Module: Vincenty
- Defined in:
- ext/vincenty.c
Class Method Summary collapse
- .distance(rb_lon1, rb_lat1, rb_lon2, rb_lat2, rb_a, rb_b) ⇒ Object
- .point_from_lon_lat(rb_lon1, rb_lat1, rb_bearing, rb_distance, rb_a, rb_b) ⇒ Object
Class Method Details
.distance(rb_lon1, rb_lat1, rb_lon2, rb_lat2, rb_a, rb_b) ⇒ Object
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
# File 'ext/vincenty.c', line 45
static VALUE distance(VALUE self, VALUE rb_lon1, VALUE rb_lat1, VALUE rb_lon2, VALUE rb_lat2, VALUE rb_a, VALUE rb_b) {
Check_Type(rb_lon1, T_FLOAT);
Check_Type(rb_lat1, T_FLOAT);
Check_Type(rb_lon2, T_FLOAT);
Check_Type(rb_lat2, T_FLOAT);
Check_Type(rb_a, T_FLOAT);
Check_Type(rb_b, T_FLOAT);
double lon1 = RFLOAT_VALUE(rb_lon1);
double lat1 = RFLOAT_VALUE(rb_lat1);
double lon2 = RFLOAT_VALUE(rb_lon2);
double lat2 = RFLOAT_VALUE(rb_lat2);
double a = RFLOAT_VALUE(rb_a);
double b = RFLOAT_VALUE(rb_b);
double sinLambda, cosLambda, sinSigma, cosSigma, sigma, sinAlpha, cosSqAlpha, cos2SigmaM, C;
double f = (a-b) / a;
double L = (lon2-lon1) * DEG_TO_RAD;
double U1 = atan((1-f) * tan(lat1 * DEG_TO_RAD));
double U2 = atan((1-f) * tan(lat2 * DEG_TO_RAD));
double sinU1 = sin(U1), cosU1 = cos(U1);
double sinU2 = sin(U2), cosU2 = cos(U2);
int iterLimit = 20;
double lambda = L, lambdaP=2*PI;
while ((fabs(lambda-lambdaP) > 1e-12 && --iterLimit>0)) {
sinLambda = sin(lambda); cosLambda = cos(lambda);
sinSigma = sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
if (sinSigma==0) return rb_float_new(0); // co-incident points
cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
sigma = atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1 - sinAlpha*sinAlpha;
cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
if (isnan(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (ยง6)
C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
lambdaP = lambda;
lambda = L + (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
}
if (iterLimit==0) return Qnil; // formula failed to converge
double uSq = cosSqAlpha * (a*a - b*b) / (b*b);
double A = 1 + uSq/16384.0*(4096+uSq*(-768+uSq*(320-175*uSq)));
double B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
double deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM) -
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
double s = b*A*(sigma-deltaSigma);
return rb_float_new(s);
}
|
.point_from_lon_lat(rb_lon1, rb_lat1, rb_bearing, rb_distance, rb_a, rb_b) ⇒ Object
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# File 'ext/vincenty.c', line 100
static VALUE point_from_lon_lat(VALUE self, VALUE rb_lon1, VALUE rb_lat1, VALUE rb_bearing, VALUE rb_distance, VALUE rb_a, VALUE rb_b) {
Check_Type(rb_lon1, T_FLOAT);
Check_Type(rb_lat1, T_FLOAT);
Check_Type(rb_bearing, T_FLOAT);
Check_Type(rb_distance, T_FLOAT);
Check_Type(rb_a, T_FLOAT);
Check_Type(rb_b, T_FLOAT);
VALUE ret;
double lon1 = RFLOAT_VALUE(rb_lon1);
double lat1 = RFLOAT_VALUE(rb_lat1);
double brng = RFLOAT_VALUE(rb_bearing);
double s = RFLOAT_VALUE(rb_distance);
double a = RFLOAT_VALUE(rb_a);
double b = RFLOAT_VALUE(rb_b);
double f = (a-b) / a;
double alpha1 = brng * DEG_TO_RAD;
double sinAlpha1 = sin(alpha1), cosAlpha1 = cos(alpha1);
double tanU1 = (1-f) * tan(lat1 * DEG_TO_RAD);
double cosU1 = 1 / sqrt((1 + tanU1*tanU1)), sinU1 = tanU1*cosU1;
double sigma1 = atan2(tanU1, cosAlpha1);
double sinAlpha = cosU1 * sinAlpha1;
double cosSqAlpha = 1 - sinAlpha*sinAlpha;
double uSq = cosSqAlpha * (a*a - b*b) / (b*b);
double A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
double B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
double sigma = s / (b*A), sigmaP = 2*PI;
double cos2SigmaM, sinSigma, deltaSigma, cosSigma;
while (fabs(sigma-sigmaP) > 1e-12) {
cos2SigmaM = cos(2*sigma1 + sigma);
sinSigma = sin(sigma), cosSigma = cos(sigma);
deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
sigmaP = sigma;
sigma = s / (b*A) + deltaSigma;
}
double tmp = sinU1*sinSigma - cosU1*cosSigma*cosAlpha1;
double lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1, (1-f)*sqrt(sinAlpha*sinAlpha + tmp*tmp));
double lambda = atan2(sinSigma*sinAlpha1, cosU1*cosSigma - sinU1*sinSigma*cosAlpha1);
double C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
double L = lambda - (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
double revAz = atan2(sinAlpha, -tmp); // final bearing
ret = rb_ary_new2(2); /* [lon, lat] */
rb_ary_store(ret, 0, rb_float_new(lon1+L/DEG_TO_RAD));
rb_ary_store(ret, 1, rb_float_new(lat2/DEG_TO_RAD));
return ret;
}
|