Class: ASHRAE9012013

Inherits:
ASHRAE901 show all
Includes:
ASHRAE9012013CoolingTower
Defined in:
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Space.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanOnOff.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.PlantLoop.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ThermalZone.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.hvac_systems.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.BoilerHotWater.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.elevators.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.WaterHeaterMixed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanVariableVolume.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ZoneHVACComponent.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanConstantVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanVariableVolume.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.PumpVariableSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ChillerElectricEIR.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.CoolingTowerTwoSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.CoolingTowerSingleSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.CoolingTowerVariableSpeed.rb,
lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirTerminalSingleDuctVAVReheat.rb,
lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirTerminalSingleDuctVAVReheat.rb

Overview

This class holds methods that apply ASHRAE 90.1-2013 to a given model.

Constant Summary

Constants inherited from Standard

Standard::STANDARDS_LIST

Instance Attribute Summary collapse

Attributes inherited from Standard

#space_multiplier_map, #standards_data

Model collapse

Space collapse

FanOnOff collapse

PlantLoop collapse

AirLoopHVAC collapse

ThermalZone collapse

hvac_systems collapse

elevators collapse

WaterHeaterMixed collapse

FanVariableVolume collapse

ZoneHVACComponent collapse

FanConstantVolume collapse

Pump collapse

AirTerminalSingleDuctVAVReheat collapse

Instance Method Summary collapse

Methods included from ASHRAE9012013CoolingTower

#cooling_tower_apply_minimum_power_per_flow_gpm_limit

Methods inherited from Standard

#adjust_sizing_system, #afue_to_thermal_eff, #air_loop_hvac_add_motorized_oa_damper, #air_loop_hvac_adjust_minimum_vav_damper_positions, #air_loop_hvac_adjust_minimum_vav_damper_positions_outpatient, #air_loop_hvac_allowable_system_brake_horsepower, #air_loop_hvac_apply_baseline_fan_pressure_rise, #air_loop_hvac_apply_economizer_integration, #air_loop_hvac_apply_economizer_limits, #air_loop_hvac_apply_energy_recovery_ventilator, #air_loop_hvac_apply_energy_recovery_ventilator_efficiency, #air_loop_hvac_apply_maximum_reheat_temperature, #air_loop_hvac_apply_minimum_vav_damper_positions, #air_loop_hvac_apply_multizone_vav_outdoor_air_sizing, #air_loop_hvac_apply_prm_baseline_controls, #air_loop_hvac_apply_prm_baseline_economizer, #air_loop_hvac_apply_prm_baseline_fan_power, #air_loop_hvac_apply_prm_sizing_temperatures, #air_loop_hvac_apply_single_zone_controls, #air_loop_hvac_apply_standard_controls, #air_loop_hvac_apply_vav_damper_action, #air_loop_hvac_data_center_area_served, #air_loop_hvac_dcv_required_when_erv, #air_loop_hvac_demand_control_ventilation_required?, #air_loop_hvac_disable_multizone_vav_optimization, #air_loop_hvac_dx_cooling?, #air_loop_hvac_economizer?, #air_loop_hvac_economizer_required?, #air_loop_hvac_enable_demand_control_ventilation, #air_loop_hvac_enable_multizone_vav_optimization, #air_loop_hvac_enable_optimum_start, #air_loop_hvac_enable_supply_air_temperature_reset_delta, #air_loop_hvac_enable_supply_air_temperature_reset_outdoor_temperature, #air_loop_hvac_enable_supply_air_temperature_reset_warmest_zone, #air_loop_hvac_enable_unoccupied_fan_shutoff, #air_loop_hvac_energy_recovery?, #air_loop_hvac_energy_recovery_ventilator_heat_exchanger_type, #air_loop_hvac_energy_recovery_ventilator_required?, #air_loop_hvac_energy_recovery_ventilator_type, #air_loop_hvac_fan_power_limitation_pressure_drop_adjustment_brake_horsepower, #air_loop_hvac_find_design_supply_air_flow_rate, #air_loop_hvac_floor_area_served, #air_loop_hvac_floor_area_served_exterior_zones, #air_loop_hvac_floor_area_served_interior_zones, #air_loop_hvac_get_occupancy_schedule, #air_loop_hvac_get_relief_fan_power, #air_loop_hvac_get_return_fan_power, #air_loop_hvac_get_supply_fan, #air_loop_hvac_get_supply_fan_power, #air_loop_hvac_has_parallel_piu_air_terminals?, #air_loop_hvac_has_simple_transfer_air?, #air_loop_hvac_humidifier_count, #air_loop_hvac_include_cooling_coil?, #air_loop_hvac_include_economizer?, #air_loop_hvac_include_evaporative_cooler?, #air_loop_hvac_include_hydronic_cooling_coil?, #air_loop_hvac_include_unitary_system?, #air_loop_hvac_include_wshp?, #air_loop_hvac_minimum_zone_ventilation_efficiency, #air_loop_hvac_motorized_oa_damper_required?, #air_loop_hvac_multi_stage_dx_cooling?, #air_loop_hvac_multizone_vav_system?, #air_loop_hvac_optimum_start_required?, #air_loop_hvac_prm_baseline_economizer_required?, #air_loop_hvac_remove_erv, #air_loop_hvac_remove_motorized_oa_damper, #air_loop_hvac_residential_area_served, #air_loop_hvac_return_air_plenum, #air_loop_hvac_set_minimum_damper_position, #air_loop_hvac_set_vsd_curve_type, #air_loop_hvac_standby_mode_occupancy_control, #air_loop_hvac_static_pressure_reset_required?, #air_loop_hvac_supply_return_exhaust_relief_fans, #air_loop_hvac_system_fan_brake_horsepower, #air_loop_hvac_system_multiplier, #air_loop_hvac_terminal_reheat?, #air_loop_hvac_total_cooling_capacity, #air_loop_hvac_unitary_system?, #air_loop_hvac_unoccupied_fan_shutoff_required?, #air_loop_hvac_unoccupied_threshold, #air_loop_hvac_vav_damper_action, #air_loop_hvac_vav_system?, #air_terminal_single_duct_parallel_piu_reheat_apply_minimum_primary_airflow_fraction, #air_terminal_single_duct_parallel_piu_reheat_apply_prm_baseline_fan_power, #air_terminal_single_duct_parallel_piu_reheat_fan_on_flow_fraction, #air_terminal_single_duct_parallel_reheat_piu_minimum_primary_airflow_fraction, #air_terminal_single_duct_vav_reheat_apply_minimum_damper_position, #air_terminal_single_duct_vav_reheat_reheat_type, #air_terminal_single_duct_vav_reheat_set_heating_cap, #apply_lighting_schedule, #apply_limit_to_subsurface_ratio, #boiler_hot_water_apply_efficiency_and_curves, #boiler_hot_water_find_capacity, #boiler_hot_water_find_design_water_flow_rate, #boiler_hot_water_find_search_criteria, #boiler_hot_water_standard_minimum_thermal_efficiency, build, #chiller_electric_eir_apply_efficiency_and_curves, #chiller_electric_eir_find_capacity, #chiller_electric_eir_find_search_criteria, #chiller_electric_eir_standard_minimum_full_load_efficiency, #chw_sizing_control, #coil_cooling_dx_multi_speed_apply_efficiency_and_curves, #coil_cooling_dx_multi_speed_find_capacity, #coil_cooling_dx_multi_speed_standard_minimum_cop, #coil_cooling_dx_single_speed_apply_efficiency_and_curves, #coil_cooling_dx_single_speed_find_capacity, #coil_cooling_dx_single_speed_standard_minimum_cop, #coil_cooling_dx_two_speed_apply_efficiency_and_curves, #coil_cooling_dx_two_speed_find_capacity, #coil_cooling_dx_two_speed_standard_minimum_cop, #coil_cooling_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_cooling_water_to_air_heat_pump_find_capacity, #coil_cooling_water_to_air_heat_pump_standard_minimum_cop, #coil_heating_dx_multi_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_apply_defrost_eir_curve_limits, #coil_heating_dx_single_speed_apply_efficiency_and_curves, #coil_heating_dx_single_speed_find_capacity, #coil_heating_dx_single_speed_standard_minimum_cop, #coil_heating_gas_additional_search_criteria, #coil_heating_gas_apply_efficiency_and_curves, #coil_heating_gas_apply_prototype_efficiency, #coil_heating_gas_find_capacity, #coil_heating_gas_multi_stage_apply_efficiency_and_curves, #coil_heating_gas_multi_stage_find_capacity, #coil_heating_gas_multi_stage_find_search_criteria, #coil_heating_water_to_air_heat_pump_apply_efficiency_and_curves, #coil_heating_water_to_air_heat_pump_find_capacity, #coil_heating_water_to_air_heat_pump_standard_minimum_cop, #combustion_eff_to_thermal_eff, #controller_water_coil_set_convergence_limits, #convert_curve_biquadratic, #cooling_tower_single_speed_apply_efficiency_and_curves, #cooling_tower_two_speed_apply_efficiency_and_curves, #cop_heating_to_cop_heating_no_fan, #cop_no_fan_to_eer, #cop_no_fan_to_seer, #cop_to_eer, #cop_to_kw_per_ton, #cop_to_seer, #create_air_conditioner_variable_refrigerant_flow, #create_boiler_hot_water, #create_central_air_source_heat_pump, #create_coil_cooling_dx_single_speed, #create_coil_cooling_dx_two_speed, #create_coil_cooling_water, #create_coil_cooling_water_to_air_heat_pump_equation_fit, #create_coil_heating_dx_single_speed, #create_coil_heating_electric, #create_coil_heating_gas, #create_coil_heating_water, #create_coil_heating_water_to_air_heat_pump_equation_fit, #create_curve_bicubic, #create_curve_biquadratic, #create_curve_cubic, #create_curve_exponent, #create_curve_quadratic, #create_fan_constant_volume, #create_fan_constant_volume_from_json, #create_fan_on_off, #create_fan_on_off_from_json, #create_fan_variable_volume, #create_fan_variable_volume_from_json, #create_fan_zone_exhaust, #create_fan_zone_exhaust_from_json, #define_space_multiplier, #eer_to_cop, #eer_to_cop_no_fan, #ems_friendly_name, #enthalpy_recovery_ratio_design_to_typical_adjustment, #fan_constant_volume_apply_prototype_fan_pressure_rise, #fan_on_off_apply_prototype_fan_pressure_rise, #fan_variable_volume_apply_prototype_fan_pressure_rise, #fan_variable_volume_cooling_system_type, #fan_variable_volume_part_load_fan_power_limitation?, #fan_variable_volume_set_control_type, #fan_zone_exhaust_apply_prototype_fan_pressure_rise, #find_exposed_conditioned_roof_surfaces, #find_exposed_conditioned_vertical_surfaces, #find_highest_roof_centre, #fluid_cooler_apply_minimum_power_per_flow, #get_avg_of_other_zones, #get_default_surface_cons_from_surface_type, #get_fan_object_for_airloop, #get_fan_schedule_for_each_zone, #get_group_heat_types, #get_outdoor_subsurface_ratio, #get_weekday_values_from_8760, #get_wtd_avg_of_other_zones, #headered_pumps_variable_speed_set_control_type, #heat_exchanger_air_to_air_sensible_and_latent_apply_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_efficiency_enthalpy_recovery_ratio, #heat_exchanger_air_to_air_sensible_and_latent_apply_prototype_nominal_electric_power, #heat_exchanger_air_to_air_sensible_and_latent_enthalpy_recovery_ratio_to_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_minimum_effectiveness, #heat_exchanger_air_to_air_sensible_and_latent_prototype_default_fan_efficiency, #hspf_to_cop, #hspf_to_cop_no_fan, #interior_lighting_get_prm_data, #kw_per_ton_to_cop, #load_hvac_map, #load_initial_osm, #make_ruleset_sched_from_8760, #make_week_ruleset_sched_from_168, #model_add_baseboard, #model_add_booster_swh_end_uses, #model_add_cav, #model_add_central_air_source_heat_pump, #model_add_chw_loop, #model_add_construction, #model_add_construction_set, #model_add_crac, #model_add_crah, #model_add_curve, #model_add_cw_loop, #model_add_data_center_hvac, #model_add_data_center_load, #model_add_daylighting_controls, #model_add_district_ambient_loop, #model_add_doas, #model_add_doas_cold_supply, #model_add_elevator, #model_add_elevators, #model_add_evap_cooler, #model_add_exhaust_fan, #model_add_four_pipe_fan_coil, #model_add_furnace_central_ac, #model_add_ground_hx_loop, #model_add_heatpump_water_heater, #model_add_high_temp_radiant, #model_add_hp_loop, #model_add_hvac, #model_add_hvac_system, #model_add_hw_loop, #model_add_ideal_air_loads, #model_add_low_temp_radiant, #model_add_material, #model_add_minisplit_hp, #model_add_piping_losses_to_swh_system, #model_add_plant_supply_water_temperature_control, #model_add_prm_baseline_system, #model_add_prm_elevators, #model_add_psz_ac, #model_add_psz_vav, #model_add_ptac, #model_add_pthp, #model_add_pvav, #model_add_pvav_pfp_boxes, #model_add_radiant_basic_controls, #model_add_radiant_proportional_controls, #model_add_refrigeration_case, #model_add_refrigeration_compressor, #model_add_refrigeration_system, #model_add_refrigeration_walkin, #model_add_residential_erv, #model_add_residential_ventilator, #model_add_schedule, #model_add_split_ac, #model_add_swh, #model_add_swh_booster, #model_add_swh_end_uses, #model_add_swh_end_uses_by_space, #model_add_swh_loop, #model_add_transformer, #model_add_typical_exterior_lights, #model_add_typical_refrigeration, #model_add_typical_swh, #model_add_unitheater, #model_add_vav_pfp_boxes, #model_add_vav_reheat, #model_add_vrf, #model_add_water_heater, #model_add_water_source_hp, #model_add_waterside_economizer, #model_add_window_ac, #model_add_zone_erv, #model_add_zone_heat_cool_request_count_program, #model_add_zone_ventilation, #model_apply_baseline_exterior_lighting, #model_apply_hvac_efficiency_standard, #model_apply_infiltration_standard, #model_apply_multizone_vav_outdoor_air_sizing, #model_apply_prm_baseline_sizing_schedule, #model_apply_prm_baseline_skylight_to_roof_ratio, #model_apply_prm_baseline_window_to_wall_ratio, #model_apply_prm_construction_types, #model_apply_prm_sizing_parameters, #model_apply_standard_constructions, #model_apply_standard_infiltration, #model_attach_water_fixtures_to_spaces?, #model_create_exterior_lighting_area_length_count_hash, #model_create_multizone_fan_schedule, #model_create_prm_any_baseline_building, #model_create_prm_baseline_building, #model_create_prm_baseline_building_requires_proposed_model_sizing_run, #model_create_prm_baseline_building_requires_vlt_sizing_run, #model_create_prm_proposed_building, #model_create_prm_stable_baseline_building, #model_create_space_type_hash, #model_create_story_hash, #model_differentiate_primary_secondary_thermal_zones, #model_effective_num_stories, #model_elevator_lift_power, #model_eliminate_outlier_zones, #model_find_and_add_construction, #model_find_ashrae_hot_water_demand, #model_find_climate_zone_set, #model_find_icc_iecc_2015_hot_water_demand, #model_find_icc_iecc_2015_internal_loads, #model_find_object, #model_find_objects, #model_find_prototype_floor_area, #model_find_target_eui, #model_find_target_eui_by_end_use, #model_find_water_heater_capacity_volume_and_parasitic, #model_get_baseline_system_type_by_zone, #model_get_building_properties, #model_get_climate_zone_set_from_list, #model_get_construction_properties, #model_get_construction_set, #model_get_district_heating_zones, #model_get_lookup_name, #model_get_or_add_ambient_water_loop, #model_get_or_add_chilled_water_loop, #model_get_or_add_ground_hx_loop, #model_get_or_add_heat_pump_loop, #model_get_or_add_hot_water_loop, #model_is_hvac_autosized, #model_legacy_results_by_end_use_and_fuel_type, #model_make_name, #model_prm_baseline_system_groups, #model_prm_baseline_system_type, #model_process_results_for_datapoint, #model_remap_office, #model_remove_external_shading_devices, #model_remove_prm_ems_objects, #model_remove_prm_hvac, #model_remove_unused_resource_objects, #model_set_vav_terminals_to_control_for_outdoor_air, #model_system_outdoor_air_sizing_vrp_method, #model_two_pipe_loop, #model_typical_display_case_zone, #model_typical_hvac_system_type, #model_typical_walkin_zone, #model_validate_standards_spacetypes_in_model, #model_ventilation_method, #model_walkin_freezer_latent_case_credit_curve, #model_zones_with_occ_and_fuel_type, #planar_surface_apply_standard_construction, #plant_loop_adiabatic_pipes_only, #plant_loop_apply_prm_baseline_chilled_water_pumping_type, #plant_loop_apply_prm_baseline_chilled_water_temperatures, #plant_loop_apply_prm_baseline_condenser_water_pumping_type, #plant_loop_apply_prm_baseline_condenser_water_temperatures, #plant_loop_apply_prm_baseline_hot_water_pumping_type, #plant_loop_apply_prm_baseline_hot_water_temperatures, #plant_loop_apply_prm_baseline_pump_power, #plant_loop_apply_prm_baseline_pumping_type, #plant_loop_apply_prm_baseline_temperatures, #plant_loop_apply_prm_number_of_boilers, #plant_loop_apply_prm_number_of_chillers, #plant_loop_apply_prm_number_of_cooling_towers, #plant_loop_apply_standard_controls, #plant_loop_capacity_w_by_maxflow_and_delta_t_forwater, #plant_loop_enable_supply_water_temperature_reset, #plant_loop_find_maximum_loop_flow_rate, #plant_loop_set_chw_pri_sec_configuration, #plant_loop_supply_water_temperature_reset_required?, #plant_loop_swh_loop?, #plant_loop_swh_system_type, #plant_loop_total_cooling_capacity, #plant_loop_total_floor_area_served, #plant_loop_total_heating_capacity, #plant_loop_total_rated_w_per_gpm, #plant_loop_variable_flow_system?, #prototype_apply_condenser_water_temperatures, #prototype_condenser_water_temperatures, #pump_variable_speed_control_type, #pump_variable_speed_set_control_type, register_standard, #remove_air_loops, #remove_all_hvac, #remove_all_plant_loops, #remove_all_zone_equipment, #remove_hvac, #remove_plant_loops, #remove_unused_curves, #remove_vrf, #remove_zone_equipment, #rename_air_loop_nodes, #rename_plant_loop_nodes, #safe_load_model, #seer_to_cop, #seer_to_cop_no_fan, #set_maximum_fraction_outdoor_air_schedule, #space_add_daylighting_controls, #space_apply_infiltration_rate, #space_conditioning_category, #space_daylighted_areas, #space_get_equip_annual_array, #space_get_loads_for_all_equips, #space_internal_load_annual_array, #space_occupancy_annual_array, #space_remove_daylighting_controls, #space_set_baseline_daylighting_controls, #space_sidelighting_effective_aperture, #space_skylight_effective_aperture, #space_type_apply_int_loads_prm, #space_type_apply_internal_load_schedules, #space_type_apply_internal_loads, #space_type_apply_rendering_color, #space_type_get_construction_properties, #space_type_get_standards_data, #space_type_light_sch_change, #standard_design_sizing_temperatures, #standards_lookup_table_first, #standards_lookup_table_many, #strip_model, #sub_surface_create_centered_subsurface_from_scaled_surface, #sub_surface_create_scaled_subsurfaces_from_surface, #surface_adjust_fenestration_in_a_surface, #surface_subsurface_ua, #thermal_eff_to_afue, #thermal_eff_to_comb_eff, #thermal_zone_add_exhaust, #thermal_zone_add_exhaust_fan_dcv, #thermal_zone_apply_prm_baseline_supply_temperatures, #thermal_zone_conditioning_category, #thermal_zone_demand_control_ventilation_required?, #thermal_zone_exhaust_fan_dcv_required?, #thermal_zone_fossil_or_electric_type, #thermal_zone_get_annual_operating_hours, #thermal_zone_get_zone_fuels_for_occ_and_fuel_type, #thermal_zone_infer_system_type, #thermal_zone_occupancy_eflh, #thermal_zone_peak_internal_load, #thermal_zone_prm_baseline_cooling_design_supply_temperature, #thermal_zone_prm_baseline_heating_design_supply_temperature, #thermal_zone_prm_lab_delta_t, #thermal_zone_prm_unitheater_design_supply_temperature, #true?, #validate_initial_model, #water_heater_convert_energy_factor_to_thermal_efficiency_and_ua, #water_heater_convert_uniform_energy_factor_to_energy_factor, #water_heater_determine_sub_type, #water_heater_mixed_additional_search_criteria, #water_heater_mixed_apply_efficiency, #water_heater_mixed_find_capacity, #water_heater_mixed_get_efficiency_requirement, #zone_hvac_component_apply_prm_baseline_fan_power, #zone_hvac_component_apply_standard_controls, #zone_hvac_component_apply_vestibule_heating_control, #zone_hvac_component_occupancy_ventilation_control, #zone_hvac_component_prm_baseline_fan_efficacy, #zone_hvac_get_fan_object, #zone_hvac_model_standby_mode_occupancy_control, #zone_hvac_unoccupied_threshold

Methods included from PrototypeFan

apply_base_fan_variables, #create_fan_by_name, #get_fan_from_standards, #lookup_fan_curve_coefficients_from_json, #prototype_fan_apply_prototype_fan_efficiency

Methods included from CoilDX

#coil_dx_find_search_criteria, #coil_dx_heat_pump?, #coil_dx_heating_type, #coil_dx_subcategory

Methods included from CoolingTower

#cooling_tower_apply_minimum_power_per_flow, #cooling_tower_apply_minimum_power_per_flow_gpm_limit

Methods included from Pump

#pump_apply_prm_pressure_rise_and_motor_efficiency, #pump_apply_standard_minimum_motor_efficiency, #pump_brake_horsepower, #pump_motor_horsepower, #pump_pumppower, #pump_rated_w_per_gpm, #pump_standard_minimum_motor_efficiency_and_size

Methods included from Fan

#fan_adjust_pressure_rise_to_meet_fan_power, #fan_apply_standard_minimum_motor_efficiency, #fan_baseline_impeller_efficiency, #fan_brake_horsepower, #fan_change_impeller_efficiency, #fan_change_motor_efficiency, #fan_design_air_flow, #fan_fanpower, #fan_motor_horsepower, #fan_rated_w_per_cfm, #fan_small_fan?, #fan_standard_minimum_motor_efficiency_and_size

Constructor Details

#initializeASHRAE9012013

Returns a new instance of ASHRAE9012013.



8
9
10
11
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.rb', line 8

def initialize
  @template = '90.1-2013'
  load_standards_database
end

Instance Attribute Details

#templateObject (readonly)

Returns the value of attribute template.



6
7
8
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.rb', line 6

def template
  @template
end

Instance Method Details

#air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac) ⇒ Array<Double>

Determines the OA flow rates above which an economizer is required. Two separate rates, one for systems with an economizer and another for systems without.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

Returns:

  • (Array<Double>)
    min_oa_without_economizer_cfm, min_oa_with_economizer_cfm


302
303
304
305
306
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 302

def air_loop_hvac_demand_control_ventilation_limits(air_loop_hvac)
  min_oa_without_economizer_cfm = 3000
  min_oa_with_economizer_cfm = 750
  return [min_oa_without_economizer_cfm, min_oa_with_economizer_cfm]
end

#air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>

Determine the limits for the type of economizer present on the AirLoopHVAC, if any.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Array<Double>)
    drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f


9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 9

def air_loop_hvac_economizer_limits(air_loop_hvac, climate_zone)
  drybulb_limit_f = nil
  enthalpy_limit_btu_per_lb = nil
  dewpoint_limit_f = nil

  # Get the OA system and OA controller
  oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem
  return [nil, nil, nil] unless oa_sys.is_initialized

  oa_sys = oa_sys.get
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType
  oa_control.resetEconomizerMinimumLimitDryBulbTemperature

  case economizer_type
  when 'NoEconomizer'
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} no economizer")
    return [nil, nil, nil]
  when 'FixedDryBulb'
    search_criteria = {
      'template' => template,
      'climate_zone' => climate_zone
    }
    econ_limits = model_find_object(standards_data['economizers'], search_criteria)
    drybulb_limit_f = econ_limits['fixed_dry_bulb_high_limit_shutoff_temp']
  when 'FixedEnthalpy'
    enthalpy_limit_btu_per_lb = 28.0
  when 'FixedDewPointAndDryBulb'
    drybulb_limit_f = 75.0
    dewpoint_limit_f = 55.0
  when 'DifferentialDryBulb', 'DifferentialEnthalpy'
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Economizer type = #{economizer_type}, no limits defined.")
  end

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Economizer type = #{economizer_type}, limits [#{drybulb_limit_f},#{enthalpy_limit_btu_per_lb},#{dewpoint_limit_f}]")

  return [drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f]
end

#air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone) ⇒ Boolean

Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    Returns true if allowable, if the system has no economizer or no OA system. Returns false if the economizer type is not allowable.



128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 128

def air_loop_hvac_economizer_type_allowable?(air_loop_hvac, climate_zone)
  # EnergyPlus economizer types
  # 'NoEconomizer'
  # 'FixedDryBulb'
  # 'FixedEnthalpy'
  # 'DifferentialDryBulb'
  # 'DifferentialEnthalpy'
  # 'FixedDewPointAndDryBulb'
  # 'ElectronicEnthalpy'
  # 'DifferentialDryBulbAndEnthalpy'

  # Get the OA system and OA controller
  oa_sys = air_loop_hvac.airLoopHVACOutdoorAirSystem
  return true unless oa_sys.is_initialized

  oa_sys = oa_sys.get
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  # Return true if no economizer is present
  if economizer_type == 'NoEconomizer'
    return true
  end

  # Determine the prohibited types
  prohibited_types = []
  case climate_zone
  when 'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2006-4B',
       'ASHRAE 169-2006-4C',
       'ASHRAE 169-2006-5B',
       'ASHRAE 169-2006-6B',
       'ASHRAE 169-2006-7A',
       'ASHRAE 169-2006-7B',
       'ASHRAE 169-2006-8A',
       'ASHRAE 169-2006-8B',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C',
       'ASHRAE 169-2013-4B',
       'ASHRAE 169-2013-4C',
       'ASHRAE 169-2013-5B',
       'ASHRAE 169-2013-6B',
       'ASHRAE 169-2013-7A',
       'ASHRAE 169-2013-7B',
       'ASHRAE 169-2013-8A',
       'ASHRAE 169-2013-8B'
    prohibited_types = ['FixedEnthalpy']
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2006-4A',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-3A',
       'ASHRAE 169-2013-4A'
    prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb']
  when 'ASHRAE 169-2006-5A',
       'ASHRAE 169-2006-6A',
       'ASHRAE 169-2013-5A',
       'ASHRAE 169-2013-6A'
    prohibited_types = []
  end

  # Check if the specified type is allowed
  economizer_type_allowed = true
  if prohibited_types.include?(economizer_type)
    economizer_type_allowed = false
  end

  return economizer_type_allowed
end

#air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa) ⇒ Double

Determine the airflow limits that govern whether or not an ERV is required. Based on climate zone and % OA, plus the number of operating hours the system has.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

  • pct_oa (Double)

    percentage of outdoor air

Returns:

  • (Double)

    the flow rate above which an ERV is required. if nil, ERV is never required.



435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 435

def air_loop_hvac_energy_recovery_ventilator_flow_limit(air_loop_hvac, climate_zone, pct_oa)
  # Calculate the number of system operating hours
  # based on the availability schedule.
  ann_op_hrs = 0.0
  avail_sch = air_loop_hvac.availabilitySchedule
  if avail_sch == air_loop_hvac.model.alwaysOnDiscreteSchedule
    ann_op_hrs = 8760.0
  elsif avail_sch.to_ScheduleRuleset.is_initialized
    avail_sch = avail_sch.to_ScheduleRuleset.get
    ann_op_hrs = OpenstudioStandards::Schedules.schedule_ruleset_get_hours_above_value(avail_sch, 0.0)
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2013.AirLoopHVAC', "For #{air_loop_hvac.name}: could not determine annual operating hours. Assuming less than 8,000 for ERV determination.")
  end

  if ann_op_hrs < 8000.0
    # Table 6.5.6.1-1, less than 8000 hrs
    search_criteria = {
      'template' => template,
      'climate_zone' => climate_zone,
      'under_8000_hours' => true
    }
    energy_recovery_limits = model_find_object(standards_data['energy_recovery'], search_criteria)
    if energy_recovery_limits.nil?
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2013.AirLoopHVAC', "Cannot find energy recovery limits for template '#{template}', climate zone '#{climate_zone}', and under 8000 hours, assuming no energy recovery required.")
      return nil
    end

    if pct_oa < 0.1
      erv_cfm = nil
    elsif pct_oa >= 0.1 && pct_oa < 0.2
      erv_cfm = energy_recovery_limits['10_to_20_percent_oa']
    elsif pct_oa >= 0.2 && pct_oa < 0.3
      erv_cfm = energy_recovery_limits['20_to_30_percent_oa']
    elsif pct_oa >= 0.3 && pct_oa < 0.4
      erv_cfm = energy_recovery_limits['30_to_40_percent_oa']
    elsif pct_oa >= 0.4 && pct_oa < 0.5
      erv_cfm = energy_recovery_limits['40_to_50_percent_oa']
    elsif pct_oa >= 0.5 && pct_oa < 0.6
      erv_cfm = energy_recovery_limits['50_to_60_percent_oa']
    elsif pct_oa >= 0.6 && pct_oa < 0.7
      erv_cfm = energy_recovery_limits['60_to_70_percent_oa']
    elsif pct_oa >= 0.7 && pct_oa < 0.8
      erv_cfm = energy_recovery_limits['70_to_80_percent_oa']
    elsif pct_oa >= 0.8
      erv_cfm = energy_recovery_limits['greater_than_80_percent_oa']
    end
  else
    # Table 6.5.6.1-2, above 8000 hrs
    search_criteria = {
      'template' => template,
      'climate_zone' => climate_zone,
      'under_8000_hours' => false
    }
    energy_recovery_limits = model_find_object(standards_data['energy_recovery'], search_criteria)
    if energy_recovery_limits.nil?
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2013.AirLoopHVAC', "Cannot find energy recovery limits for template '#{template}', climate zone '#{climate_zone}', and under 8000 hours, assuming no energy recovery required.")
      return nil
    end
    if pct_oa < 0.1
      erv_cfm = nil
    elsif pct_oa >= 0.1 && pct_oa < 0.2
      erv_cfm = energy_recovery_limits['10_to_20_percent_oa']
    elsif pct_oa >= 0.2 && pct_oa < 0.3
      erv_cfm = energy_recovery_limits['20_to_30_percent_oa']
    elsif pct_oa >= 0.3 && pct_oa < 0.4
      erv_cfm = energy_recovery_limits['30_to_40_percent_oa']
    elsif pct_oa >= 0.4 && pct_oa < 0.5
      erv_cfm = energy_recovery_limits['40_to_50_percent_oa']
    elsif pct_oa >= 0.5 && pct_oa < 0.6
      erv_cfm = energy_recovery_limits['50_to_60_percent_oa']
    elsif pct_oa >= 0.6 && pct_oa < 0.7
      erv_cfm = energy_recovery_limits['60_to_70_percent_oa']
    elsif pct_oa >= 0.7 && pct_oa < 0.8
      erv_cfm = energy_recovery_limits['70_to_80_percent_oa']
    elsif pct_oa >= 0.8
      erv_cfm = energy_recovery_limits['greater_than_80_percent_oa']
    end
  end

  return erv_cfm
end

#air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone) ⇒ Boolean

Determine if the system economizer must be integrated or not. All economizers must be integrated in 90.1-2013

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



54
55
56
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 54

def air_loop_hvac_integrated_economizer_required?(air_loop_hvac, climate_zone)
  return true
end

#air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>

Determine the air flow and number of story limits for whether motorized OA damper is required.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Array<Double>)

    [minimum_oa_flow_cfm, maximum_stories]. If both nil, never required



313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 313

def air_loop_hvac_motorized_oa_damper_limits(air_loop_hvac, climate_zone)
  case climate_zone
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3A',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C'
    minimum_oa_flow_cfm = 0
    maximum_stories = 999 # Any number of stories
  else
    minimum_oa_flow_cfm = 0
    maximum_stories = 0
  end

  return [minimum_oa_flow_cfm, maximum_stories]
end

#air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone) ⇒ Boolean

TODO:

Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems

Note:

code_sections [90.1-2013_6.5.3.3]

Determine if multizone vav optimization is required.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 216

def air_loop_hvac_multizone_vav_optimization_required?(air_loop_hvac, climate_zone)
  multizone_opt_required = false

  # Not required for systems with fan-powered terminals
  num_fan_powered_terminals = 0
  air_loop_hvac.demandComponents.each do |comp|
    if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized
      num_fan_powered_terminals += 1
    end
  end
  if num_fan_powered_terminals > 0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.")
    return multizone_opt_required
  end

  # Not required for systems that require an ERV
  # Exception 2 to Section 6.5.3.3
  if air_loop_hvac_energy_recovery?(air_loop_hvac)
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: multizone vav optimization is not required because the system has Energy Recovery.")
    return multizone_opt_required
  end

  # Get the OA intake
  controller_oa = nil
  controller_mv = nil
  oa_system = nil
  if air_loop_hvac.airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = air_loop_hvac.airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}, multizone optimization is not applicable because system has no OA intake.")
    return multizone_opt_required
  end

  # Get the AHU design supply air flow rate
  dsn_flow_m3_per_s = nil
  if air_loop_hvac.designSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = air_loop_hvac.designSupplyAirFlowRate.get
  elsif air_loop_hvac.autosizedDesignSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = air_loop_hvac.autosizedDesignSupplyAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name} design supply air flow rate is not available, cannot apply efficiency standard.")
    return multizone_opt_required
  end
  dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Get the minimum OA flow rate
  min_oa_flow_m3_per_s = nil
  if controller_oa.minimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
  elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.")
    return multizone_opt_required
  end
  min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Calculate the percent OA at design airflow
  pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s

  # Not required for systems where
  # exhaust is more than 70% of the total OA intake.
  if pct_oa > 0.7
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.")
    return multizone_opt_required
  end

  # @todo Not required for dual-duct systems
  # if self.isDualDuct
  # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system")
  # return multizone_opt_required
  # end

  # If here, multizone vav optimization is required
  multizone_opt_required = true

  return multizone_opt_required
end

#air_loop_hvac_prm_economizer_type_and_limits(air_loop_hvac, climate_zone) ⇒ Array<Double>

Determine the economizer type and limits for the the PRM Defaults to 90.1-2007 logic.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Array<Double>)
    economizer_type, drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 64

def air_loop_hvac_prm_economizer_type_and_limits(air_loop_hvac, climate_zone)
  economizer_type = 'NoEconomizer'
  drybulb_limit_f = nil
  enthalpy_limit_btu_per_lb = nil
  dewpoint_limit_f = nil

  case climate_zone
  when 'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2006-4B',
       'ASHRAE 169-2006-4C',
       'ASHRAE 169-2006-5B',
       'ASHRAE 169-2006-5C',
       'ASHRAE 169-2006-6B',
       'ASHRAE 169-2006-7B',
       'ASHRAE 169-2006-8A',
       'ASHRAE 169-2006-8B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C',
       'ASHRAE 169-2013-4B',
       'ASHRAE 169-2013-4C',
       'ASHRAE 169-2013-5B',
       'ASHRAE 169-2013-5C',
       'ASHRAE 169-2013-6B',
       'ASHRAE 169-2013-7B',
       'ASHRAE 169-2013-8A',
       'ASHRAE 169-2013-8B'
    economizer_type = 'FixedDryBulb'
    drybulb_limit_f = 75
  when 'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2006-4A',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-3A',
       'ASHRAE 169-2013-4A'
    economizer_type = 'FixedEnthalpy'
    enthalpy_limit_btu_per_lb = 28
  when 'ASHRAE 169-2006-5A',
       'ASHRAE 169-2006-6A',
       'ASHRAE 169-2006-7A',
       'ASHRAE 169-2013-5A',
       'ASHRAE 169-2013-6A',
       'ASHRAE 169-2013-7A'
    economizer_type = 'FixedDryBulb'
    drybulb_limit_f = 70
  else
    economizer_type = 'FixedDryBulb'
    drybulb_limit_f = 65
  end

  return [economizer_type, drybulb_limit_f, enthalpy_limit_btu_per_lb, dewpoint_limit_f]
end

#air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone) ⇒ Integer

Determine the number of stages that should be used as controls for single zone DX systems. 90.1-2013 depends on the cooling capacity of the system.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Integer)

    the number of stages: 0, 1, 2



349
350
351
352
353
354
355
356
357
358
359
360
361
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 349

def air_loop_hvac_single_zone_controls_num_stages(air_loop_hvac, climate_zone)
  min_clg_cap_btu_per_hr = 65_000
  clg_cap_btu_per_hr = OpenStudio.convert(air_loop_hvac_total_cooling_capacity(air_loop_hvac), 'W', 'Btu/hr').get
  if clg_cap_btu_per_hr >= min_clg_cap_btu_per_hr
    num_stages = 2
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr exceeds the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .")
  else
    num_stages = 1
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: two-stage control is not required since cooling capacity of #{clg_cap_btu_per_hr.round} Btu/hr is less than the minimum of #{min_clg_cap_btu_per_hr.round} Btu/hr .")
  end

  return num_stages
end

#air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone) ⇒ Boolean

Determine if the system required supply air temperature (SAT) reset. For 90.1-2013, SAT reset requirements are based on climate zone.

Parameters:

  • air_loop_hvac (OpenStudio::Model::AirLoopHVAC)

    air loop

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if required, false if not



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirLoopHVAC.rb', line 369

def air_loop_hvac_supply_air_temperature_reset_required?(air_loop_hvac, climate_zone)
  is_sat_reset_required = false

  # Only required for multizone VAV systems
  unless air_loop_hvac_multizone_vav_system?(air_loop_hvac)
    return is_sat_reset_required
  end

  case climate_zone
  when 'ASHRAE 169-2006-0A',
       'ASHRAE 169-2006-1A',
       'ASHRAE 169-2006-2A',
       'ASHRAE 169-2006-3A',
       'ASHRAE 169-2013-0A',
       'ASHRAE 169-2013-1A',
       'ASHRAE 169-2013-2A',
       'ASHRAE 169-2013-3A'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.")
    return is_sat_reset_required
  when 'ASHRAE 169-2006-0B',
       'ASHRAE 169-2006-1B',
       'ASHRAE 169-2006-2B',
       'ASHRAE 169-2006-3B',
       'ASHRAE 169-2006-3C',
       'ASHRAE 169-2006-4A',
       'ASHRAE 169-2006-4B',
       'ASHRAE 169-2006-4C',
       'ASHRAE 169-2006-5A',
       'ASHRAE 169-2006-5B',
       'ASHRAE 169-2006-5C',
       'ASHRAE 169-2006-6A',
       'ASHRAE 169-2006-6B',
       'ASHRAE 169-2006-7A',
       'ASHRAE 169-2006-7B',
       'ASHRAE 169-2006-8A',
       'ASHRAE 169-2006-8B',
       'ASHRAE 169-2013-0B',
       'ASHRAE 169-2013-1B',
       'ASHRAE 169-2013-2B',
       'ASHRAE 169-2013-3B',
       'ASHRAE 169-2013-3C',
       'ASHRAE 169-2013-4A',
       'ASHRAE 169-2013-4B',
       'ASHRAE 169-2013-4C',
       'ASHRAE 169-2013-5A',
       'ASHRAE 169-2013-5B',
       'ASHRAE 169-2013-5C',
       'ASHRAE 169-2013-6A',
       'ASHRAE 169-2013-6B',
       'ASHRAE 169-2013-7A',
       'ASHRAE 169-2013-7B',
       'ASHRAE 169-2013-8A',
       'ASHRAE 169-2013-8B'
    is_sat_reset_required = true
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{air_loop_hvac.name}: Supply air temperature reset is required.")
    return is_sat_reset_required
  end
end

#air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area) ⇒ Boolean

Set the initial minimum damper position based on OA rate of the space and the template. Zones with low OA per area get lower initial guesses. Final position will be adjusted upward as necessary by Standards.AirLoopHVAC.apply_minimum_vav_damper_positions

Parameters:

  • air_terminal_single_duct_vav_reheat (OpenStudio::Model::AirTerminalSingleDuctVAVReheat)

    the air terminal object

  • zone_oa_per_area (Double)

    the zone outdoor air per area in m^3/s*m^2

Returns:

  • (Boolean)

    returns true if successful, false if not



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirTerminalSingleDuctVAVReheat.rb', line 10

def air_terminal_single_duct_vav_reheat_apply_initial_prototype_damper_position(air_terminal_single_duct_vav_reheat, zone_oa_per_area)
  min_damper_position = case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat)
                        when 'HotWater'
                          0.2
                        when 'Electricity', 'NaturalGas'
                          0.3
                        else
                          0.2
                        end

  # Set the minimum flow fraction
  air_terminal_single_duct_vav_reheat.setConstantMinimumAirFlowFraction(min_damper_position)

  return true
end

#air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false) ⇒ Double

Specifies the minimum damper position for VAV dampers. For terminals with hot water heat and DDC, the minimum is 20%, otherwise the minimum is 30%.

Parameters:

  • air_terminal_single_duct_vav_reheat (OpenStudio::Model::AirTerminalSingleDuctVAVReheat)

    the air terminal object

  • has_ddc (Boolean) (defaults to: false)

    whether or not there is DDC control of the VAV terminal in question

Returns:

  • (Double)

    minimum damper position



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.AirTerminalSingleDuctVAVReheat.rb', line 10

def air_terminal_single_duct_vav_reheat_minimum_damper_position(air_terminal_single_duct_vav_reheat, has_ddc = false)
  min_damper_position = nil
  case air_terminal_single_duct_vav_reheat_reheat_type(air_terminal_single_duct_vav_reheat)
  when 'HotWater'
    min_damper_position = if has_ddc
                            0.2
                          else
                            0.3
                          end
  when 'Electricity', 'NaturalGas'
    min_damper_position = 0.3
  end

  return min_damper_position
end

#boiler_get_eff_fplr(boiler_hot_water) ⇒ String

Determine what part load efficiency degredation curve should be used for a boiler

Parameters:

  • boiler_hot_water (OpenStudio::Model::BoilerHotWater)

    hot water boiler object

Returns:

  • (String)

    returns name of the boiler curve to be used, or nil if not applicable



6
7
8
9
10
11
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.BoilerHotWater.rb', line 6

def boiler_get_eff_fplr(boiler_hot_water)
  capacity_w = boiler_hot_water_find_capacity(boiler_hot_water)
  capacity_btu_per_hr = OpenStudio.convert(capacity_w, 'W', 'Btu/hr').get
  fplr = capacity_btu_per_hr >= 1_000_000 ? 'Boiler with Minimum Turndown' : 'Boiler with No Minimum Turndown'
  return fplr
end

#chiller_electric_eir_get_cap_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for capacity as a function of temperature

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ChillerElectricEIR.rb', line 10

def chiller_electric_eir_get_cap_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_2010_PathA_CAPFT'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      if compliance_path == 'Path A'
        return 'WaterCooled_Centrifugal_Chiller_2010_PathA_CAPFT'
      elsif compliance_path == 'Path B'
        return 'WaterCooled_Centrifugal_Chiller_2010_PathB_CAPFT'
      else
        return nil
      end
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      return 'ChlrWtrPosDispPathAAllQRatio_fTchwsTcwsSI'
    else
      return nil
    end
  else
    return nil
  end
end

#chiller_electric_eir_get_eir_f_plr_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for EIR as a function of part load ratio

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ChillerElectricEIR.rb', line 74

def chiller_electric_eir_get_eir_f_plr_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_AllCapacities_2004_2010_EIRFPLR'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      return 'ChlrWtrCentPathAAllEIRRatio_fQRatio'
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      return 'ChlrWtrPosDispPathAAllEIRRatio_fQRatio'
    else
      return nil
    end
  else
    return nil
  end
end

#chiller_electric_eir_get_eir_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path) ⇒ String

TODO:

the current assingment is meant to replicate what was in the data, it probably needs to be reviewed

Get applicable performance curve for EIR as a function of temperature

Parameters:

  • chiller_electric_eir (OpenStudio::Model::ChillerElectricEIR)

    chiller object

  • compressor_type (String)

    compressor type

  • cooling_type (String)

    cooling type (‘AirCooled’ or ‘WaterCooled’)

  • chiller_tonnage (Double)

    chiller capacity in ton

Returns:

  • (String)

    name of applicable cuvre, nil if not found



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ChillerElectricEIR.rb', line 42

def chiller_electric_eir_get_eir_f_t_curve_name(chiller_electric_eir, compressor_type, cooling_type, chiller_tonnage, compliance_path)
  case cooling_type
  when 'AirCooled'
    return 'AirCooled_Chiller_2010_PathA_EIRFT'
  when 'WaterCooled'
    case compressor_type
    when 'Centrifugal'
      if compliance_path == 'Path A'
        return 'WaterCooled_Centrifugal_Chiller_2010_PathA_EIRFT'
      elsif compliance_path == 'Path B'
        return 'WaterCooled_Centrifugal_Chiller_2010_PathB_EIRFT'
      else
        return nil
      end
    when 'Reciprocating', 'Rotary Screw', 'Scroll'
      return 'ChlrWtrPosDispPathAAllEIRRatio_fTchwsTcwsSI'
    else
      return nil
    end
  else
    return nil
  end
end

#cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed) ⇒ Boolean

Apply the efficiency, plus Multicell heat rejection with VSD per 90.1-2013 6.5.2.2

Parameters:

  • cooling_tower_variable_speed (OpenStudio::Model::CoolingTowerVariableSpeed)

    variable speed cooling tower

Returns:

  • (Boolean)

    returns true if successful, false if not



10
11
12
13
14
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.CoolingTowerVariableSpeed.rb', line 10

def cooling_tower_variable_speed_apply_efficiency_and_curves(cooling_tower_variable_speed)
  cooling_tower_apply_minimum_power_per_flow(cooling_tower_variable_speed)
  cooling_tower_variable_speed.setCellControl('MaximalCell')
  return true
end

#fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume) ⇒ Double

Determine the prototype fan pressure rise for a constant volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_constant_volume (OpenStudio::Model::FanConstantVolume)

    constant volume fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanConstantVolume.rb', line 9

def fan_constant_volume_airloop_fan_pressure_rise(fan_constant_volume)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_constant_volume.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_constant_volume.maximumFlowRate.get
  elsif fan_constant_volume.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_constant_volume.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanConstantVolume', "For #{fan_constant_volume.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437
                           2.5
                         else # Over 7,437 cfm
                           4.09
                         end

  return pressure_rise_in_h2o
end

#fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off) ⇒ Double

Determine the prototype fan pressure rise for an on off fan on an AirLoopHVAC or inside a unitary system based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_on_off (OpenStudio::Model::FanOnOff)

    on off fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanOnOff.rb', line 9

def fan_on_off_airloop_or_unitary_fan_pressure_rise(fan_on_off)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_on_off.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_on_off.maximumFlowRate.get
  elsif fan_on_off.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_on_off.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanOnOff', "For #{fan_on_off.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 7437
                           2.5
                         else # Over 7,437 cfm
                           4.09
                         end

  return pressure_rise_in_h2o
end

#fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume) ⇒ Double

Determine the prototype fan pressure rise for a variable volume fan on an AirLoopHVAC based on system airflow. Defaults to the logic from ASHRAE 90.1-2004 prototypes.

Parameters:

  • fan_variable_volume (OpenStudio::Model::FanVariableVolume)

    variable volume fan object

Returns:

  • (Double)

    pressure rise in inches H20



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanVariableVolume.rb', line 9

def fan_variable_volume_airloop_fan_pressure_rise(fan_variable_volume)
  # Get the max flow rate from the fan.
  maximum_flow_rate_m3_per_s = nil
  if fan_variable_volume.maximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_variable_volume.maximumFlowRate.get
  elsif fan_variable_volume.autosizedMaximumFlowRate.is_initialized
    maximum_flow_rate_m3_per_s = fan_variable_volume.autosizedMaximumFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.prototype.FanVariableVolume', "For #{fan_variable_volume.name} max flow rate is not available, cannot apply prototype assumptions.")
    return false
  end

  # Convert max flow rate to cfm
  maximum_flow_rate_cfm = OpenStudio.convert(maximum_flow_rate_m3_per_s, 'm^3/s', 'cfm').get

  # Determine the pressure rise
  pressure_rise_in_h2o = if maximum_flow_rate_cfm < 4648
                           4.0
                         else # Over 7,437 cfm
                           5.58
                         end

  return pressure_rise_in_h2o
end

#fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume) ⇒ Double

The threhold capacity below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the cooling capacity threshold is 75000 instead of 110000 as of 1/1/2014

Parameters:

  • fan_variable_volume (OpenStudio::Model::FanVariableVolume)

    variable volume fan object

Returns:

  • (Double)

    the limit, in Btu/hr. Return nil for no limit by default.



29
30
31
32
33
34
35
36
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanVariableVolume.rb', line 29

def fan_variable_volume_part_load_fan_power_limitation_capacity_limit(fan_variable_volume)
  cap_limit_btu_per_hr = case fan_variable_volume_cooling_system_type(fan_variable_volume)
                         when 'dx'
                           110_000
                         end

  return cap_limit_btu_per_hr
end

#fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume) ⇒ Double

The threhold horsepower below which part load control is not required. Per 90.1-2013, table 6.5.3.2.1: the fan motor size for chiller-water and evaporative cooling is 0.25 hp as of 1/1/2014 instead of 5 hp

Parameters:

  • fan_variable_volume (OpenStudio::Model::FanVariableVolume)

    variable volume fan object

Returns:

  • (Double)

    the limit, in horsepower. Return nil for no limit by default.



10
11
12
13
14
15
16
17
18
19
20
21
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.FanVariableVolume.rb', line 10

def fan_variable_volume_part_load_fan_power_limitation_hp_limit(fan_variable_volume)
  hp_limit = case fan_variable_volume_cooling_system_type(fan_variable_volume)
             when 'dx'
               0.0
             when 'chw'
               0.25
             when 'evap'
               0.25
             end

  return hp_limit
end

#load_standards_database(data_directories = []) ⇒ Hash

Loads the openstudio standards dataset for this standard.

Parameters:

  • data_directories (Array<String>) (defaults to: [])

    array of file paths that contain standards data

Returns:

  • (Hash)

    a hash of standards data



17
18
19
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.rb', line 17

def load_standards_database(data_directories = [])
  super([__dir__] + data_directories)
end

#model_baseline_system_vav_fan_type(model) ⇒ String

Determines the fan type used by VAV_Reheat and VAV_PFP_Boxes systems. Variable speed fan for 90.1-2013

Returns:

  • (String)

    the fan type: TwoSpeed Fan, Variable Speed Fan



101
102
103
104
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 101

def model_baseline_system_vav_fan_type(model)
  fan_type = 'Variable Speed Fan'
  return fan_type
end

#model_cw_loop_cooling_tower_fan_type(model) ⇒ String

Determine which type of fan the cooling tower will have. Variable Speed Fan for ASHRAE 90.1-2013.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

Returns:

  • (String)

    the fan type: TwoSpeed Fan, Variable Speed Fan



9
10
11
12
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.hvac_systems.rb', line 9

def model_cw_loop_cooling_tower_fan_type(model)
  fan_type = 'Variable Speed Fan'
  return fan_type
end

#model_economizer_type(model, climate_zone) ⇒ String

Determine the prototypical economizer type for the model.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (String)

    the economizer type. Possible values are: ‘NoEconomizer’ ‘FixedDryBulb’ ‘FixedEnthalpy’ ‘DifferentialDryBulb’ ‘DifferentialEnthalpy’ ‘FixedDewPointAndDryBulb’ ‘ElectronicEnthalpy’ ‘DifferentialDryBulbAndEnthalpy’



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 17

def model_economizer_type(model, climate_zone)
  economizer_type = case climate_zone
                    when 'ASHRAE 169-2006-0A',
                        'ASHRAE 169-2006-1A',
                        'ASHRAE 169-2006-2A',
                        'ASHRAE 169-2006-3A',
                        'ASHRAE 169-2006-4A',
                        'ASHRAE 169-2013-0A',
                        'ASHRAE 169-2013-1A',
                        'ASHRAE 169-2013-2A',
                        'ASHRAE 169-2013-3A',
                        'ASHRAE 169-2013-4A'
                      'DifferentialEnthalpy'
                    else
                      'DifferentialDryBulb'
                    end
  return economizer_type
end

#model_elevator_fan_pwr(model, vent_rate_cfm) ⇒ Double

Determines the power of the elevator ventilation fan. 90.1-2013 has a requirement for ventilation fan efficiency.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • vent_rate_cfm (Double)

    the ventilation rate in ft^3/min

Returns:

  • (Double)

    the ventilation fan power in watts



21
22
23
24
25
26
27
28
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.elevators.rb', line 21

def model_elevator_fan_pwr(model, vent_rate_cfm)
  vent_pwr_per_flow_w_per_cfm = 0.33
  vent_pwr_w = vent_pwr_per_flow_w_per_cfm * vent_rate_cfm
  # addendum 90.1-2007 aj has requirement on efficiency
  vent_pwr_w = vent_pwr_w * 0.29 / 0.70

  return vent_pwr_w
end

#model_elevator_lighting_pct_incandescent(model) ⇒ Double

Determines the percentage of the elevator cab lighting that is incandescent. The remainder is assumed to be LED. Defaults to 0% incandescent (100% LED), representing newer elevators.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

Returns:

  • (Double)

    incandescent lighting percentage



10
11
12
13
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.elevators.rb', line 10

def model_elevator_lighting_pct_incandescent(model)
  pct_incandescent = 0.0 # 100% LED
  return pct_incandescent
end

#model_fenestration_orientation(model, climate_zone) ⇒ Boolean

Note:

code_sections [90.1-2013_5.5.4.5]

Adjust model to comply with fenestration orientation requirements

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (Boolean)

    returns true if successful, false if not



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 42

def model_fenestration_orientation(model, climate_zone)
  # Building rotation to meet the same code requirement for
  # 90.1-2010 are kept
  if model.getBuilding.standardsBuildingType.is_initialized
    building_type = model.getBuilding.standardsBuildingType.get

    case building_type
      when 'Hospital'
        # Rotate the building counter-clockwise
        OpenstudioStandards::Geometry.model_set_building_north_axis(model, 270.0)
      when 'SmallHotel'
        # Rotate the building clockwise
        OpenstudioStandards::Geometry.model_set_building_north_axis(model, 180)
    end
  end

  wwr = false
  # Section 6.2.1.2 in the ANSI/ASHRAE/IES Standard 90.1-2013 Determination
  # of Energy Savings: Quantitative Analysis mentions that the SHGC trade-off
  # path is most likely to be used by designers for compliance.
  #
  # The following adjustment are only made for models with simple glazing objects
  non_simple_glazing = false
  shgc_a = 0
  model.getSpaces.each do |space|
    # Get thermal zone multiplier
    multiplier = space.thermalZone.get.multiplier

    space.surfaces.each do |surface|
      surface.subSurfaces.each do |subsurface|
        # Get window subsurface type
        subsurface_type = subsurface.subSurfaceType.to_s.downcase

        # Window, glass doors
        next unless (subsurface_type.include? 'window') || (subsurface_type.include? 'glass')

        # Check if non simple glazing fenestration objects are used
        subsurface_cons = subsurface.construction.get.to_Construction.get
        non_simple_glazing = true unless subsurface_cons.layers[0].to_SimpleGlazing.is_initialized

        if non_simple_glazing
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.ashrae_90_1_2013.model', 'Fenestration objects in the model use non-simple glazing models, fenestration requirements are not applied')
          return false
        end

        # Get subsurface's simple glazing object
        subsurface_shgc = subsurface_cons.layers[0].to_SimpleGlazing.get.solarHeatGainCoefficient

        # Get subsurface area
        subsurface_area = subsurface.grossArea * subsurface.multiplier * multiplier

        # SHGC * Area
        shgc_a += subsurface_shgc * subsurface_area
      end
    end
  end

  # Calculate West, East and total fenestration area
  a_n = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['north_window']
  a_s = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['south_window']
  a_e = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['east_window']
  a_w = OpenstudioStandards::Geometry.model_get_exterior_window_and_wall_area_by_orientation(model)['west_window']
  a_t = a_n + a_s + a_e + a_w

  return true if a_t == 0.0

  # For prototypes SHGC_c assumed to be the building's weighted average SHGC
  shgc_c = shgc_a / a_t
  shgc_c = shgc_c.round(2)

  # West and East facing WWR
  wwr_w = OpenstudioStandards::Geometry.model_get_exterior_window_to_wall_ratio(model, cardinal_direction: 'W')
  wwr_e = OpenstudioStandards::Geometry.model_get_exterior_window_to_wall_ratio(model, cardinal_direction: 'E')

  # Calculate new SHGC for west and east facing fenestration;
  # Create new simple glazing object and assign it to all
  # West and East fenestration
  #
  # Exception 5 is applied when applicable
  shgc_w = 0
  shgc_e = 0
  if !((a_w <= a_t / 4) && (a_e <= a_t / 4))
    # Calculate new SHGC
    if wwr_w > 0.2
      shgc_w = a_t * shgc_c / (4 * a_w)
    end
    if wwr_e > 0.2
      shgc_e = a_t * shgc_c / (4 * a_w)
    end

    # No SHGC adjustment needed
    return true if shgc_w == 0 && shgc_e == 0

    model.getSpaces.each do |space|
      # Get thermal zone multiplier
      multiplier = space.thermalZone.get.multiplier

      space.surfaces.each do |surface|
        # Proceed only for East and West facing surfaces that are required
        # to have their SHGC adjusted
        next unless (OpenstudioStandards::Geometry.surface_get_cardinal_direction(surface) == 'W' && shgc_w > 0) ||
                    (OpenstudioStandards::Geometry.surface_get_cardinal_direction(surface) == 'E' && shgc_e > 0)

        surface.subSurfaces.each do |subsurface|
          # Get window subsurface type
          subsurface_type = subsurface.subSurfaceType.to_s.downcase

          # Window, glass doors
          next unless (subsurface_type.include? 'window') || (subsurface_type.include? 'glass')

          new_shgc = OpenstudioStandards::Geometry.surface_get_cardinal_direction(surface) == 'W' ? shgc_w : shgc_e
          new_shgc = new_shgc.round(2)

          # Get construction/simple glazing associated with the subsurface
          subsurface_org_cons = subsurface.construction.get.to_Construction.get
          subsurface_org_cons_mat = subsurface_org_cons.layers[0].to_SimpleGlazing.get

          # Only proceed if new SHGC is different than orignal one
          next unless (new_shgc - subsurface_org_cons_mat.solarHeatGainCoefficient).abs > 0

          # Clone construction/simple glazing associated with the subsurface
          subsurface_new_cons = subsurface_org_cons.clone(model).to_Construction.get
          subsurface_new_cons.setName("#{subsurface.name} Wind Cons U-#{OpenStudio.convert(subsurface_org_cons_mat.uFactor, 'W/m^2*K', 'Btu/ft^2*h*R').get.round(2)} SHGC #{new_shgc}")
          subsurface_new_cons_mat = subsurface_org_cons_mat.clone(model).to_SimpleGlazing.get
          subsurface_new_cons_mat.setName("#{subsurface.name} Wind SG Mat U-#{OpenStudio.convert(subsurface_org_cons_mat.uFactor, 'W/m^2*K', 'Btu/ft^2*h*R').get.round(2)} SHGC #{new_shgc}")
          subsurface_new_cons_mat.setSolarHeatGainCoefficient(new_shgc)
          new_layers = OpenStudio::Model::MaterialVector.new
          new_layers << subsurface_new_cons_mat
          subsurface_new_cons.setLayers(new_layers)

          # Assign new construction to sub surface
          subsurface.setConstruction(subsurface_new_cons)
        end
      end
    end
  end

  return true
end

#model_prm_baseline_system_change_fuel_type(model, fuel_type, climate_zone) ⇒ String

Change the fuel type based on climate zone, depending on the standard. For 90.1-2013, fuel type is based on climate zone, not the proposed model.

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

  • fuel_type (String)

    Valid choices are electric, fossil, fossilandelectric, purchasedheat, purchasedcooling, purchasedheatandcooling

  • climate_zone (String)

    ASHRAE climate zone, e.g. ‘ASHRAE 169-2013-4A’

Returns:

  • (String)

    the revised fuel type



77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 77

def model_prm_baseline_system_change_fuel_type(model, fuel_type, climate_zone)
  # For 90.1-2013 the fuel type is determined based on climate zone.
  # Don't change the fuel if it purchased heating or cooling.
  if fuel_type == 'electric' || fuel_type == 'fossil'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
         'ASHRAE 169-2006-2A',
         'ASHRAE 169-2006-3A',
         'ASHRAE 169-2013-1A',
         'ASHRAE 169-2013-2A',
         'ASHRAE 169-2013-3A'
      fuel_type = 'electric'
    else
      fuel_type = 'fossil'
    end
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Model', "Heating fuel is #{fuel_type} for 90.1-2013, climate zone #{climate_zone}.  This is independent of the heating fuel type in the proposed building, per G3.1.1-3.  This is different than previous versions of 90.1.")
  end

  return fuel_type
end

#model_prm_baseline_system_number(model, climate_zone, area_type, fuel_type, area_ft2, num_stories, custom) ⇒ String

Determines which system number is used for the baseline system. 5_or_6, 7_or_8, 9_or_10

Returns:

  • (String)

    the system number: 1_or_2, 3_or_4,



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 8

def model_prm_baseline_system_number(model, climate_zone, area_type, fuel_type, area_ft2, num_stories, custom)
  sys_num = nil

  # Customization - Xcel EDA Program Manual 2014
  # Table 3.2.2 Baseline HVAC System Types
  if custom == 'Xcel Energy CO EDA'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Model', 'Custom; per Xcel EDA Program Manual 2014 Table 3.2.2 Baseline HVAC System Types, the 90.1-2010 lookup for HVAC system types shall be used.')

    # Set the area limit
    limit_ft2 = 25_000

    case area_type
    when 'residential'
      sys_num = '1_or_2'
    when 'nonresidential'
      # nonresidential and 3 floors or less and <25,000 ft2
      if num_stories <= 3 && area_ft2 < limit_ft2
        sys_num = '3_or_4'
        # nonresidential and 4 or 5 floors or 5 floors or less and 25,000 ft2 to 150,000 ft2
      elsif ((num_stories == 4 || num_stories == 5) && area_ft2 < limit_ft2) || (num_stories <= 5 && (area_ft2 >= limit_ft2 && area_ft2 <= 150_000))
        sys_num = '5_or_6'
        # nonresidential and more than 5 floors or >150,000 ft2
      elsif num_stories >= 5 || area_ft2 > 150_000
        sys_num = '7_or_8'
      end
    when 'heatedonly'
      sys_num = '9_or_10'
    when 'retail'
      # Should only be hit by Xcel EDA
      sys_num = '3_or_4'
    end

  else

    # Set the area limit
    limit_ft2 = 25_000

    case area_type
    when 'residential'
      sys_num = '1_or_2'
    when 'nonresidential'
      # nonresidential and 3 floors or less and <25,000 ft2
      if num_stories <= 3 && area_ft2 < limit_ft2
        sys_num = '3_or_4'
      # nonresidential and 4 or 5 floors or 5 floors or less and 25,000 ft2 to 150,000 ft2
      elsif ((num_stories == 4 || num_stories == 5) && area_ft2 < limit_ft2) || (num_stories <= 5 && (area_ft2 >= limit_ft2 && area_ft2 <= 150_000))
        sys_num = '5_or_6'
      # nonresidential and more than 5 floors or >150,000 ft2
      elsif num_stories >= 5 || area_ft2 > 150_000
        sys_num = '7_or_8'
      end
    when 'heatedonly'
      sys_num = '9_or_10'
    when 'retail'
      sys_num = '3_or_4'
    end

  end

  return sys_num
end

#model_prm_skylight_to_roof_ratio_limit(model) ⇒ Double

Determines the skylight to roof ratio limit for a given standard 3% for 90.1-20-13

Returns:

  • (Double)

    the skylight to roof ratio, as a percent: 5.0 = 5%



109
110
111
112
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 109

def model_prm_skylight_to_roof_ratio_limit(model)
  srr_lim = 3.0
  return srr_lim
end

#model_transfer_air_required?(model) ⇒ Boolean

Note:

code_sections [90.1-2013_6.5.7.1.2]

Is transfer air required?

Parameters:

  • model (OpenStudio::Model::Model)

    OpenStudio model object

Returns:

  • (Boolean)

    returns true if transfer air is required, false if not



187
188
189
190
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Model.rb', line 187

def model_transfer_air_required?(model)
  # @todo It actually is for kitchen but not implemented yet
  return false
end

#plant_loop_prm_baseline_condenser_water_temperatures(plant_loop, design_oat_wb_c) ⇒ Array<Double>

Determine the performance rating method specified design condenser water temperature, approach, and range

Parameters:

  • plant_loop (OpenStudio::Model::PlantLoop)

    the condenser water loop

  • design_oat_wb_c (Double)

    the design OA wetbulb temperature ©

Returns:

  • (Array<Double>)
    leaving_cw_t_c, approach_k, range_k


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.PlantLoop.rb', line 10

def plant_loop_prm_baseline_condenser_water_temperatures(plant_loop, design_oat_wb_c)
  design_oat_wb_f = OpenStudio.convert(design_oat_wb_c, 'C', 'F').get

  # G3.1.3.11 - CW supply temp shall be evaluated at 0.4% evaporative design OATwb
  # per the formulat approach_F = 25.72 - (0.24 * OATwb_F)
  # 55F <= OATwb <= 90F
  # Design range = 10F.
  range_r = 10

  # Limit the OATwb
  if design_oat_wb_f < 55
    design_oat_wb_f = 55
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{plant_loop.name}, a design OATwb of 55F will be used for sizing the cooling towers because the actual design value is below the limit in G3.1.3.11.")
  elsif design_oat_wb_f > 90
    design_oat_wb_f = 90
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{plant_loop.name}, a design OATwb of 90F will be used for sizing the cooling towers because the actual design value is above the limit in G3.1.3.11.")
  end

  # Calculate the approach
  approach_r = 25.72 - (0.24 * design_oat_wb_f)

  # Calculate the leaving CW temp
  leaving_cw_t_f = design_oat_wb_f + approach_r

  # Convert to SI units
  leaving_cw_t_c = OpenStudio.convert(leaving_cw_t_f, 'F', 'C').get
  approach_k = OpenStudio.convert(approach_r, 'R', 'K').get
  range_k = OpenStudio.convert(range_r, 'R', 'K').get

  return [leaving_cw_t_c, approach_k, range_k]
end

#pump_variable_speed_get_control_type(pump, plant_loop_type, pump_nominal_hp) ⇒ String

Note:

code_sections [90.1-2013_6.5.4.2]

Determine type of pump part load control type

Parameters:

  • pump (OpenStudio::Model::PumpVariableSpeed)

    OpenStudio pump object

  • plant_loop_type (String)

    Type of plant loop

  • pump_nominal_hp (Float)

    Pump nominal horsepower

Returns:

  • (String)

    Pump part load control type



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# File 'lib/openstudio-standards/prototypes/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.PumpVariableSpeed.rb', line 11

def pump_variable_speed_get_control_type(pump, plant_loop_type, pump_nominal_hp)
  threshold = 5 # hp

  # Sizing factor to take into account that pumps
  # are typically sized to handle a ~10% pressure
  # increase and ~10% flow increase.
  design_sizing_factor = 1.25

  return 'Riding Curve' if plant_loop_type == 'Heating'

  # Requirement only applies to CHW pumps
  return 'VSD DP Reset' if pump_nominal_hp * design_sizing_factor > threshold

  # else
  return 'Riding Curve'
end

#space_daylighted_area_window_width(space) ⇒ String

Determines the method used to extend the daylighted area horizontally next to a window. If the method is ‘fixed’, 2 ft is added to the width of each window. If the method is ‘proportional’, a distance equal to half of the head height of the window is added. If the method is ‘none’, no additional width is added.

Returns:

  • (String)

    returns ‘fixed’ or ‘proportional’



11
12
13
14
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Space.rb', line 11

def space_daylighted_area_window_width(space)
  method = 'proportional'
  return method
end

#space_daylighting_control_required?(space, areas) ⇒ Array<Bool>

Determine if the space requires daylighting controls for toplighting, primary sidelighting, and secondary sidelighting. Defaults to false for all types.

Parameters:

  • space (OpenStudio::Model::Space)

    the space in question

  • areas (Hash)

    a hash of daylighted areas

Returns:

  • (Array<Bool>)

    req_top_ctrl, req_pri_ctrl, req_sec_ctrl



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Space.rb', line 23

def space_daylighting_control_required?(space, areas)
  req_top_ctrl = true
  req_pri_ctrl = true
  req_sec_ctrl = true

  # Get the LPD of the space
  space_lpd_w_per_m2 = space.lightingPowerPerFloorArea

  # Primary Sidelighting
  # Check if the primary sidelit area contains less than 150W of lighting
  if areas['primary_sidelighted_area'] == 0.0
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.1(e).")
    req_pri_ctrl = false
  elsif areas['primary_sidelighted_area'] * space_lpd_w_per_m2 < 150.0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because less than 150W of lighting are present in the primary daylighted area per 9.4.1.1(e).")
    req_pri_ctrl = false
  else
    # Check the size of the windows
    if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, primary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.")
      req_pri_ctrl = false
    end
  end

  # Secondary Sidelighting
  # Check if the primary and secondary sidelit areas contains less than 300W of lighting
  if areas['secondary_sidelighted_area'] == 0.0
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because secondary sidelighted area = 0ft2 per 9.4.1.1(e).")
    req_sec_ctrl = false
  elsif (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) * space_lpd_w_per_m2 < 300
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because less than 300W of lighting are present in the combined primary and secondary daylighted areas per 9.4.1.1(e).")
    req_sec_ctrl = false
  else
    # Check the size of the windows
    if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, secondary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.")
      req_sec_ctrl = false
    end
  end

  # Toplighting
  # Check if the toplit area contains less than 150W of lighting
  if areas['toplighted_area'] == 0.0
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.1(f).")
    req_top_ctrl = false
  elsif areas['toplighted_area'] * space_lpd_w_per_m2 < 150
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{space.name}, toplighting control not required because less than 150W of lighting are present in the toplighted area per 9.4.1.1(f).")
    req_top_ctrl = false
  end

  # Exceptions
  if space.spaceType.is_initialized
    case space.spaceType.get.standardsSpaceType.to_s
    # Retail spaces exception (c) to Section 9.4.1.4
    # req_sec_ctrl set to true to create a second reference point
    when 'Core_Retail'
      req_pri_ctrl = false
      req_sec_ctrl = true
    when 'Entry', 'Front_Retail', 'Point_of_Sale'
      req_pri_ctrl = false
      req_sec_ctrl = false
    # Strip mall
    when 'Strip mall - type 1', 'Strip mall - type 2', 'Strip mall - type 3'
      req_pri_ctrl = false
      req_sec_ctrl = false
    # Residential apartments
    when 'Apartment', 'Apartment_topfloor_NS', 'Apartment_topfloor_WE'
      req_top_ctrl = false
      req_pri_ctrl = false
      req_sec_ctrl = false
    end
  end

  return [req_top_ctrl, req_pri_ctrl, req_sec_ctrl]
end

#space_daylighting_fractions_and_windows(space, areas, sorted_windows, sorted_skylights, req_top_ctrl, req_pri_ctrl, req_sec_ctrl) ⇒ Array

Determine the fraction controlled by each sensor and which window each sensor should go near.

Parameters:

  • space (OpenStudio::Model::Space)

    space object

  • areas (Hash)

    a hash of daylighted areas

  • sorted_windows (Hash)

    a hash of windows, sorted by priority

  • sorted_skylights (Hash)

    a hash of skylights, sorted by priority

  • req_top_ctrl (Boolean)

    if toplighting controls are required

  • req_pri_ctrl (Boolean)

    if primary sidelighting controls are required

  • req_sec_ctrl (Boolean)

    if secondary sidelighting controls are required

Returns:

  • (Array)

    array of 4 items

    sensor 1 fraction, sensor 2 fraction, sensor 1 window, sensor 2 window


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Space.rb', line 110

def space_daylighting_fractions_and_windows(space,
                                            areas,
                                            sorted_windows,
                                            sorted_skylights,
                                            req_top_ctrl,
                                            req_pri_ctrl,
                                            req_sec_ctrl)
  sensor_1_frac = 0.0
  sensor_2_frac = 0.0
  sensor_1_window = nil
  sensor_2_window = nil

  # Get the area of the space
  space_area_m2 = space.floorArea

  # get the climate zone
  climate_zone = OpenstudioStandards::Weather.model_get_climate_zone(space.model)

  if req_top_ctrl && req_pri_ctrl && req_sec_ctrl
    # Sensor 1 controls toplighted area
    sensor_1_frac = areas['toplighted_area'] / space_area_m2
    sensor_1_window = sorted_skylights[0]
    # Sensor 2 controls primary + secondary area
    sensor_2_frac = (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) / space_area_m2
    sensor_2_window = sorted_windows[0]
  elsif !req_top_ctrl && req_pri_ctrl && req_sec_ctrl
    # Sensor 1 controls primary area
    sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
    sensor_1_window = sorted_windows[0]
    # Sensor 2 controls secondary area
    sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2)
    sensor_2_window = sorted_windows[0]
  elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl
    # Sensor 1 controls toplighted area
    sensor_1_frac = areas['toplighted_area'] / space_area_m2
    sensor_1_window = sorted_skylights[0]
    # Sensor 2 controls secondary area
    sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2)
    # sorted_skylights[0] assigned to sensor_2_window so a second reference point is added for top daylighting
    sensor_2_window = sorted_skylights[0]
  elsif req_top_ctrl && !req_pri_ctrl && !req_sec_ctrl
    case climate_zone
      when 'ASHRAE 169-2006-6A',
           'ASHRAE 169-2006-6B',
           'ASHRAE 169-2006-7A',
           'ASHRAE 169-2006-8A',
           'ASHRAE 169-2013-6A',
           'ASHRAE 169-2013-6B',
           'ASHRAE 169-2013-7A',
           'ASHRAE 169-2013-8A'
        # Sensor 1 controls toplighted area
        sensor_1_frac = areas['toplighted_area'] / space_area_m2
        sensor_1_window = sorted_skylights[0]
      else
        # Sensor 1 controls toplighted area
        num_sensors = 2
        sensor_1_frac = areas['toplighted_area'] / space_area_m2 / num_sensors
        sensor_1_window = sorted_skylights[0]
        sensor_2_frac = sensor_1_frac
        sensor_2_window = sensor_1_window
    end
  elsif !req_top_ctrl && req_pri_ctrl && !req_sec_ctrl
    # Sensor 1 controls primary area
    sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
    sensor_1_window = sorted_windows[0]
  elsif !req_top_ctrl && !req_pri_ctrl && req_sec_ctrl
    # Sensor 1 controls secondary area
    sensor_1_frac = areas['secondary_sidelighted_area'] / space_area_m2
    sensor_1_window = sorted_windows[0]
  end

  return [sensor_1_frac, sensor_2_frac, sensor_1_window, sensor_2_window]
end

#space_infiltration_rate_75_pa(space = nil) ⇒ Double

Determine the base infiltration rate at 75 Pa.

defaults to no infiltration.

Returns:

  • (Double)

    the baseline infiltration rate, in cfm/ft^2



188
189
190
191
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.Space.rb', line 188

def space_infiltration_rate_75_pa(space = nil)
  basic_infil_rate_cfm_per_ft2 = 1.0
  return basic_infil_rate_cfm_per_ft2
end

#thermal_zone_demand_control_ventilation_limits(thermal_zone) ⇒ Array<Double>

Determine the area and occupancy level limits for demand control ventilation.

and the minimum occupancy density in m^2/person. Returns nil if there is no requirement.

Parameters:

  • thermal_zone (OpenStudio::Model::ThermalZone)

    the thermal zone

Returns:

  • (Array<Double>)

    the minimum area, in m^2



46
47
48
49
50
51
52
53
54
55
56
57
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ThermalZone.rb', line 46

def thermal_zone_demand_control_ventilation_limits(thermal_zone)
  min_area_ft2 = 500
  min_occ_per_1000_ft2 = 25

  # Convert to SI
  min_area_m2 = OpenStudio.convert(min_area_ft2, 'ft^2', 'm^2').get
  min_occ_per_ft2 = min_occ_per_1000_ft2 / 1000.0
  min_ft2_per_occ = 1.0 / min_occ_per_ft2
  min_m2_per_occ = OpenStudio.convert(min_ft2_per_occ, 'ft^2', 'm^2').get

  return [min_area_m2, min_m2_per_occ]
end

#thermal_zone_occupancy_type(thermal_zone) ⇒ String

TODO:

Add public assembly building types

Determine the thermal zone’s occupancy type category. Options are: residential, nonresidential, publicassembly, retail

Returns:

  • (String)

    the occupancy type category



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ThermalZone.rb', line 9

def thermal_zone_occupancy_type(thermal_zone)
  occ_type = if OpenstudioStandards::ThermalZone.thermal_zone_residential?(thermal_zone)
               'residential'
             else
               'nonresidential'
             end

  # Based on the space type that
  # represents a majority of the zone.
  space_type = OpenstudioStandards::ThermalZone.thermal_zone_get_space_type(thermal_zone)
  if space_type.is_initialized
    space_type = space_type.get
    bldg_type = space_type.standardsBuildingType
    if bldg_type.is_initialized
      bldg_type = bldg_type.get
      case bldg_type
      when 'Retail', 'StripMall', 'SuperMarket'
        occ_type = 'retail'
        # when 'SomeBuildingType'
        # @todo add publicassembly building types
        # occ_type = 'publicassembly'
      end
    end
  end

  # OpenStudio::logFree(OpenStudio::Info, "openstudio.Standards.ThermalZone", "For #{self.name}, occupancy type = #{occ_type}.")

  return occ_type
end

#water_heater_mixed_apply_prm_baseline_fuel_type(water_heater_mixed, building_type) ⇒ Boolean

Applies the correct fuel type for the water heaters in the baseline model. 90.1-2013 requires a change from the proposed building in some scenarios.

Parameters:

  • building_type (String)

    the building type

Returns:

  • (Boolean)

    returns true if successful, false if not



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.WaterHeaterMixed.rb', line 10

def water_heater_mixed_apply_prm_baseline_fuel_type(water_heater_mixed, building_type)
  # Determine the building-type specific
  # fuel requirements from Table G3.1.1-2
  new_fuel = nil
  case building_type
  when 'SecondarySchool', 'PrimarySchool', # School/university
       'SmallHotel', # Motel
       'LargeHotel', # Hotel
       'QuickServiceRestaurant', # Dining: Cafeteria/fast food
       'FullServiceRestaurant', # Dining: Family
       'MidriseApartment', 'HighriseApartment', # Multifamily
       'Hospital', # Hospital
       'Outpatient' # Health-care clinic
    new_fuel = 'NaturalGas'
  when 'SmallOffice', 'MediumOffice', 'LargeOffice', 'SmallOfficeDetailed', 'MediumOfficeDetailed', 'LargeOfficeDetailed', # Office
       'RetailStandalone', 'RetailStripmall', # Retail
       'Warehouse' # Warehouse
    new_fuel = 'Electricity'
  else
    new_fuel = 'NaturalGas'
  end

  # Change the fuel type if necessary
  old_fuel = water_heater_mixed.heaterFuelType
  unless new_fuel == old_fuel
    water_heater_mixed.setHeaterFuelType(new_fuel)
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.WaterHeaterMixed', "For #{water_heater_mixed.name}, changed baseline water heater fuel from #{old_fuel} to #{new_fuel}.")
  end

  return true
end

#zone_hvac_component_vestibule_heating_control_required?(zone_hvac_component) ⇒ Boolean

Determine if vestibule heating control is required. Required for 90.1-2013 per 6.4.3.9.

Parameters:

  • zone_hvac_component (OpenStudio::Model::ZoneHVACComponent)

    zone hvac component

Returns:

  • (Boolean)

    returns true if successful, false if not



10
11
12
13
14
15
16
17
18
19
20
21
22
# File 'lib/openstudio-standards/standards/ashrae_90_1/ashrae_90_1_2013/ashrae_90_1_2013.ZoneHVACComponent.rb', line 10

def zone_hvac_component_vestibule_heating_control_required?(zone_hvac_component)
  # Ensure that the equipment is assigned to a thermal zone
  if zone_hvac_component.thermalZone.empty?
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.ZoneHVACComponent', "For #{zone_hvac_component.name}: equipment is not assigned to a thermal zone, cannot apply vestibule heating control.")
    return false
  end

  # Only applies to equipment that is in vestibule zones
  return true if OpenstudioStandards::ThermalZone.thermal_zone_vestibule?(zone_hvac_component.thermalZone.get)

  # If here, vestibule heating control not required
  return false
end