Class: OutlierTree::Result
- Inherits:
-
Object
- Object
- OutlierTree::Result
- Defined in:
- lib/outliertree/result.rb
Instance Attribute Summary collapse
-
#df ⇒ Object
readonly
Returns the value of attribute df.
-
#model_outputs ⇒ Object
readonly
Returns the value of attribute model_outputs.
Instance Method Summary collapse
-
#initialize(model_outputs:, df:, numeric_columns:, categorical_columns:, categories:) ⇒ Result
constructor
A new instance of Result.
- #process ⇒ Object
Constructor Details
#initialize(model_outputs:, df:, numeric_columns:, categorical_columns:, categories:) ⇒ Result
Returns a new instance of Result.
5 6 7 8 9 10 11 |
# File 'lib/outliertree/result.rb', line 5 def initialize(model_outputs:, df:, numeric_columns:, categorical_columns:, categories:) @model_outputs = model_outputs @df = df @numeric_columns = numeric_columns @categorical_columns = categorical_columns @categories = categories end |
Instance Attribute Details
#df ⇒ Object (readonly)
Returns the value of attribute df.
3 4 5 |
# File 'lib/outliertree/result.rb', line 3 def df @df end |
#model_outputs ⇒ Object (readonly)
Returns the value of attribute model_outputs.
3 4 5 |
# File 'lib/outliertree/result.rb', line 3 def model_outputs @model_outputs end |
Instance Method Details
#process ⇒ Object
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# File 'lib/outliertree/result.rb', line 13 def process outliers = [] model_outputs.outlier_scores_final.each_with_index do |score, row| if score < 1 outl_col = model_outputs.outlier_columns_final[row] outl_clust = model_outputs.outlier_clusters_final[row] outl_tree = model_outputs.outlier_trees_final[row] # column and value if outl_col < @numeric_columns.size column = @numeric_columns[outl_col] value = df[column][row] _decimals = model_outputs.outlier_decimals_distr[row] else column = @categorical_columns[outl_col - @numeric_columns.size] value = df[column][row] end # group statistics group_statistics = {} if outl_col < @numeric_columns.size cluster = model_outputs.all_clusters(outl_col, outl_clust) if value >= cluster.upper_lim group_statistics[:upper_thr] = cluster.display_lim_high group_statistics[:pct_below] = cluster.perc_below else group_statistics[:lower_thr] = cluster.display_lim_low group_statistics[:pct_above] = cluster.perc_above end group_statistics[:mean] = cluster.display_mean group_statistics[:sd] = cluster.display_sd group_statistics[:n_obs] = cluster.cluster_size else # TODO categorical stats end # conditions conditions = [] if cluster.column_type != :no_type conditions << add_condition(row, cluster.split_type, cluster) end # add conditions from tree branches curr_tree = outl_tree loop do break if curr_tree == 0 tree = model_outputs.all_trees(outl_col, curr_tree) break if tree.parent_branch == :sub_trees parent_tree = tree.parent parent_cluster = model_outputs.all_trees(outl_col, parent_tree) if parent_cluster.all_branches.size > 0 raise "Branch not supported yet. Please report an issue." else conditions << add_condition(row, tree.parent_branch, parent_cluster) end curr_tree = parent_tree end clean_conditions(conditions) outliers << { index: row, explanation: create_explanation(column, value, conditions, group_statistics), column: column, value: value, conditions: conditions, group_statistics: group_statistics, # leave out for simplicity # score: score, # tree_depth: model_outputs.outlier_depth_final[row], # has_na_branch: model_outputs.all_clusters(outl_col, outl_clust).has_na_branch } end end outliers end |