Module: OpenSSL::PKey
- Defined in:
- ext/openssl/ossl_pkey.c,
lib/openssl/pkey.rb,
ext/openssl/ossl_pkey.c
Overview
Asymmetric Public Key Algorithms
Asymmetric public key algorithms solve the problem of establishing and sharing secret keys to en-/decrypt messages. The key in such an algorithm consists of two parts: a public key that may be distributed to others and a private key that needs to remain secret.
Messages encrypted with a public key can only be decrypted by recipients that are in possession of the associated private key. Since public key algorithms are considerably slower than symmetric key algorithms (cf. OpenSSL::Cipher) they are often used to establish a symmetric key shared between two parties that are in possession of each other’s public key.
Asymmetric algorithms offer a lot of nice features that are used in a lot of different areas. A very common application is the creation and validation of digital signatures. To sign a document, the signatory generally uses a message digest algorithm (cf. OpenSSL::Digest) to compute a digest of the document that is then encrypted (i.e. signed) using the private key. Anyone in possession of the public key may then verify the signature by computing the message digest of the original document on their own, decrypting the signature using the signatory’s public key and comparing the result to the message digest they previously computed. The signature is valid if and only if the decrypted signature is equal to this message digest.
The PKey module offers support for three popular public/private key algorithms:
-
RSA (OpenSSL::PKey::RSA)
-
DSA (OpenSSL::PKey::DSA)
-
Elliptic Curve Cryptography (OpenSSL::PKey::EC)
Each of these implementations is in fact a sub-class of the abstract PKey class which offers the interface for supporting digital signatures in the form of PKey#sign and PKey#verify.
Diffie-Hellman Key Exchange
Finally PKey also features OpenSSL::PKey::DH, an implementation of the Diffie-Hellman key exchange protocol based on discrete logarithms in finite fields, the same basis that DSA is built on. The Diffie-Hellman protocol can be used to exchange (symmetric) keys over insecure channels without needing any prior joint knowledge between the participating parties. As the security of DH demands relatively long “public keys” (i.e. the part that is overtly transmitted between participants) DH tends to be quite slow. If security or speed is your primary concern, OpenSSL::PKey::EC offers another implementation of the Diffie-Hellman protocol.
Defined Under Namespace
Classes: DH, DSA, EC, PKey, PKeyError, RSA
Constant Summary collapse
- DHError =
Alias of PKeyError. Before version 4.0.0, this was a subclass of PKeyError.
PKeyError- DSAError =
Alias of PKeyError. Before version 4.0.0, this was a subclass of PKeyError.
PKeyError- ECError =
Alias of PKeyError. Before version 4.0.0, this was a subclass of PKeyError.
PKeyError- RSAError =
Alias of PKeyError. Before version 4.0.0, this was a subclass of PKeyError.
PKeyError
Class Method Summary collapse
-
.generate_key(*args) ⇒ Object
Generates a new key (pair).
-
.OpenSSL::PKey.generate_parameters(algo_name[, options]) ⇒ Object
Generates new parameters for the algorithm.
-
.OpenSSL::PKey.new_raw_private_key(algo, string) ⇒ PKey
See the OpenSSL documentation for EVP_PKEY_new_raw_private_key().
-
.OpenSSL::PKey.new_raw_public_key(algo, string) ⇒ PKey
See the OpenSSL documentation for EVP_PKEY_new_raw_public_key().
-
.read(*args) ⇒ Object
Reads a DER or PEM encoded string from string or io and returns an instance of the appropriate PKey class.
Class Method Details
.OpenSSL::PKey.generate_key(algo_name[, options]) ⇒ Object .OpenSSL::PKey.generate_key(pkey[, options]) ⇒ Object
Generates a new key (pair).
If a String is given as the first argument, it generates a new random key for the algorithm specified by the name just as ::generate_parameters does. If an OpenSSL::PKey::PKey is given instead, it generates a new random key for the same algorithm as the key, using the parameters the key contains.
See ::generate_parameters for the details of options and the given block.
Example
pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
pkey_params.priv_key #=> nil
pkey = OpenSSL::PKey.generate_key(pkey_params)
pkey.priv_key #=> #<OpenSSL::BN 6277...
496 497 498 499 500 |
# File 'ext/openssl/ossl_pkey.c', line 496
static VALUE
ossl_pkey_s_generate_key(int argc, VALUE *argv, VALUE self)
{
return pkey_generate(argc, argv, self, 0);
}
|
.OpenSSL::PKey.generate_parameters(algo_name[, options]) ⇒ Object
Generates new parameters for the algorithm. algo_name is a String that represents the algorithm. The optional argument options is a Hash that specifies the options specific to the algorithm. The order of the options can be important.
A block can be passed optionally. The meaning of the arguments passed to the block varies depending on the implementation of the algorithm. The block may be called once or multiple times, or may not even be called.
For the supported options, see the documentation for the ‘openssl genpkey’ utility command.
Example
pkey = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
p pkey.p.num_bits #=> 2048
470 471 472 473 474 |
# File 'ext/openssl/ossl_pkey.c', line 470
static VALUE
ossl_pkey_s_generate_parameters(int argc, VALUE *argv, VALUE self)
{
return pkey_generate(argc, argv, self, 1);
}
|
.OpenSSL::PKey.new_raw_private_key(algo, string) ⇒ PKey
See the OpenSSL documentation for EVP_PKEY_new_raw_private_key()
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# File 'ext/openssl/ossl_pkey.c', line 669
static VALUE
ossl_pkey_new_raw_private_key(VALUE self, VALUE type, VALUE key)
{
EVP_PKEY *pkey;
size_t keylen;
StringValue(key);
keylen = RSTRING_LEN(key);
#ifdef OSSL_USE_PROVIDER
pkey = EVP_PKEY_new_raw_private_key_ex(NULL, StringValueCStr(type), NULL,
(unsigned char *)RSTRING_PTR(key),
keylen);
if (!pkey)
ossl_raise(ePKeyError, "EVP_PKEY_new_raw_private_key_ex");
#else
int pkey_id = lookup_pkey_type(type);
pkey = EVP_PKEY_new_raw_private_key(pkey_id, NULL, (unsigned char *)RSTRING_PTR(key), keylen);
if (!pkey)
ossl_raise(ePKeyError, "EVP_PKEY_new_raw_private_key");
#endif
return ossl_pkey_wrap(pkey);
}
|
.OpenSSL::PKey.new_raw_public_key(algo, string) ⇒ PKey
See the OpenSSL documentation for EVP_PKEY_new_raw_public_key()
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
# File 'ext/openssl/ossl_pkey.c', line 701
static VALUE
ossl_pkey_new_raw_public_key(VALUE self, VALUE type, VALUE key)
{
EVP_PKEY *pkey;
size_t keylen;
StringValue(key);
keylen = RSTRING_LEN(key);
#ifdef OSSL_USE_PROVIDER
pkey = EVP_PKEY_new_raw_public_key_ex(NULL, StringValueCStr(type), NULL,
(unsigned char *)RSTRING_PTR(key),
keylen);
if (!pkey)
ossl_raise(ePKeyError, "EVP_PKEY_new_raw_public_key_ex");
#else
int pkey_id = lookup_pkey_type(type);
pkey = EVP_PKEY_new_raw_public_key(pkey_id, NULL, (unsigned char *)RSTRING_PTR(key), keylen);
if (!pkey)
ossl_raise(ePKeyError, "EVP_PKEY_new_raw_public_key");
#endif
return ossl_pkey_wrap(pkey);
}
|
.OpenSSL::PKey.read(string[, pwd ]) ⇒ PKey .OpenSSL::PKey.read(io[, pwd ]) ⇒ PKey
Reads a DER or PEM encoded string from string or io and returns an instance of the appropriate PKey class.
Parameters
-
string is a DER- or PEM-encoded string containing an arbitrary private
or public key.
-
io is an instance of IO containing a DER- or PEM-encoded
arbitrary private or public key.
-
pwd is an optional password in case string or io is an encrypted
PEM resource.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# File 'ext/openssl/ossl_pkey.c', line 230
static VALUE
ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
BIO *bio;
VALUE data, pass;
rb_scan_args(argc, argv, "11", &data, &pass);
bio = ossl_obj2bio(&data);
pkey = ossl_pkey_read_generic(bio, ossl_pem_passwd_value(pass));
BIO_free(bio);
if (!pkey)
ossl_raise(ePKeyError, "Could not parse PKey");
return ossl_pkey_wrap(pkey);
}
|