Class: Statsample::Regression::Multiple::GslEngine
Overview
Class for Multiple Regression Analysis Requires rbgsl and uses a listwise aproach. Slower on prediction of values than Alglib, because predict is ruby based. Better memory management on multiple (+1000) series of regression. If you need pairwise, use RubyEngine Example:
@a = Daru::Vector.new([1,3,2,4,3,5,4,6,5,7])
@b = Daru::Vector.new([3,3,4,4,5,5,6,6,4,4])
@c = Daru::Vector.new([11,22,30,40,50,65,78,79,99,100])
@y = Daru::Vector.new([3,4,5,6,7,8,9,10,20,30])
ds = Daru::DataFrame.new({:a => @a,:b => @b,:c => @c,:y => @y})
lr=Statsample::Regression::Multiple::GslEngine.new(ds,:y)
Instance Attribute Summary
Attributes inherited from BaseEngine
#cases, #digits, #name, #total_cases, #valid_cases
Class Method Summary
collapse
Instance Method Summary
collapse
Methods inherited from BaseEngine
#anova, #assign_names, #coeffs_t, #coeffs_tolerances, #constant_se, #constant_t, #df_e, #df_r, #estimated_variance_covariance_matrix, #f, #mse, #msr, #predicted, #probability, #process, #r2_adjusted, #report_building, #residuals, #se_estimate, #se_r2, #sse, #sse_direct, #ssr, #ssr_direct, #standarized_predicted, #tolerance, univariate?
#summary
Constructor Details
#initialize(ds, y_var, opts = Hash.new) ⇒ GslEngine
Returns a new instance of GslEngine.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 20
def initialize(ds,y_var, opts=Hash.new)
super
@ds = ds.reject_values(*Daru::MISSING_VALUES)
@ds_valid = @ds
@valid_cases = @ds_valid.nrows
@dy = @ds[@y_var]
@ds_indep = ds.dup(ds.vectors.to_a - [y_var])
columns=[]
@fields=[]
max_deps = GSL::Matrix.alloc(@ds.nrows, @ds.vectors.size)
constant_col=@ds.vectors.size-1
for i in 0...@ds.nrows
max_deps.set(i,constant_col,1)
end
j = 0
@ds.vectors.each do |f|
if f != @y_var
@ds[f].each_index do |i1|
max_deps.set(i1,j,@ds[f][i1])
end
columns.push(@ds[f].to_a)
@fields.push(f)
j += 1
end
end
@dep_columns = columns.dup
@lr_s = nil
c, @cov, @chisq, @status = GSL::MultiFit.linear(max_deps, @dy.to_gsl)
@constant=c[constant_col]
@coeffs_a=c.to_a.slice(0...constant_col)
@coeffs=assign_names(@coeffs_a)
c=nil
end
|
Class Method Details
._load(data) ⇒ Object
59
60
61
62
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 59
def self._load(data)
h=Marshal.load(data)
self.new(h['ds'], h['y_var'])
end
|
Instance Method Details
56
57
58
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 56
def _dump(i)
Marshal.dump({'ds'=>@ds,'y_var'=>@y_var})
end
|
#build_standarized ⇒ Object
100
101
102
103
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 100
def build_standarized
@ds_s=@ds.standardize
@lr_s=GslEngine.new(@ds_s,@y_var)
end
|
64
65
66
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 64
def coeffs
@coeffs
end
|
#coeffs_se ⇒ Object
Standard error for coeffs
115
116
117
118
119
120
121
122
123
124
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 115
def coeffs_se
out = {}
evcm = estimated_variance_covariance_matrix
@ds_valid.vectors.to_a.each_with_index do |f,i|
mi = i+1
next if f == @y_var
out[f] = evcm[mi,mi]
end
out
end
|
87
88
89
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 87
def constant
@constant
end
|
94
95
96
97
98
99
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 94
def lr_s
if @lr_s.nil?
build_standarized
end
@lr_s
end
|
#matrix_resolution ⇒ Object
69
70
71
72
73
74
75
76
77
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 69
def matrix_resolution
columns=@dep_columns.dup.map {|xi| xi.map{|i| i.to_f}}
columns.unshift([1.0]*@ds.cases)
y=Matrix.columns([@dy.data.map {|i| i.to_f}])
x=Matrix.columns(columns)
xt=x.t
matrix=((xt*x)).inverse*xt
matrix*y
end
|
#process_s(v) ⇒ Object
104
105
106
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 104
def process_s(v)
lr_s.process(v)
end
|
81
82
83
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 81
def r
Bivariate::pearson(@dy, predicted)
end
|
78
79
80
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 78
def r2
r**2
end
|
84
85
86
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 84
def sst
@dy.ss
end
|
#standarized_coeffs ⇒ Object
90
91
92
93
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 90
def standarized_coeffs
l=lr_s
l.coeffs
end
|
#standarized_residuals ⇒ Object
???? Not equal to SPSS output
108
109
110
111
112
|
# File 'lib/statsample/regression/multiple/gslengine.rb', line 108
def standarized_residuals
res=residuals
red_sd=residuals.sds
Daru::Vector.new(res.collect {|v| v.quo(red_sd) })
end
|