tsv_file_name>`. The file should be in tsv # format. Each line should have the doc_id and query_id and score (number). # # For search-tuning model, it should have the query-id corpus-id # score as tsv file header. The score should be a number in `[0, inf+)`. # The larger the number is, the more relevant the pair is. Example: # # * `query-id\tcorpus-id\tscore` # * `query1\tdoc1\t1` # @!attribute [rw] test_data_path # @return [::String] # Cloud Storage test data. Same format as train_data_path. If not provided, # a random 80/20 train/test split will be performed on train_data_path. class GcsTrainingInput include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#error_config ⇒ ::Google::Cloud::DiscoveryEngine::V1::ImportErrorConfig
Returns The desired location of errors incurred during the data ingestion and training.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb', line 72 class TrainCustomModelRequest include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Cloud Storage training data input. # @!attribute [rw] corpus_data_path # @return [::String] # The Cloud Storage corpus data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id, title # and text. Example: # `{"_id": "doc1", title: "relevant doc", "text": "relevant text"}` # @!attribute [rw] query_data_path # @return [::String] # The gcs query data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id # and text. Example: \\{"_id": "query1", "text": "example query"} # @!attribute [rw] train_data_path # @return [::String] # Cloud Storage training data path whose format should be # `gs://<bucket_to_data>/<tsv_file_name>`. The file should be in tsv # format. Each line should have the doc_id and query_id and score (number). # # For search-tuning model, it should have the query-id corpus-id # score as tsv file header. The score should be a number in `[0, inf+)`. # The larger the number is, the more relevant the pair is. Example: # # * `query-id\tcorpus-id\tscore` # * `query1\tdoc1\t1` # @!attribute [rw] test_data_path # @return [::String] # Cloud Storage test data. Same format as train_data_path. If not provided, # a random 80/20 train/test split will be performed on train_data_path. class GcsTrainingInput include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#gcs_training_input ⇒ ::Google::Cloud::DiscoveryEngine::V1::TrainCustomModelRequest::GcsTrainingInput
Returns Cloud Storage training input.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb', line 72 class TrainCustomModelRequest include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Cloud Storage training data input. # @!attribute [rw] corpus_data_path # @return [::String] # The Cloud Storage corpus data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id, title # and text. Example: # `{"_id": "doc1", title: "relevant doc", "text": "relevant text"}` # @!attribute [rw] query_data_path # @return [::String] # The gcs query data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id # and text. Example: \\{"_id": "query1", "text": "example query"} # @!attribute [rw] train_data_path # @return [::String] # Cloud Storage training data path whose format should be # `gs://<bucket_to_data>/<tsv_file_name>`. The file should be in tsv # format. Each line should have the doc_id and query_id and score (number). # # For search-tuning model, it should have the query-id corpus-id # score as tsv file header. The score should be a number in `[0, inf+)`. # The larger the number is, the more relevant the pair is. Example: # # * `query-id\tcorpus-id\tscore` # * `query1\tdoc1\t1` # @!attribute [rw] test_data_path # @return [::String] # Cloud Storage test data. Same format as train_data_path. If not provided, # a random 80/20 train/test split will be performed on train_data_path. class GcsTrainingInput include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#model_id ⇒ ::String
Returns If not provided, a UUID will be generated.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb', line 72 class TrainCustomModelRequest include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Cloud Storage training data input. # @!attribute [rw] corpus_data_path # @return [::String] # The Cloud Storage corpus data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id, title # and text. Example: # `{"_id": "doc1", title: "relevant doc", "text": "relevant text"}` # @!attribute [rw] query_data_path # @return [::String] # The gcs query data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id # and text. Example: \\{"_id": "query1", "text": "example query"} # @!attribute [rw] train_data_path # @return [::String] # Cloud Storage training data path whose format should be # `gs://<bucket_to_data>/<tsv_file_name>`. The file should be in tsv # format. Each line should have the doc_id and query_id and score (number). # # For search-tuning model, it should have the query-id corpus-id # score as tsv file header. The score should be a number in `[0, inf+)`. # The larger the number is, the more relevant the pair is. Example: # # * `query-id\tcorpus-id\tscore` # * `query1\tdoc1\t1` # @!attribute [rw] test_data_path # @return [::String] # Cloud Storage test data. Same format as train_data_path. If not provided, # a random 80/20 train/test split will be performed on train_data_path. class GcsTrainingInput include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#model_type ⇒ ::String
Returns Model to be trained. Supported values are:
- search-tuning: Fine tuning the search system based on data provided.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'proto_docs/google/cloud/discoveryengine/v1/search_tuning_service.rb', line 72 class TrainCustomModelRequest include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Cloud Storage training data input. # @!attribute [rw] corpus_data_path # @return [::String] # The Cloud Storage corpus data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id, title # and text. Example: # `{"_id": "doc1", title: "relevant doc", "text": "relevant text"}` # @!attribute [rw] query_data_path # @return [::String] # The gcs query data which could be associated in train data. # The data path format is `gs://<bucket_to_data>/<jsonl_file_name>`. # A newline delimited jsonl/ndjson file. # # For search-tuning model, each line should have the _id # and text. Example: \\{"_id": "query1", "text": "example query"} # @!attribute [rw] train_data_path # @return [::String] # Cloud Storage training data path whose format should be # `gs://<bucket_to_data>/<tsv_file_name>`. The file should be in tsv # format. Each line should have the doc_id and query_id and score (number). # # For search-tuning model, it should have the query-id corpus-id # score as tsv file header. The score should be a number in `[0, inf+)`. # The larger the number is, the more relevant the pair is. Example: # # * `query-id\tcorpus-id\tscore` # * `query1\tdoc1\t1` # @!attribute [rw] test_data_path # @return [::String] # Cloud Storage test data. Same format as train_data_path. If not provided, # a random 80/20 train/test split will be performed on train_data_path. class GcsTrainingInput include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |