Module: TBD
- Extended by:
- OSut, TBD
- Included in:
- TBD
- Defined in:
- lib/tbd/ua.rb,
lib/tbd.rb,
lib/tbd/geo.rb,
lib/tbd/psi.rb,
lib/tbd/version.rb
Overview
MIT License
Copyright © 2020-2024 Denis Bourgeois & Dan Macumber
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Defined Under Namespace
Constant Summary collapse
- TOL =
default distance tolerance (m)
OSut::TOL.dup
- TOL2 =
default area tolerance (m2)
OSut::TOL2.dup
- DBG =
github.com/rd2/oslg
OSut::DEBUG.dup
- INF =
github.com/rd2/oslg
OSut::INFO.dup
- WRN =
github.com/rd2/oslg
OSut::WARN.dup
- ERR =
github.com/rd2/oslg
OSut::ERR.dup
- FTL =
github.com/rd2/oslg
OSut::FATAL.dup
- NS =
OpenStudio IdfObject nameString method
OSut::NS.dup
- VERSION =
TBD release version
"3.4.3".freeze
Instance Method Summary collapse
-
#concave?(s1 = nil, s2 = nil) ⇒ Bool, false
Validates whether edge surfaces form a concave angle, as seen from outside.
-
#convex?(s1 = nil, s2 = nil) ⇒ Bool, false
Validates whether edge surfaces form a convex angle, as seen from outside.
-
#dads(model = nil, pops = {}) ⇒ Hash
Adds a collection of bases surfaces (‘dads’) to a Topolys model, including vertices, wires, holes & faces.
-
#derate(id = "", s = {}, lc = nil) ⇒ OpenStudio::Model::Material?
Thermally derates insulating material within construction.
-
#exit(runner = nil, argh = {}) ⇒ Bool
Exits TBD Measures.
-
#faces(s = {}, e = {}) ⇒ Bool, false
Populates TBD edges with linked Topolys faces.
-
#inputs(s = {}, e = {}, argh = {}) ⇒ Hash
Processes TBD JSON inputs, after TBD has preprocessed OpenStudio model variables and retrieved corresponding Topolys model surface/edge properties.
-
#kids(model = nil, boys = {}) ⇒ Array<Topolys::Wire>
Adds a collection of TBD sub surfaces (‘kids’) to a Topolys model, including vertices, wires & holes.
-
#kiva(model = nil, walls = {}, floors = {}, edges = {}) ⇒ Bool, false
Generates Kiva settings and objects if model surfaces have ‘foundation’ boundary conditions.
-
#matches?(e1 = {}, e2 = {}, tol = TOL) ⇒ Bool, false
Checks whether 2 edges share Topolys vertex pairs.
-
#objects(model = nil, pts = []) ⇒ Hash
Returns Topolys vertices and a Topolys wire from Topolys points.
-
#process(model = nil, argh = {}) ⇒ Hash
Processes TBD objects, based on an OpenStudio and generated Topolys model, and derates admissible envelope surfaces by substituting insulating materials with derated clones, within surface multilayered constructions.
-
#properties(surface = nil, argh = {}) ⇒ Hash?
Fetches OpenStudio surface properties, including opening areas & vertices.
-
#qc33(s = {}, sets = nil, spts = true) ⇒ Bool, false
Sets reference values for points, edges & surfaces (& subsurfaces) to compute Quebec energy code (Section 3.3) UA’ comparison (2021).
-
#resetKIVA(model = nil, boundary = "Foundation") ⇒ Bool, false
Purge existing KIVA-related objects in an OpenStudio model.
-
#truNormal(s = nil, r = 0) ⇒ Topolys::Vector3D?
Returns site (or true) Topolys normal vector of OpenStudio surface.
-
#ua_md(ua = {}, lang = :en) ⇒ Array<String>
Generates MD-formatted, UA’ summary file.
-
#ua_summary(date = Time.now, argh = {}) ⇒ Hash
Generates multilingual UA’ summary.
-
#uo(model = nil, lc = nil, id = "", hloss = 0.0, film = 0.0, ut = 0.0) ⇒ Hash
Calculates construction Uo (including surface film resistances) to meet Ut.
-
#uprate(model = nil, s = {}, argh = {}) ⇒ Bool, false
Uprates insulation layer of construction, based on user-selected Ut (argh).
Instance Method Details
#concave?(s1 = nil, s2 = nil) ⇒ Bool, false
Validates whether edge surfaces form a concave angle, as seen from outside.
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# File 'lib/tbd/geo.rb', line 622 def concave?(s1 = nil, s2 = nil) mth = "TBD::#{__callee__}" return mismatch("s1", s1, Hash, mth, DBG, false) unless s1.is_a?(Hash) return mismatch("s2", s2, Hash, mth, DBG, false) unless s2.is_a?(Hash) return false if s1 == s2 return hashkey("s1", s1, :angle, mth, DBG, false) unless s1.key?(:angle) return hashkey("s2", s2, :angle, mth, DBG, false) unless s2.key?(:angle) return hashkey("s1", s1, :normal, mth, DBG, false) unless s1.key?(:normal) return hashkey("s2", s2, :normal, mth, DBG, false) unless s2.key?(:normal) return hashkey("s1", s1, :polar, mth, DBG, false) unless s1.key?(:polar) return hashkey("s2", s2, :polar, mth, DBG, false) unless s2.key?(:polar) valid1 = s1[:angle].is_a?(Numeric) valid2 = s2[:angle].is_a?(Numeric) return mismatch("s1 angle", s1[:angle], Numeric, DBG, false) unless valid1 return mismatch("s1 angle", s1[:angle], Numeric, DBG, false) unless valid2 angle = 0 angle = s2[:angle] - s1[:angle] if s2[:angle] > s1[:angle] angle = s1[:angle] - s2[:angle] if s1[:angle] > s2[:angle] return false if angle < TOL return false unless (2 * Math::PI - angle).abs > TOL return false if angle > 3 * Math::PI / 4 && angle < 5 * Math::PI / 4 n1_d_p2 = s1[:normal].dot(s2[:polar]) p1_d_n2 = s1[:polar].dot(s2[:normal]) return true if n1_d_p2 > 0 && p1_d_n2 > 0 false end |
#convex?(s1 = nil, s2 = nil) ⇒ Bool, false
Validates whether edge surfaces form a convex angle, as seen from outside.
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
# File 'lib/tbd/geo.rb', line 665 def convex?(s1 = nil, s2 = nil) mth = "TBD::#{__callee__}" return mismatch("s1", s1, Hash, mth, DBG, false) unless s1.is_a?(Hash) return mismatch("s2", s2, Hash, mth, DBG, false) unless s2.is_a?(Hash) return false if s1 == s2 return hashkey("s1", s1, :angle, mth, DBG, false) unless s1.key?(:angle) return hashkey("s2", s2, :angle, mth, DBG, false) unless s2.key?(:angle) return hashkey("s1", s1, :normal, mth, DBG, false) unless s1.key?(:normal) return hashkey("s2", s2, :normal, mth, DBG, false) unless s2.key?(:normal) return hashkey("s1", s1, :polar, mth, DBG, false) unless s1.key?(:polar) return hashkey("s2", s2, :polar, mth, DBG, false) unless s2.key?(:polar) valid1 = s1[:angle].is_a?(Numeric) valid2 = s2[:angle].is_a?(Numeric) return mismatch("s1 angle", s1[:angle], Numeric, DBG, false) unless valid1 return mismatch("s1 angle", s1[:angle], Numeric, DBG, false) unless valid2 angle = 0 angle = s2[:angle] - s1[:angle] if s2[:angle] > s1[:angle] angle = s1[:angle] - s2[:angle] if s1[:angle] > s2[:angle] return false if angle < TOL return false unless (2 * Math::PI - angle).abs > TOL return false if angle > 3 * Math::PI / 4 && angle < 5 * Math::PI / 4 n1_d_p2 = s1[:normal].dot(s2[:polar]) p1_d_n2 = s1[:polar].dot(s2[:normal]) return true if n1_d_p2 < 0 && p1_d_n2 < 0 false end |
#dads(model = nil, pops = {}) ⇒ Hash
Adds a collection of bases surfaces (‘dads’) to a Topolys model, including vertices, wires, holes & faces. Also populates the model with sub surfaces (‘kids’).
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# File 'lib/tbd/geo.rb', line 168 def dads(model = nil, pops = {}) mth = "TBD::#{__callee__}" cl1 = Topolys::Model cl2 = Hash holes = {} return mismatch("model", model, cl2, mth, DBG, {}) unless model.is_a?(cl1) return mismatch("pops", pops, cl2, mth, DBG, {}) unless pops.is_a?(cl2) pops.each do |id, props| hols = [] hinged = [] obj = objects(model, props[:points]) next unless obj[:vx] && obj[:w] hols += kids(model, props[:windows ]) if props.key?(:windows) hols += kids(model, props[:doors ]) if props.key?(:doors) hols += kids(model, props[:skylights]) if props.key?(:skylights) hols.each { |hol| hinged << hol unless hol.attributes[:unhinged] } face = model.get_face(obj[:w], hinged) msg = "Unable to retrieve valid 'dad' (#{mth})" log(DBG, msg) unless face next unless face face.attributes[:id] = id face.attributes[:n ] = props[:n] if props.key?(:n) props[:face] = face hols.each { |hol| holes[hol.attributes[:id]] = hol } end holes end |
#derate(id = "", s = {}, lc = nil) ⇒ OpenStudio::Model::Material?
Thermally derates insulating material within construction.
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 |
# File 'lib/tbd/psi.rb', line 1369 def derate(id = "", s = {}, lc = nil) mth = "TBD::#{__callee__}" m = nil id = trim(id) kys = [:heatloss, :net, :ltype, :index, :r] ck1 = s.is_a?(Hash) ck2 = lc.is_a?(OpenStudio::Model::LayeredConstruction) return mismatch("id" , id, cl6, mth) if id.empty? return mismatch("#{id} surface" , s , cl1, mth) unless ck1 return mismatch("#{id} construction", lc, cl2, mth) unless ck2 kys.each do |k| tag = "#{id} #{k}" return hashkey(tag, s, k, mth, ERR) unless s.key?(k) case k when :heatloss return mismatch(tag, s[k], Numeric, mth) unless s[k].respond_to?(:to_f) return zero(tag, mth, WRN) if s[k].to_f.abs < 0.001 when :net, :r return mismatch(tag, s[k], Numeric, mth) unless s[k].respond_to?(:to_f) return negative(tag, mth, 2, ERR) if s[k].to_f < 0 return zero(tag, mth, WRN) if s[k].to_f.abs < 0.001 when :index return mismatch(tag, s[k], Numeric, mth) unless s[k].respond_to?(:to_i) return negative(tag, mth, 2, ERR) if s[k].to_f < 0 else # :ltype next if [:massless, :standard].include?(s[k]) return invalid(tag, mth, 2, ERR) end end if lc.nameString.downcase.include?(" tbd") log(WRN, "Won't derate '#{id}': tagged as derated (#{mth})") return m end model = lc.model ltype = s[:ltype ] index = s[:index ].to_i net = s[:net ].to_f r = s[:r ].to_f u = s[:heatloss].to_f / net loss = 0 de_u = 1 / r + u # derated U de_r = 1 / de_u # derated R if ltype == :massless m = lc.getLayer(index).to_MasslessOpaqueMaterial return invalid("#{id} massless layer?", mth, 0) if m.empty? m = m.get up = "" up = "uprated " if m.nameString.downcase.include?(" uprated") m = m.clone(model).to_MasslessOpaqueMaterial.get m.setName("#{id} #{up}m tbd") de_r = 0.001 unless de_r > 0.001 loss = (de_u - 1 / de_r) * net unless de_r > 0.001 m.setThermalResistance(de_r) else m = lc.getLayer(index).to_StandardOpaqueMaterial return invalid("#{id} standard layer?", mth, 0) if m.empty? m = m.get up = "" up = "uprated " if m.nameString.downcase.include?(" uprated") m = m.clone(model).to_StandardOpaqueMaterial.get m.setName("#{id} #{up}m tbd") k = m.thermalConductivity if de_r > 0.001 d = de_r * k unless d > 0.003 d = 0.003 k = d / de_r k = 3 unless k < 3 loss = (de_u - k / d) * net unless k < 3 end else # de_r < 0.001 m2•K/W d = 0.001 * k d = 0.003 unless d > 0.003 k = d / 0.001 unless d > 0.003 loss = (de_u - k / d) * net end m.setThickness(d) m.setThermalConductivity(k) end if m && loss > TOL s[:r_heatloss] = loss hl = format "%.3f", s[:r_heatloss] log(WRN, "Won't assign #{hl} W/K to '#{id}': too conductive (#{mth})") end m end |
#exit(runner = nil, argh = {}) ⇒ Bool
Exits TBD Measures. Writes out TBD model content and results if requested. Always writes out minimal logs (see “tbd.out.json” file).
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 |
# File 'lib/tbd/psi.rb', line 3115 def exit(runner = nil, argh = {}) # Generated files target a design context ( >= WARN ) ... change TBD log # level for debugging purposes. By default, log status is set < DBG # while log level is set @INF. groups = { wall: {}, roof: {}, floor: {} } state = msg(status) state = msg(INF) if status.zero? argh = {} unless argh.is_a?(Hash) argh[:io ] = nil unless argh.key?(:io) argh[:surfaces] = nil unless argh.key?(:surfaces) unless argh[:io] && argh[:surfaces] state = "Halting all TBD processes, yet running OpenStudio" state = "Halting all TBD processes, and halting OpenStudio" if fatal? end argh[:io ] = {} unless argh[:io] argh[:seed ] = "" unless argh.key?(:seed ) argh[:version ] = "" unless argh.key?(:version ) argh[:gen_ua ] = false unless argh.key?(:gen_ua ) argh[:ua_ref ] = "" unless argh.key?(:ua_ref ) argh[:setpoints ] = false unless argh.key?(:setpoints ) argh[:write_tbd ] = false unless argh.key?(:write_tbd ) argh[:uprate_walls ] = false unless argh.key?(:uprate_walls ) argh[:uprate_roofs ] = false unless argh.key?(:uprate_roofs ) argh[:uprate_floors] = false unless argh.key?(:uprate_floors) argh[:wall_ut ] = 5.678 unless argh.key?(:wall_ut ) argh[:roof_ut ] = 5.678 unless argh.key?(:roof_ut ) argh[:floor_ut ] = 5.678 unless argh.key?(:floor_ut ) argh[:wall_option ] = "" unless argh.key?(:wall_option ) argh[:roof_option ] = "" unless argh.key?(:roof_option ) argh[:floor_option ] = "" unless argh.key?(:floor_option ) argh[:wall_uo ] = nil unless argh.key?(:wall_ut ) argh[:roof_uo ] = nil unless argh.key?(:roof_ut ) argh[:floor_uo ] = nil unless argh.key?(:floor_ut ) groups[:wall ][:up] = argh[:uprate_walls ] groups[:roof ][:up] = argh[:uprate_roofs ] groups[:floor][:up] = argh[:uprate_floors] groups[:wall ][:ut] = argh[:wall_ut ] groups[:roof ][:ut] = argh[:roof_ut ] groups[:floor][:ut] = argh[:floor_ut ] groups[:wall ][:op] = argh[:wall_option ] groups[:roof ][:op] = argh[:roof_option ] groups[:floor][:op] = argh[:floor_option ] groups[:wall ][:uo] = argh[:wall_uo ] groups[:roof ][:uo] = argh[:roof_uo ] groups[:floor][:uo] = argh[:floor_uo ] io = argh[:io ] out = argh[:write_tbd] descr = "" descr = argh[:seed] unless argh[:seed].empty? io[:description] = descr unless io.key?(:description) descr = io[:description] schema_pth = "https://github.com/rd2/tbd/blob/master/tbd.schema.json" io[:schema] = schema_pth unless io.key?(:schema) tbd_log = { date: Time.now, status: state } u_t = [] groups.each do |label, g| next if fatal? next unless g[:uo] next unless g[:uo].is_a?(Numeric) uo = format("%.3f", g[:uo]) ut = format("%.3f", g[:ut]) output = "An initial #{label.to_s} Uo of #{uo} W/m2•K is required to " \ "achieve an overall Ut of #{ut} W/m2•K for #{g[:op]}" u_t << output runner.registerInfo(output) end tbd_log[:ut] = u_t unless u_t.empty? ua_md_en = nil ua_md_fr = nil ua = nil ok = argh[:surfaces] && argh[:gen_ua] ua = ua_summary(tbd_log[:date], argh) if ok unless fatal? || ua.nil? || ua.empty? if ua.key?(:en) if ua[:en].key?(:b1) || ua[:en].key?(:b2) tbd_log[:ua] = {} runner.registerInfo("-") runner.registerInfo(ua[:model]) ua_md_en = ua_md(ua, :en) ua_md_fr = ua_md(ua, :fr) end if ua[:en].key?(:b1) && ua[:en][:b1].key?(:summary) runner.registerInfo(" - #{ua[:en][:b1][:summary]}") ua[:en][:b1].each do |k, v| runner.registerInfo(" --- #{v}") unless k == :summary end tbd_log[:ua][:bloc1] = ua[:en][:b1] end if ua[:en].key?(:b2) && ua[:en][:b2].key?(:summary) runner.registerInfo(" - #{ua[:en][:b2][:summary]}") ua[:en][:b2].each do |k, v| runner.registerInfo(" --- #{v}") unless k == :summary end tbd_log[:ua][:bloc2] = ua[:en][:b2] end end runner.registerInfo(" -") end results = [] if argh[:surfaces] argh[:surfaces].each do |id, surface| next if fatal? next unless surface.key?(:ratio) ratio = format("%4.1f", surface[:ratio]) output = "RSi derated by #{ratio}% : #{id}" results << output runner.registerInfo(output) end end tbd_log[:results] = results unless results.empty? tbd_msgs = [] logs.each do |l| tbd_msgs << { level: tag(l[:level]), message: l[:message] } runner.registerWarning(l[:message]) if l[:level] > INF runner.registerInfo(l[:message]) if l[:level] <= INF end tbd_log[:messages] = tbd_msgs unless tbd_msgs.empty? io[:log] = tbd_log # User's may not be requesting detailed output - delete non-essential items. io.delete(:psis ) unless out io.delete(:khis ) unless out io.delete(:building ) unless out io.delete(:stories ) unless out io.delete(:spacetypes) unless out io.delete(:spaces ) unless out io.delete(:surfaces ) unless out io.delete(:edges ) unless out # Deterministic sorting io[:schema ] = io.delete(:schema ) if io.key?(:schema ) io[:description] = io.delete(:description) if io.key?(:description) io[:log ] = io.delete(:log ) if io.key?(:log ) io[:psis ] = io.delete(:psis ) if io.key?(:psis ) io[:khis ] = io.delete(:khis ) if io.key?(:khis ) io[:building ] = io.delete(:building ) if io.key?(:building ) io[:stories ] = io.delete(:stories ) if io.key?(:stories ) io[:spacetypes ] = io.delete(:spacetypes ) if io.key?(:spacetypes ) io[:spaces ] = io.delete(:spaces ) if io.key?(:spaces ) io[:surfaces ] = io.delete(:surfaces ) if io.key?(:surfaces ) io[:edges ] = io.delete(:edges ) if io.key?(:edges ) out_dir = '.' file_paths = runner.workflow.absoluteFilePaths # 'Apply Measure Now' won't cp files from 1st path back to generated_files. match1 = /WorkingFiles/.match(file_paths[1].to_s.strip) match2 = /files/.match(file_paths[1].to_s.strip) match = match1 || match2 if file_paths.size >= 2 && File.exist?(file_paths[1].to_s.strip) && match out_dir = file_paths[1].to_s.strip elsif !file_paths.empty? && File.exist?(file_paths.first.to_s.strip) out_dir = file_paths.first.to_s.strip end out_path = File.join(out_dir, "tbd.out.json") File.open(out_path, 'w') do |file| file.puts JSON::pretty_generate(io) # Make sure data is written to the disk one way or the other. begin file.fsync rescue StandardError file.flush end end unless fatal? || ua.nil? || ua.empty? unless ua_md_en.nil? || ua_md_en.empty? ua_path = File.join(out_dir, "ua_en.md") File.open(ua_path, 'w') do |file| file.puts ua_md_en begin file.fsync rescue StandardError file.flush end end end unless ua_md_fr.nil? || ua_md_fr.empty? ua_path = File.join(out_dir, "ua_fr.md") File.open(ua_path, 'w') do |file| file.puts ua_md_fr begin file.fsync rescue StandardError file.flush end end end end if fatal? runner.registerError("#{state} - see 'tbd.out.json'") return false elsif error? || warn? runner.registerWarning("#{state} - see 'tbd.out.json'") return true else runner.registerInfo("#{state} - see 'tbd.out.json'") return true end end |
#faces(s = {}, e = {}) ⇒ Bool, false
Populates TBD edges with linked Topolys faces.
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# File 'lib/tbd/geo.rb', line 216 def faces(s = {}, e = {}) mth = "TBD::#{__callee__}" return mismatch("surfaces", s, Hash, mth, DBG, false) unless s.is_a?(Hash) return mismatch("edges", e, Hash, mth, DBG, false) unless e.is_a?(Hash) s.each do |id, props| unless props.key?(:face) log(DBG, "Missing Topolys face '#{id}' (#{mth})") next end props[:face].wires.each do |wire| wire.edges.each do |edge| unless e.key?(edge.id) e[edge.id] = { length: edge.length, v0: edge.v0, v1: edge.v1, surfaces: {} } end unless e[edge.id][:surfaces].key?(id) e[edge.id][:surfaces][id] = { wire: wire.id } end end end end true end |
#inputs(s = {}, e = {}, argh = {}) ⇒ Hash
Processes TBD JSON inputs, after TBD has preprocessed OpenStudio model variables and retrieved corresponding Topolys model surface/edge properties. TBD user inputs allow customization of default assumptions and inferred values. If successful, “edges” (input) may inherit additional properties, e.g.: edge-specific PSI set (defined in TBD JSON file), edge-specific PSI type (e.g. “corner”, defined in TBD JSON file), project-wide PSI set (if absent from TBD JSON file).
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 |
# File 'lib/tbd/psi.rb', line 1124 def inputs(s = {}, e = {}, argh = {}) mth = "TBD::#{__callee__}" opt = :option ipt = { io: {}, psi: PSI.new, khi: KHI.new } io = {} return mismatch("s" , s , Hash, mth, DBG, ipt) unless s.is_a?(Hash) return mismatch("e" , e , Hash, mth, DBG, ipt) unless e.is_a?(Hash) return mismatch("argh", argh, Hash, mth, DBG, ipt) unless argh.is_a?(Hash) return hashkey("argh" , argh, opt , mth, DBG, ipt) unless argh.key?(opt) argh[:io_path ] = nil unless argh.key?(:io_path) argh[:schema_path] = nil unless argh.key?(:schema_path) pth = argh[:io_path ] sch = argh[:schema_path] if pth && (pth.is_a?(String) || pth.is_a?(Hash)) if pth.is_a?(Hash) io = pth else return empty("JSON file", mth, FTL, ipt) unless File.size?(pth) io = File.read(pth) io = JSON.parse(io, symbolize_names: true) return mismatch("io", io, Hash, mth, FTL, ipt) unless io.is_a?(Hash) end # Schema validation is not yet supported in the OpenStudio Application. # It is nonetheless recommended that users rely on the json-schema gem, # or an online linter, prior to using TBD. The following checks focus on # content - ignoring bad JSON input otherwise caught via JSON validation. # # A side note: JSON validation relies on case-senitive string comparisons # (e.g. OpenStudio space or surface names, vs corresponding TBD JSON # identifiers). So "Space-1" doesn't match "SPACE-1" ... head's up! if sch require "json-schema" return invalid("JSON schema", mth, 3, FTL, ipt) unless File.exist?(sch) return empty("JSON schema" , mth, FTL, ipt) if File.zero?(sch) schema = File.read(sch) schema = JSON.parse(schema, symbolize_names: true) valid = JSON::Validator.validate!(schema, io) return invalid("JSON schema validation", mth, 3, FTL, ipt) unless valid end # Append JSON entries to library of linear & point thermal bridges. io[:psis].each { |psi| ipt[:psi].append(psi) } if io.key?(:psis) io[:khis].each { |khi| ipt[:khi].append(khi) } if io.key?(:khis) # JSON-defined or user-selected, building PSI set must be complete/valid. io[:building] = { psi: argh[opt] } unless io.key?(:building) bdg = io[:building] ok = bdg.key?(:psi) return hashkey("Building PSI", bdg, :psi, mth, FTL, ipt) unless ok ok = ipt[:psi].complete?(bdg[:psi]) return invalid("Complete building PSI", mth, 3, FTL, ipt) unless ok # Validate remaining (optional) JSON entries. [:stories, :spacetypes, :spaces].each do |types| key = :story key = :stype if types == :spacetypes key = :space if types == :spaces if io.key?(types) io[types].each do |type| next unless type.key?(:psi) next unless type.key?(:id ) s1 = "JSON/OSM '#{type[:id]}' (#{mth})" s2 = "JSON/PSI '#{type[:id]}' set (#{mth})" match = false s.values.each do |props| # TBD surface linked to type? break if match next unless props.key?(key) match = type[:id] == props[key].nameString end log(ERR, s1) unless match log(ERR, s2) unless ipt[:psi].set.key?(type[:psi]) end end end if io.key?(:surfaces) io[:surfaces].each do |surface| next unless surface.key?(:id) s1 = "JSON/OSM surface '#{surface[:id]}' (#{mth})" log(ERR, s1) unless s.key?(surface[:id]) # surfaces can OPTIONALLY hold custom PSI sets and/or KHI data if surface.key?(:psi) s2 = "JSON/OSM surface/set '#{surface[:id]}' (#{mth})" log(ERR, s2) unless ipt[:psi].set.key?(surface[:psi]) end if surface.key?(:khis) surface[:khis].each do |khi| next unless khi.key?(:id) s3 = "JSON/KHI surface '#{surface[:id]}' '#{khi[:id]}' (#{mth})" log(ERR, s3) unless ipt[:khi].point.key?(khi[:id]) end end end end if io.key?(:subsurfaces) io[:subsurfaces].each do |sub| next unless sub.key?(:id) next unless sub.key?(:usi) match = false s.each do |id, surface| break if match [:windows, :doors, :skylights].each do |holes| if surface.key?(holes) surface[holes].keys.each do |id| break if match match = sub[:id] == id end end end end log(ERR, "JSON/OSM subsurface '#{sub[:id]}' (#{mth})") unless match end end if io.key?(:edges) io[:edges].each do |edge| next unless edge.key?(:type) next unless edge.key?(:surfaces) surfaces = edge[:surfaces] type = edge[:type].to_sym safer = ipt[:psi].safe(bdg[:psi], type) # fallback log(ERR, "Skipping invalid edge PSI '#{type}' (#{mth})") unless safer next unless safer valid = true surfaces.each do |surface| # TBD edge's surfaces on file e.values.each do |ee| # TBD edges in memory break unless valid # if previous anomaly detected next if ee.key?(:io_type) # validated from previous loop next unless ee.key?(:surfaces) surfs = ee[:surfaces] next unless surfs.key?(surface) # An edge on file is valid if ALL of its listed surfaces together # connect at least 1 or more TBD/Topolys model edges in memory. # Each of the latter may connect e.g. 3 TBD/Topolys surfaces, # but the list of surfaces on file may be shorter, e.g. only 2. match = true surfaces.each { |id| match = false unless surfs.key?(id) } next unless match if edge.key?(:length) # optional next unless (ee[:length] - edge[:length]).abs < TOL end # Optionally, edge coordinates may narrow down potential matches. if edge.key?(:v0x) || edge.key?(:v0y) || edge.key?(:v0z) || edge.key?(:v1x) || edge.key?(:v1y) || edge.key?(:v1z) unless edge.key?(:v0x) && edge.key?(:v0y) && edge.key?(:v0z) && edge.key?(:v1x) && edge.key?(:v1y) && edge.key?(:v1z) log(ERR, "Mismatch '#{surface}' edge vertices (#{mth})") valid = false next end e1 = {} e2 = {} e1[:v0] = Topolys::Point3D.new(edge[:v0x].to_f, edge[:v0y].to_f, edge[:v0z].to_f) e1[:v1] = Topolys::Point3D.new(edge[:v1x].to_f, edge[:v1y].to_f, edge[:v1z].to_f) e2[:v0] = ee[:v0].point e2[:v1] = ee[:v1].point next unless matches?(e1, e2) end if edge.key?(:psi) # optional set = edge[:psi] if ipt[:psi].set.key?(set) saferr = ipt[:psi].safe(set, type) ee[:io_set ] = set if saferr ee[:io_type] = type if saferr log(ERR, "Invalid #{set}: #{type} (#{mth})") unless saferr valid = false unless saferr else log(ERR, "Missing edge PSI #{set} (#{mth})") valid = false end else ee[:io_type] = type # success: matching edge - setting edge type end end end end end else # No (optional) user-defined TBD JSON input file. In such cases, provided # argh[:option] must refer to a valid PSI set. If valid, all edges inherit # a default PSI set (without KHI entries). msg = "Incomplete building PSI set '#{argh[opt]}' (#{mth})" ok = ipt[:psi].complete?(argh[opt]) io[:building] = { psi: argh[opt] } if ok log(FTL, msg) unless ok return ipt unless ok end ipt[:io] = io ipt end |
#kids(model = nil, boys = {}) ⇒ Array<Topolys::Wire>
Adds a collection of TBD sub surfaces (‘kids’) to a Topolys model, including vertices, wires & holes. A sub surface is typically ‘hinged’, i.e. along the same 3D plane as its base surface (or ‘dad’). In rare cases such as domes of tubular daylighting devices (TDDs), a sub surface may be ‘unhinged’.
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# File 'lib/tbd/geo.rb', line 131 def kids(model = nil, boys = {}) mth = "TBD::#{__callee__}" cl1 = Topolys::Model cl2 = Hash holes = [] return mismatch("model", model, cl1, mth, DBG, {}) unless model.is_a?(cl1) return mismatch("boys", boys, cl2, mth, DBG, {}) unless boys.is_a?(cl2) boys.each do |id, props| obj = objects(model, props[:points]) next unless obj[:w] obj[:w].attributes[:id ] = id obj[:w].attributes[:unhinged] = props[:unhinged] if props.key?(:unhinged) obj[:w].attributes[:n ] = props[:n ] if props.key?(:n) props[:hole] = obj[:w] holes << obj[:w] end holes end |
#kiva(model = nil, walls = {}, floors = {}, edges = {}) ⇒ Bool, false
Generates Kiva settings and objects if model surfaces have ‘foundation’ boundary conditions.
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 |
# File 'lib/tbd/geo.rb', line 765 def kiva(model = nil, walls = {}, floors = {}, edges = {}) mth = "TBD::#{__callee__}" cl1 = OpenStudio::Model::Model cl2 = Hash a = false return mismatch("model" , model, cl1, mth, DBG, a) unless model.is_a?(cl1) return mismatch("walls" , walls, cl2, mth, DBG, a) unless walls.is_a?(cl2) return mismatch("floors", floors, cl2, mth, DBG, a) unless floors.is_a?(cl2) return mismatch("edges" , edges, cl2, mth, DBG, a) unless edges.is_a?(cl2) # Check for existing KIVA objects. kva = false kva = true unless model.getSurfacePropertyExposedFoundationPerimeters.empty? kva = true unless model.getFoundationKivas.empty? if kva log(ERR, "Exiting - KIVA objects in model (#{mth})") return a else kva = true end # Pre-validate foundation-facing constructions. model.getSurfaces.each do |s| id = s.nameString construction = s.construction next unless s.outsideBoundaryCondition.downcase == "foundation" if construction.empty? log(ERR, "Invalid construction for #{id} (#{mth})") kva = false else construction = construction.get.to_LayeredConstruction if construction.empty? log(ERR, "Invalid layered constructions for #{id} (#{mth})") kva = false else construction = construction.get unless standardOpaqueLayers?(construction) log(ERR, "Non-standard materials for #{id} (#{mth})") kva = false end end end end return a unless kva # Strictly relying on Kiva's total exposed perimeter approach. arg = "TotalExposedPerimeter" kiva = true # The following is loosely adapted from: # # github.com/NREL/OpenStudio-resources/blob/develop/model/ # simulationtests/foundation_kiva.rb ... thanks. # # Access to KIVA settings. This is usually not required (the default KIVA # settings are fine), but its explicit inclusion in the model does offer # users easy access to further tweak settings, e.g. soil properties if # required. Initial tests show slight differences in simulation results # w/w/o explcit inclusion of the KIVA settings template in the model. settings = model.getFoundationKivaSettings k = settings.soilConductivity settings.setSoilConductivity(k) # Tag foundation-facing floors, then walls. edges.each do |code1, edge| edge[:surfaces].keys.each do |id| next unless floors.key?(id) next unless floors[id][:boundary].downcase == "foundation" next if floors[id].key?(:kiva) floors[id][:kiva ] = :slab # initially slabs-on-grade floors[id][:exposed] = 0.0 # slab-on-grade or walkout perimeter # Loop around current edge. edge[:surfaces].keys.each do |i| next if i == id next unless walls.key?(i) next unless walls[i][:boundary].downcase == "foundation" next if walls[i].key?(:kiva) floors[id][:kiva] = :basement walls[i ][:kiva] = id end # Loop around current edge. edge[:surfaces].keys.each do |i| next if i == id next unless walls.key?(i) next unless walls[i][:boundary].downcase == "outdoors" floors[id][:exposed] += edge[:length] end # Loop around other floor edges. edges.each do |code2, e| next if code1 == code2 # skip - same edge e[:surfaces].keys.each do |i| next unless i == id # good - same floor e[:surfaces].keys.each do |ii| next if i == ii next unless walls.key?(ii) next unless walls[ii][:boundary].downcase == "foundation" next if walls[ii].key?(:kiva) floors[id][:kiva] = :basement walls[ii ][:kiva] = id end e[:surfaces].keys.each do |ii| next if i == ii next unless walls.key?(ii) next unless walls[ii][:boundary].downcase == "outdoors" floors[id][:exposed] += e[:length] end end end foundation = OpenStudio::Model::FoundationKiva.new(model) foundation.setName("KIVA Foundation Floor #{id}") floor = model.getSurfaceByName(id) kiva = false if floor.empty? next if floor.empty? floor = floor.get construction = floor.construction kiva = false if construction.empty? next if construction.empty? construction = construction.get floor.setAdjacentFoundation(foundation) floor.setConstruction(construction) ep = floors[id][:exposed] per = floor.createSurfacePropertyExposedFoundationPerimeter(arg, ep) kiva = false if per.empty? next if per.empty? per = per.get perimeter = per.totalExposedPerimeter kiva = false if perimeter.empty? next if perimeter.empty? perimeter = perimeter.get if ep < 0.001 ok = per.setTotalExposedPerimeter(0.000) ok = per.setTotalExposedPerimeter(0.001) unless ok kiva = false unless ok elsif (perimeter - ep).abs < TOL xps25 = model.getStandardOpaqueMaterialByName("XPS 25mm") if xps25.empty? xps25 = OpenStudio::Model::StandardOpaqueMaterial.new(model) xps25.setName("XPS 25mm") xps25.setRoughness("Rough") xps25.setThickness(0.0254) xps25.setConductivity(0.029) xps25.setDensity(28) xps25.setSpecificHeat(1450) xps25.setThermalAbsorptance(0.9) xps25.setSolarAbsorptance(0.7) else xps25 = xps25.get end foundation.setInteriorHorizontalInsulationMaterial(xps25) foundation.setInteriorHorizontalInsulationWidth(0.6) end floors[id][:foundation] = foundation end end walls.each do |i, wall| next unless wall.key?(:kiva) id = walls[i][:kiva] next unless floors.key?(id) next unless floors[id].key?(:foundation) mur = model.getSurfaceByName(i) # locate OpenStudio wall kiva = false if mur.empty? next if mur.empty? mur = mur.get construction = mur.construction kiva = false if construction.empty? next if construction.empty? construction = construction.get mur.setAdjacentFoundation(floors[id][:foundation]) mur.setConstruction(construction) end kiva end |
#matches?(e1 = {}, e2 = {}, tol = TOL) ⇒ Bool, false
Checks whether 2 edges share Topolys vertex pairs.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/tbd/geo.rb', line 35 def matches?(e1 = {}, e2 = {}, tol = TOL) mth = "TBD::#{__callee__}" cl = Topolys::Point3D a = false return mismatch("e1", e1, Hash, mth, DBG, a) unless e1.is_a?(Hash) return mismatch("e2", e2, Hash, mth, DBG, a) unless e2.is_a?(Hash) return mismatch("e2", e2, Hash, mth, DBG, a) unless e2.is_a?(Hash) return hashkey("e1", e1, :v0, mth, DBG, a) unless e1.key?(:v0) return hashkey("e1", e1, :v1, mth, DBG, a) unless e1.key?(:v1) return hashkey("e2", e2, :v0, mth, DBG, a) unless e2.key?(:v0) return hashkey("e2", e2, :v1, mth, DBG, a) unless e2.key?(:v1) return mismatch("e1:v0", e1[:v0], cl, mth, DBG, a) unless e1[:v0].is_a?(cl) return mismatch("e1:v1", e1[:v1], cl, mth, DBG, a) unless e1[:v1].is_a?(cl) return mismatch("e2:v0", e2[:v0], cl, mth, DBG, a) unless e2[:v0].is_a?(cl) return mismatch("e2:v1", e2[:v1], cl, mth, DBG, a) unless e2[:v1].is_a?(cl) e1_vector = e1[:v1] - e1[:v0] e2_vector = e2[:v1] - e2[:v0] return zero("e1", mth, DBG, a) if e1_vector.magnitude < TOL return zero("e2", mth, DBG, a) if e2_vector.magnitude < TOL return mismatch("e1", e1, Hash, mth, DBG, a) unless tol.is_a?(Numeric) return zero("tol", mth, DBG, a) if tol < TOL return true if ( ( ( (e1[:v0].x - e2[:v0].x).abs < tol && (e1[:v0].y - e2[:v0].y).abs < tol && (e1[:v0].z - e2[:v0].z).abs < tol ) || ( (e1[:v0].x - e2[:v1].x).abs < tol && (e1[:v0].y - e2[:v1].y).abs < tol && (e1[:v0].z - e2[:v1].z).abs < tol ) ) && ( ( (e1[:v1].x - e2[:v0].x).abs < tol && (e1[:v1].y - e2[:v0].y).abs < tol && (e1[:v1].z - e2[:v0].z).abs < tol ) || ( (e1[:v1].x - e2[:v1].x).abs < tol && (e1[:v1].y - e2[:v1].y).abs < tol && (e1[:v1].z - e2[:v1].z).abs < tol ) ) ) false end |
#objects(model = nil, pts = []) ⇒ Hash
Returns Topolys vertices and a Topolys wire from Topolys points. If missing, it populates the Topolys model with the vertices and wire.
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# File 'lib/tbd/geo.rb', line 98 def objects(model = nil, pts = []) mth = "TBD::#{__callee__}" cl1 = Topolys::Model cl2 = Array cl3 = Topolys::Point3D obj = { vx: nil, w: nil } return mismatch("model", model, cl1, mth, DBG, obj) unless model.is_a?(cl1) return mismatch("points", pts, cl2, mth, DBG, obj) unless pts.is_a?(cl2) pts.each do |pt| return mismatch("point", pt, cl3, mth, DBG, obj) unless pt.is_a?(cl3) end obj[:vx] = model.get_vertices(pts) obj[:w ] = model.get_wire(obj[:vx]) obj end |
#process(model = nil, argh = {}) ⇒ Hash
Processes TBD objects, based on an OpenStudio and generated Topolys model, and derates admissible envelope surfaces by substituting insulating materials with derated clones, within surface multilayered constructions. Returns a Hash holding 2 key:value pairs; io: objects for JSON serialization, and surfaces: derated TBD surfaces (see exit method).
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 |
# File 'lib/tbd/psi.rb', line 1495 def process(model = nil, argh = {}) mth = "TBD::#{__callee__}" cl = OpenStudio::Model::Model tbd = { io: nil, surfaces: {} } return mismatch("model", model, cl, mth, DBG, tbd) unless model.is_a?(cl) return mismatch("argh", argh, Hash, mth, DBG, tbd) unless argh.is_a?(Hash) argh = {} if argh.empty? argh[:option ] = "" unless argh.key?(:option) argh[:io_path ] = nil unless argh.key?(:io_path) argh[:schema_path ] = nil unless argh.key?(:schema_path) argh[:parapet ] = true unless argh.key?(:parapet) argh[:uprate_walls ] = false unless argh.key?(:uprate_walls) argh[:uprate_roofs ] = false unless argh.key?(:uprate_roofs) argh[:uprate_floors] = false unless argh.key?(:uprate_floors) argh[:wall_ut ] = 0 unless argh.key?(:wall_ut) argh[:roof_ut ] = 0 unless argh.key?(:roof_ut) argh[:floor_ut ] = 0 unless argh.key?(:floor_ut) argh[:wall_option ] = "" unless argh.key?(:wall_option) argh[:roof_option ] = "" unless argh.key?(:roof_option) argh[:floor_option ] = "" unless argh.key?(:floor_option) argh[:gen_ua ] = false unless argh.key?(:gen_ua) argh[:ua_ref ] = "" unless argh.key?(:ua_ref) argh[:gen_kiva ] = false unless argh.key?(:gen_kiva) argh[:reset_kiva ] = false unless argh.key?(:reset_kiva) argh[:sub_tol ] = TBD::TOL unless argh.key?(:sub_tol) # Ensure true or false: whether to generate KIVA inputs. unless [true, false].include?(argh[:gen_kiva]) return invalid("generate KIVA option", mth, 0, DBG, tbd) end # Ensure true or false: whether to first purge (existing) KIVA inputs. unless [true, false].include?(argh[:reset_kiva]) return invalid("reset KIVA option", mth, 0, DBG, tbd) end # Create the Topolys Model. t_model = Topolys::Model.new # "true" if any space/zone holds valid setpoint temperatures. With invalid # inputs, these 2x methods return "false", ignoring any # setpoint-based logic, e.g. semi-heated spaces (DEBUG errors are logged). heated = heatingTemperatureSetpoints?(model) cooled = coolingTemperatureSetpoints?(model) argh[:setpoints] = heated || cooled model.getSurfaces.sort_by { |s| s.nameString }.each do |s| # Fetch key attributes of opaque surfaces (and any linked sub surfaces). # Method returns nil with invalid input (see logs); TBD ignores them. surface = properties(s, argh) tbd[:surfaces][s.nameString] = surface unless surface.nil? end return empty("TBD surfaces", mth, ERR, tbd) if tbd[:surfaces].empty? # TBD only derates constructions of opaque surfaces in CONDITIONED spaces, # ... if facing outdoors or facing UNENCLOSED/UNCONDITIONED spaces. tbd[:surfaces].each do |id, surface| surface[:deratable] = false next unless surface[:conditioned] next if surface[:ground ] unless surface[:boundary].downcase == "outdoors" next unless tbd[:surfaces].key?(surface[:boundary]) next if tbd[:surfaces][surface[:boundary]][:conditioned] end if surface.key?(:index) surface[:deratable] = true else log(ERR, "Skipping '#{id}': insulating layer? (#{mth})") end end # Sort subsurfaces before processing. [:windows, :doors, :skylights].each do |holes| tbd[:surfaces].values.each do |surface| next unless surface.key?(holes) surface[holes] = surface[holes].sort_by { |_, s| s[:minz] }.to_h end end # Split "surfaces" hash into "floors", "ceilings" and "walls" hashes. floors = tbd[:surfaces].select { |_, s| s[:type] == :floor } ceilings = tbd[:surfaces].select { |_, s| s[:type] == :ceiling } walls = tbd[:surfaces].select { |_, s| s[:type] == :wall } floors = floors.sort_by { |_, s| [s[:minz], s[:space]] }.to_h ceilings = ceilings.sort_by { |_, s| [s[:minz], s[:space]] }.to_h walls = walls.sort_by { |_, s| [s[:minz], s[:space]] }.to_h # Fetch OpenStudio shading surfaces & key attributes. shades = {} model.getShadingSurfaces.each do |s| id = s.nameString group = s.shadingSurfaceGroup log(ERR, "Can't process '#{id}' transformation (#{mth})") if group.empty? next if group.empty? group = group.get tr = transforms(group) t = tr[:t] if tr[:t] && tr[:r] log(ERR, "Can't process '#{id}' transformation (#{mth})") unless t next unless t space = group.space tr[:r] += space.get.directionofRelativeNorth unless space.empty? n = truNormal(s, tr[:r]) log(ERR, "Can't process '#{id}' true normal (#{mth})") unless n next unless n points = (t * s.vertices).map { |v| Topolys::Point3D.new(v.x, v.y, v.z) } minz = ( points.map { |p| p.z } ).min shades[id] = { group: group, points: points, minz: minz, n: n } end # Mutually populate TBD & Topolys surfaces. Keep track of created "holes". holes = {} floor_holes = dads(t_model, floors) ceiling_holes = dads(t_model, ceilings) wall_holes = dads(t_model, walls) holes.merge!(floor_holes) holes.merge!(ceiling_holes) holes.merge!(wall_holes) dads(t_model, shades) # Loop through Topolys edges and populate TBD edge hash. Initially, there # should be a one-to-one correspondence between Topolys and TBD edge # objects. Use Topolys-generated identifiers as unique edge hash keys. edges = {} # Start with hole edges. holes.each do |id, wire| wire.edges.each do |e| i = e.id l = e.length ex = edges.key?(i) edges[i] = { length: l, v0: e.v0, v1: e.v1, surfaces: {} } unless ex next if edges[i][:surfaces].key?(wire.attributes[:id]) edges[i][:surfaces][wire.attributes[:id]] = { wire: wire.id } end end # Next, floors, ceilings & walls; then shades. faces(floors , edges) faces(ceilings, edges) faces(walls , edges) faces(shades , edges) # Purge existing KIVA objects from model. if argh[:reset_kiva] kva = false kva = true unless model.getSurfacePropertyExposedFoundationPerimeters.empty? kva = true unless model.getFoundationKivas.empty? if kva if argh[:gen_kiva] resetKIVA(model, "Foundation") else resetKIVA(model, "Ground") end end end # Generate OSM Kiva settings and objects if foundation-facing floors. # Returns false if partial failure (log failure eventually). kiva(model, walls, floors, edges) if argh[:gen_kiva] # Thermal bridging characteristics of edges are determined - in part - by # relative polar position of linked surfaces (or wires) around each edge. # This attribute is key in distinguishing concave from convex edges. # # For each linked surface (or rather surface wires), set polar position # around edge with respect to a reference vector (perpendicular to the # edge), +clockwise as one is looking in the opposite position of the edge # vector. For instance, a vertical edge has a reference vector pointing # North - surfaces eastward of the edge are (0°,180°], while surfaces # westward of the edge are (180°,360°]. # # Much of the following code is of a topological nature, and should ideally # (or eventually) become available functionality offered by Topolys. Topolys # "wrappers" like TBD are good, short-term test beds to identify desired # features for future Topolys enhancements. zenith = Topolys::Vector3D.new(0, 0, 1).freeze north = Topolys::Vector3D.new(0, 1, 0).freeze east = Topolys::Vector3D.new(1, 0, 0).freeze edges.values.each do |edge| origin = edge[:v0].point terminal = edge[:v1].point dx = (origin.x - terminal.x).abs dy = (origin.y - terminal.y).abs dz = (origin.z - terminal.z).abs horizontal = dz < TOL vertical = dx < TOL && dy < TOL edge_V = terminal - origin next if edge_V.magnitude < TOL edge_plane = Topolys::Plane3D.new(origin, edge_V) if vertical reference_V = north.dup elsif horizontal reference_V = zenith.dup else # project zenith vector unto edge plane reference = edge_plane.project(origin + zenith) reference_V = reference - origin end edge[:surfaces].each do |id, surface| # Loop through each linked wire and determine farthest point from # edge while ensuring candidate point is not aligned with edge. t_model.wires.each do |wire| next unless surface[:wire] == wire.id # should be a unique match normal = tbd[:surfaces][id][:n] if tbd[:surfaces].key?(id) normal = holes[id].attributes[:n] if holes.key?(id) normal = shades[id][:n] if shades.key?(id) farthest = Topolys::Point3D.new(origin.x, origin.y, origin.z) farthest_V = farthest - origin # zero magnitude, initially farthest_mag = 0 wire.points.each do |point| next if point == origin next if point == terminal point_on_plane = edge_plane.project(point) origin_point_V = point_on_plane - origin point_V_mag = origin_point_V.magnitude next unless point_V_mag > TOL next unless point_V_mag > farthest_mag farthest = point farthest_V = origin_point_V fathest_mag = point_V_mag end angle = reference_V.angle(farthest_V) angle = 0 if angle.nil? adjust = false # adjust angle [180°, 360°] if necessary if vertical adjust = true if east.dot(farthest_V) < -TOL else dN = north.dot(farthest_V) dN1 = north.dot(farthest_V).abs - 1 if dN.abs < TOL || dN1.abs < TOL adjust = true if east.dot(farthest_V) < -TOL else adjust = true if dN < -TOL end end angle = 2 * Math::PI - angle if adjust angle -= 2 * Math::PI if (angle - 2 * Math::PI).abs < TOL surface[:angle ] = angle farthest_V.normalize! surface[:polar ] = farthest_V surface[:normal] = normal end # end of edge-linked, surface-to-wire loop end # end of edge-linked surface loop edge[:horizontal] = horizontal edge[:vertical ] = vertical edge[:surfaces ] = edge[:surfaces].sort_by{ |_, p| p[:angle] }.to_h end # end of edge loop # Topolys edges may constitute thermal bridges (and therefore thermally # derate linked OpenStudio opaque surfaces), depending on a number of # factors such as surface type, space conditioning and boundary conditions. # Thermal bridging attributes (type & PSI-value pairs) are grouped into PSI # sets, normally accessed through the :option user argument (in the # OpenStudio Measure interface). # # Process user-defined TBD JSON file inputs if file exists & valid: # :io holds valid TBD JSON file entries # :psi holds TBD PSI sets (built-in defaults + those on file) # :khi holds TBD KHI points (built-in defaults + those on file) # # Without an input JSON file, a valid 'json' Hash simply holds: # :io[:building][:psi] ... a single valid, default PSI set for all edges # :psi ... built-in TBD PSI sets # :khi ... built-in TBD KHI points json = inputs(tbd[:surfaces], edges, argh) # A user-defined TBD JSON input file can hold a number of anomalies that # won't affect results, such as custom PSI sets that aren't referenced # elsewhere (similar to OpenStudio materials on file that aren't referenced # by any OpenStudio construction). This may trigger 'warnings' in the log # file, but they're in principle benign. # # A user-defined JSON input file can instead hold a number of more serious # anomalies that risk generating erroneous or unintended results. They're # logged as well, yet it remains up to the user to decide how serious a risk # this may be. If a custom edge is defined on file (e.g., "expansion joint" # thermal bridge instead of a "transition") yet TBD is unable to match # it against OpenStudio and/or Topolys edges (or surfaces), then TBD # will log this as an error while simply 'skipping' the anomaly (TBD will # otherwise ignore the requested change and pursue its processes). # # There are 2 types of errors that are considered FATAL when processing # user-defined TBD JSON input files: # - incorrect JSON formatting of the input file (can't parse) # - TBD is unable to identify a 'complete' building-level PSI set # (either a bad argument from the Measure, or bad input on file). # # ... in such circumstances, TBD will halt all processes and exit while # signaling to OpenStudio to halt its own processes (e.g., not launch an # EnergyPlus simulation). This is similar to accessing an invalid .osm file. return tbd if fatal? psi = json[:io][:building][:psi] # default building PSI on file shorts = json[:psi].shorthands(psi) if shorts[:has].empty? || shorts[:val].empty? log(FTL, "Invalid or incomplete building PSI set (#{mth})") return tbd end edges.values.each do |edge| next unless edge.key?(:surfaces) deratables = [] set = {} edge[:surfaces].keys.each do |id| next unless tbd[:surfaces].key?(id) deratables << id if tbd[:surfaces][id][:deratable] end next if deratables.empty? if edge.key?(:io_type) bdg = json[:psi].safe(psi, edge[:io_type]) # building safe type fallback edge[:sets] = {} unless edge.key?(:sets) edge[:sets][edge[:io_type]] = shorts[:val][bdg] # building safe fallback set[edge[:io_type]] = shorts[:val][bdg] edge[:psi] = set if edge.key?(:io_set) && json[:psi].set.key?(edge[:io_set]) type = json[:psi].safe(edge[:io_set], edge[:io_type]) edge[:set] = edge[:io_set] if type end match = true end edge[:surfaces].keys.each do |id| break if match next unless tbd[:surfaces].key?(id) next unless deratables.include?(id) # Evaluate current set content before processing a new linked surface. is = {} is[:doorhead ] = set.keys.to_s.include?("doorhead") is[:doorsill ] = set.keys.to_s.include?("doorsill") is[:doorjamb ] = set.keys.to_s.include?("doorjamb") is[:skylighthead ] = set.keys.to_s.include?("skylighthead") is[:skylightsill ] = set.keys.to_s.include?("skylightsill") is[:skylightjamb ] = set.keys.to_s.include?("skylightjamb") is[:spandrel ] = set.keys.to_s.include?("spandrel") is[:corner ] = set.keys.to_s.include?("corner") is[:parapet ] = set.keys.to_s.include?("parapet") is[:roof ] = set.keys.to_s.include?("roof") is[:ceiling ] = set.keys.to_s.include?("ceiling") is[:party ] = set.keys.to_s.include?("party") is[:grade ] = set.keys.to_s.include?("grade") is[:balcony ] = set.keys.to_s.include?("balcony") is[:balconysill ] = set.keys.to_s.include?("balconysill") is[:balconydoorsill ] = set.keys.to_s.include?("balconydoorsill") is[:rimjoist ] = set.keys.to_s.include?("rimjoist") if is.empty? is[:head] = set.keys.to_s.include?("head") is[:sill] = set.keys.to_s.include?("sill") is[:jamb] = set.keys.to_s.include?("jamb") end # Label edge as ... # :head, :sill, :jamb (vertical fenestration) # :doorhead, :doorsill, :doorjamb (opaque door) # :skylighthead, :skylightsill, :skylightjamb (all other cases) # # ... if linked to: # 1x subsurface (vertical or non-vertical) edge[:surfaces].keys.each do |i| break if is[:head ] break if is[:sill ] break if is[:jamb ] break if is[:doorhead ] break if is[:doorsill ] break if is[:doorjamb ] break if is[:skylighthead] break if is[:skylightsill] break if is[:skylightjamb] next if deratables.include?(i) next unless holes.key?(i) # In most cases, subsurface edges simply delineate the rough opening # of its base surface (here, a "gardian"). Door sills, corner windows, # as well as a subsurface header aligned with a plenum "floor" # (ceiling tiles), are common instances where a subsurface edge links # 2x (opaque) surfaces. Deratable surface "id" may not be the gardian # of subsurface "i" - the latter may be a neighbour. The single # surface to derate is not the gardian in such cases. gardian = deratables.size == 1 ? id : "" target = gardian # Retrieve base surface's subsurfaces. windows = tbd[:surfaces][id].key?(:windows) doors = tbd[:surfaces][id].key?(:doors) skylights = tbd[:surfaces][id].key?(:skylights) windows = windows ? tbd[:surfaces][id][:windows ] : {} doors = doors ? tbd[:surfaces][id][:doors ] : {} skylights = skylights ? tbd[:surfaces][id][:skylights] : {} # The gardian is "id" if subsurface "ids" holds "i". ids = windows.keys + doors.keys + skylights.keys if gardian.empty? other = deratables.first == id ? deratables.last : deratables.first gardian = ids.include?(i) ? id : other target = ids.include?(i) ? other : id windows = tbd[:surfaces][gardian].key?(:windows) doors = tbd[:surfaces][gardian].key?(:doors) skylights = tbd[:surfaces][gardian].key?(:skylights) windows = windows ? tbd[:surfaces][gardian][:windows ] : {} doors = doors ? tbd[:surfaces][gardian][:doors ] : {} skylights = skylights ? tbd[:surfaces][gardian][:skylights] : {} ids = windows.keys + doors.keys + skylights.keys end unless ids.include?(i) log(ERR, "Orphaned subsurface #{i} (mth)") next end window = windows.key?(i) ? windows[i] : {} door = doors.key?(i) ? doors[i] : {} skylight = skylights.key?(i) ? skylights[i] : {} sub = window unless window.empty? sub = door unless door.empty? sub = skylight unless skylight.empty? window = sub[:type] == :window door = sub[:type] == :door glazed = door && sub.key?(:glazed) && sub[:glazed] s1 = edge[:surfaces][target] s2 = edge[:surfaces][i ] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex # Subsurface edges are tagged as head, sill or jamb, regardless of # building PSI set subsurface-related tags. If the latter is simply # :fenestration, then its single PSI factor is systematically # assigned to e.g. a window's :head, :sill & :jamb edges. # # Additionally, concave or convex variants also inherit from the base # type if undefined in the PSI set. # # If a subsurface is not horizontal, TBD tags any horizontal edge as # either :head or :sill based on the polar angle of the subsurface # around the edge vs sky zenith. Otherwise, all other subsurface edges # are tagged as :jamb. if ((s2[:normal].dot(zenith)).abs - 1).abs < TOL # horizontal surface if glazed || window set[:jamb ] = shorts[:val][:jamb ] if flat set[:jambconcave] = shorts[:val][:jambconcave] if concave set[:jambconvex ] = shorts[:val][:jambconvex ] if convex is[:jamb ] = true elsif door set[:doorjamb ] = shorts[:val][:doorjamb ] if flat set[:doorjambconcave] = shorts[:val][:doorjambconcave] if concave set[:doorjambconvex ] = shorts[:val][:doorjambconvex ] if convex is[:doorjamb ] = true else set[:skylightjamb ] = shorts[:val][:skylightjamb ] if flat set[:skylightjambconcave] = shorts[:val][:skylightjambconcave] if concave set[:skylightjambconvex ] = shorts[:val][:skylightjambconvex ] if convex is[:skylightjamb ] = true end else if glazed || window if edge[:horizontal] if s2[:polar].dot(zenith) < 0 set[:head ] = shorts[:val][:head ] if flat set[:headconcave] = shorts[:val][:headconcave] if concave set[:headconvex ] = shorts[:val][:headconvex ] if convex is[:head ] = true else set[:sill ] = shorts[:val][:sill ] if flat set[:sillconcave] = shorts[:val][:sillconcave] if concave set[:sillconvex ] = shorts[:val][:sillconvex ] if convex is[:sill ] = true end else set[:jamb ] = shorts[:val][:jamb ] if flat set[:jambconcave] = shorts[:val][:jambconcave] if concave set[:jambconvex ] = shorts[:val][:jambconvex ] if convex is[:jamb ] = true end elsif door if edge[:horizontal] if s2[:polar].dot(zenith) < 0 set[:doorhead ] = shorts[:val][:doorhead ] if flat set[:doorheadconcave] = shorts[:val][:doorheadconcave] if concave set[:doorheadconvex ] = shorts[:val][:doorheadconvex ] if convex is[:doorhead ] = true else set[:doorsill ] = shorts[:val][:doorsill ] if flat set[:doorsillconcave] = shorts[:val][:doorsillconcave] if concave set[:doorsillconvex ] = shorts[:val][:doorsillconvex ] if convex is[:doorsill ] = true end else set[:doorjamb ] = shorts[:val][:doorjamb ] if flat set[:doorjambconcave] = shorts[:val][:doorjambconcave] if concave set[:doorjambconvex ] = shorts[:val][:doorjambconvex ] if convex is[:doorjamb ] = true end else if edge[:horizontal] if s2[:polar].dot(zenith) < 0 set[:skylighthead ] = shorts[:val][:skylighthead ] if flat set[:skylightheadconcave] = shorts[:val][:skylightheadconcave] if concave set[:skylightheadconvex ] = shorts[:val][:skylightheadconvex ] if convex is[:skylighthead ] = true else set[:skylightsill ] = shorts[:val][:skylightsill ] if flat set[:skylightsillconcave] = shorts[:val][:skylightsillconcave] if concave set[:skylightsillconvex ] = shorts[:val][:skylightsillconvex ] if convex is[:skylightsill ] = true end else set[:skylightjamb ] = shorts[:val][:skylightjamb ] if flat set[:skylightjambconcave] = shorts[:val][:skylightjambconcave] if concave set[:skylightjambconvex ] = shorts[:val][:skylightjambconvex ] if convex is[:skylightjamb ] = true end end end end # Label edge as :spandrel if linked to: # 1x deratable, non-spandrel wall # 1x deratable, spandrel wall edge[:surfaces].keys.each do |i| break if is[:spandrel] break unless deratables.size == 2 break unless walls.key?(id) break unless walls[id][:spandrel] next if i == id next unless deratables.include?(i) next unless walls.key?(i) next if walls[i][:spandrel] s1 = edge[:surfaces][id] s2 = edge[:surfaces][i ] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex set[:spandrel ] = shorts[:val][:spandrel ] if flat set[:spandrelconcave] = shorts[:val][:spandrelconcave] if concave set[:spandrelconvex ] = shorts[:val][:spandrelconvex ] if convex is[:spandrel ] = true end # Label edge as :cornerconcave or :cornerconvex if linked to: # 2x deratable walls & f(relative polar wall vectors around edge) edge[:surfaces].keys.each do |i| break if is[:corner] break unless deratables.size == 2 break unless walls.key?(id) next if i == id next unless deratables.include?(i) next unless walls.key?(i) s1 = edge[:surfaces][id] s2 = edge[:surfaces][i] concave = concave?(s1, s2) convex = convex?(s1, s2) set[:cornerconcave] = shorts[:val][:cornerconcave] if concave set[:cornerconvex ] = shorts[:val][:cornerconvex ] if convex is[:corner ] = true end # Label edge as :ceiling if linked to: # +1 deratable surface(s) # 1x underatable CONDITIONED floor linked to an unoccupied space # 1x adjacent CONDITIONED ceiling linked to an occupied space edge[:surfaces].keys.each do |i| break if is[:ceiling] break unless deratables.size > 0 break if floors.key?(id) next if i == id next unless floors.key?(i) next if floors[i][:ground ] next unless floors[i][:conditioned] next if floors[i][:occupied ] ceiling = floors[i][:boundary] next unless ceilings.key?(ceiling) next unless ceilings[ceiling][:conditioned] next unless ceilings[ceiling][:occupied ] other = deratables.first unless deratables.first == id other = deratables.last unless deratables.last == id other = id if deratables.size == 1 s1 = edge[:surfaces][id] s2 = edge[:surfaces][other] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex set[:ceiling ] = shorts[:val][:ceiling ] if flat set[:ceilingconcave] = shorts[:val][:ceilingconcave] if concave set[:ceilingconvex ] = shorts[:val][:ceilingconvex ] if convex is[:ceiling ] = true end # Label edge as :parapet/:roof if linked to: # 1x deratable wall # 1x deratable ceiling edge[:surfaces].keys.each do |i| break if is[:parapet] break if is[:roof ] break unless deratables.size == 2 break unless ceilings.key?(id) next if i == id next unless deratables.include?(i) next unless walls.key?(i) s1 = edge[:surfaces][id] s2 = edge[:surfaces][i ] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex if argh[:parapet] set[:parapet ] = shorts[:val][:parapet ] if flat set[:parapetconcave] = shorts[:val][:parapetconcave] if concave set[:parapetconvex ] = shorts[:val][:parapetconvex ] if convex is[:parapet ] = true else set[:roof ] = shorts[:val][:roof ] if flat set[:roofconcave] = shorts[:val][:roofconcave] if concave set[:roofconvex ] = shorts[:val][:roofconvex ] if convex is[:roof ] = true end end # Label edge as :party if linked to: # 1x OtherSideCoefficients surface # 1x (only) deratable surface edge[:surfaces].keys.each do |i| break if is[:party] break unless deratables.size == 1 next if i == id next unless tbd[:surfaces].key?(i) next if holes.key?(i) next if shades.key?(i) facing = tbd[:surfaces][i][:boundary].downcase next unless facing == "othersidecoefficients" s1 = edge[:surfaces][id] s2 = edge[:surfaces][i ] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex set[:party ] = shorts[:val][:party ] if flat set[:partyconcave] = shorts[:val][:partyconcave] if concave set[:partyconvex ] = shorts[:val][:partyconvex ] if convex is[:party ] = true end # Label edge as :grade if linked to: # 1x surface (e.g. slab or wall) facing ground # 1x surface (i.e. wall) facing outdoors edge[:surfaces].keys.each do |i| break if is[:grade] break unless deratables.size == 1 next if i == id next unless tbd[:surfaces].key?(i) next unless tbd[:surfaces][i].key?(:ground) next unless tbd[:surfaces][i][:ground] s1 = edge[:surfaces][id] s2 = edge[:surfaces][i] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex set[:grade ] = shorts[:val][:grade ] if flat set[:gradeconcave] = shorts[:val][:gradeconcave] if concave set[:gradeconvex ] = shorts[:val][:gradeconvex ] if convex is[:grade ] = true end # Label edge as :rimjoist, :balcony, :balconysill or :balconydoorsill, # if linked to: # 1x deratable surface # 1x CONDITIONED floor # 1x shade (optional) # 1x subsurface (optional) balcony = false balconysill = false # vertical fenestration balconydoorsill = false # opaque door # Despite referring to 'sill' or 'doorsill', a 'balconysill' or # 'balconydoorsill' edge may instead link (rarer) cases of balcony and a # fenestration/door head. ASHRAE 90.1 2022 does not make the distinction # between sill vs head when intermediate floor, balcony and vertical # fenestration meet. 'Sills' are simply the most common occurrence. edge[:surfaces].keys.each do |i| break if is[:ceiling] break if balcony next if i == id balcony = shades.key?(i) end edge[:surfaces].keys.each do |i| break unless balcony break if balconysill break if balconydoorsill next if i == id next unless holes.key?(i) # Deratable surface "id" may not be the gardian of "i" (see sills). gardian = deratables.size == 1 ? id : "" target = gardian # Retrieve base surface's subsurfaces. windows = tbd[:surfaces][id].key?(:windows) doors = tbd[:surfaces][id].key?(:doors) skylights = tbd[:surfaces][id].key?(:skylights) windows = windows ? tbd[:surfaces][id][:windows ] : {} doors = doors ? tbd[:surfaces][id][:doors ] : {} skylights = skylights ? tbd[:surfaces][id][:skylights] : {} # The gardian is "id" if subsurface "ids" holds "i". ids = windows.keys + doors.keys + skylights.keys if gardian.empty? other = deratables.first == id ? deratables.last : deratables.first gardian = ids.include?(i) ? id : other target = ids.include?(i) ? other : id windows = tbd[:surfaces][gardian].key?(:windows) doors = tbd[:surfaces][gardian].key?(:doors) skylights = tbd[:surfaces][gardian].key?(:skylights) windows = windows ? tbd[:surfaces][gardian][:windows ] : {} doors = doors ? tbd[:surfaces][gardian][:doors ] : {} skylights = skylights ? tbd[:surfaces][gardian][:skylights] : {} ids = windows.keys + doors.keys + skylights.keys end unless ids.include?(i) log(ERR, "Balcony sill: orphaned subsurface #{i} (mth)") next end window = windows.key?(i) ? windows[i] : {} door = doors.key?(i) ? doors[i] : {} skylight = skylights.key?(i) ? skylights[i] : {} sub = window unless window.empty? sub = door unless door.empty? sub = skylight unless skylight.empty? window = sub[:type] == :window door = sub[:type] == :door glazed = door && sub.key?(:glazed) && sub[:glazed] if window || glazed balconysill = true elsif door balconydoorsill = true end end edge[:surfaces].keys.each do |i| break if is[:ceiling ] break if is[:rimjoist ] break if is[:balcony ] break if is[:balconysill ] break if is[:balconydoorsill] break unless deratables.size > 0 break if floors.key?(id) next if i == id next unless floors.key?(i) next if floors[i][:ground ] next unless floors[i][:conditioned] other = deratables.first unless deratables.first == id other = deratables.last unless deratables.last == id other = id if deratables.size == 1 s1 = edge[:surfaces][id] s2 = edge[:surfaces][other] concave = concave?(s1, s2) convex = convex?(s1, s2) flat = !concave && !convex if balconydoorsill set[:balconydoorsill ] = shorts[:val][:balconydoorsill ] if flat set[:balconydoorsillconcave] = shorts[:val][:balconydoorsillconcave] if concave set[:balconydoorsillconvex ] = shorts[:val][:balconydoorsillconvex ] if convex is[:balconydoorsill ] = true elsif balconysill set[:balconysill ] = shorts[:val][:balconysill ] if flat set[:balconysillconcave ] = shorts[:val][:balconysillconcave ] if concave set[:balconysillconvex ] = shorts[:val][:balconysillconvex ] if convex is[:balconysill ] = true elsif balcony set[:balcony ] = shorts[:val][:balcony ] if flat set[:balconyconcave ] = shorts[:val][:balconyconcave ] if concave set[:balconyconvex ] = shorts[:val][:balconyconvex ] if convex is[:balcony ] = true else set[:rimjoist ] = shorts[:val][:rimjoist ] if flat set[:rimjoistconcave ] = shorts[:val][:rimjoistconcave ] if concave set[:rimjoistconvex ] = shorts[:val][:rimjoistconvex ] if convex is[:rimjoist ] = true end end end # edge's surfaces loop edge[:psi] = set unless set.empty? edge[:set] = psi unless set.empty? end # edge loop # Tracking (mild) transitions between deratable surfaces around edges that # have not been previously tagged. edges.values.each do |edge| deratable = false next if edge.key?(:psi) next unless edge.key?(:surfaces) edge[:surfaces].keys.each do |id| next unless tbd[:surfaces].key?(id) next unless tbd[:surfaces][id][:deratable] deratable = tbd[:surfaces][id][:deratable] end next unless deratable edge[:psi] = { transition: 0.000 } edge[:set] = json[:io][:building][:psi] end # 'Unhinged' subsurfaces, like Tubular Daylight Device (TDD) domes, # usually don't share edges with parent surfaces, e.g. floating 300mm above # parent roof surface. Add parent surface ID to unhinged edges. edges.values.each do |edge| next if edge.key?(:psi) next unless edge.key?(:surfaces) next unless edge[:surfaces].size == 1 id = edge[:surfaces].first.first next unless holes.key?(id) next unless holes[id].attributes.key?(:unhinged) next unless holes[id].attributes[:unhinged] subsurface = model.getSubSurfaceByName(id) next if subsurface.empty? subsurface = subsurface.get surface = subsurface.surface next if surface.empty? nom = surface.get.nameString next unless tbd[:surfaces].key?(nom) next unless tbd[:surfaces][nom].key?(:conditioned) next unless tbd[:surfaces][nom][:conditioned] edge[:surfaces][nom] = {} set = {} set[:jamb] = shorts[:val][:jamb] edge[:psi] = set edge[:set] = json[:io][:building][:psi] end if json[:io] # Reset subsurface U-factors (if on file). if json[:io].key?(:subsurfaces) json[:io][:subsurfaces].each do |sub| match = false next unless sub.key?(:id) next unless sub.key?(:usi) tbd[:surfaces].values.each do |surface| break if match [:windows, :doors, :skylights].each do |types| break if match next unless surface.key?(types) surface[types].each do |id, opening| break if match next unless opening.key?(:u) next unless sub[:id] == id opening[:u] = sub[:usi] match = true end end end end end # Reset wall-to-roof intersection type (if on file) ... per group. [:stories, :spacetypes, :spaces].each do |groups| key = :story key = :stype if groups == :spacetypes key = :space if groups == :spaces next unless json[:io].key?(groups) json[:io][groups].each do |group| next unless group.key?(:id) next unless group.key?(:parapet) edges.values.each do |edge| match = false next unless edge.key?(:psi) next unless edge.key?(:surfaces) next if edge.key?(:io_type) edge[:surfaces].keys.each do |id| break if match next unless tbd[:surfaces].key?(id) next unless tbd[:surfaces][id].key?(key) match = group[:id] == tbd[:surfaces][id][key].nameString end next unless match parapets = edge[:psi].keys.select {|ty| ty.to_s.include?("parapet")} roofs = edge[:psi].keys.select {|ty| ty.to_s.include?("roof")} if group[:parapet] next unless parapets.empty? next if roofs.empty? type = :parapet type = :parapetconcave if roofs.first.to_s.include?("concave") type = :parapetconvex if roofs.first.to_s.include?("convex") edge[:psi][type] = shorts[:val][type] roofs.each {|ty| edge[:psi].delete(ty)} else next unless roofs.empty? next if parapets.empty? type = :roof type = :roofconcave if parapets.first.to_s.include?("concave") type = :roofconvex if parapets.first.to_s.include?("convex") edge[:psi][type] = shorts[:val][type] parapets.each { |ty| edge[:psi].delete(ty) } end end end end # Reset wall-to-roof intersection type (if on file) - individual surfaces. if json[:io].key?(:surfaces) json[:io][:surfaces].each do |surface| next unless surface.key?(:parapet) next unless surface.key?(:id) edges.values.each do |edge| next if edge.key?(:io_type) next unless edge.key?(:psi) next unless edge.key?(:surfaces) next unless edge[:surfaces].keys.include?(surface[:id]) parapets = edge[:psi].keys.select {|ty| ty.to_s.include?("parapet")} roofs = edge[:psi].keys.select {|ty| ty.to_s.include?("roof")} if surface[:parapet] next unless parapets.empty? next if roofs.empty? type = :parapet type = :parapetconcave if roofs.first.to_s.include?("concave") type = :parapetconvex if roofs.first.to_s.include?("convex") edge[:psi][type] = shorts[:val][type] roofs.each {|ty| edge[:psi].delete(ty)} else next unless roofs.empty? next if parapets.empty? type = :roof type = :roofconcave if parapets.first.to_s.include?("concave") type = :roofconvex if parapets.first.to_s.include?("convex") edge[:psi][type] = shorts[:val][type] parapets.each {|ty| edge[:psi].delete(ty)} end end end end # A priori, TBD applies (default) :building PSI types and values to # individual edges. If a TBD JSON input file holds custom PSI sets for: # :stories # :spacetypes # :surfaces # :edges # ... that may apply to individual edges, then the default :building PSI # types and/or values are overridden, as follows: # custom :stories PSI sets trump :building PSI sets # custom :spacetypes PSI sets trump aforementioned PSI sets # custom :spaces PSI sets trump aforementioned PSI sets # custom :surfaces PSI sets trump aforementioned PSI sets # custom :edges PSI sets trump aforementioned PSI sets [:stories, :spacetypes, :spaces].each do |groups| key = :story key = :stype if groups == :spacetypes key = :space if groups == :spaces next unless json[:io].key?(groups) json[:io][groups].each do |group| next unless group.key?(:id) next unless group.key?(:psi) next unless json[:psi].set.key?(group[:psi]) sh = json[:psi].shorthands(group[:psi]) next if sh[:val].empty? edges.values.each do |edge| match = false next unless edge.key?(:psi) next unless edge.key?(:surfaces) next if edge.key?(:io_set) edge[:surfaces].keys.each do |id| break if match next unless tbd[:surfaces].key?(id) next unless tbd[:surfaces][id].key?(key) match = group[:id] == tbd[:surfaces][id][key].nameString end next unless match set = {} edge[groups] = {} unless edge.key?(groups) edge[groups][group[:psi]] = {} if edge.key?(:io_type) safer = json[:psi].safe(group[:psi], edge[:io_type]) set[edge[:io_type]] = sh[:val][safer] if safer else edge[:psi].keys.each do |type| safer = json[:psi].safe(group[:psi], type) set[type] = sh[:val][safer] if safer end end edge[groups][group[:psi]] = set unless set.empty? end end # TBD/Topolys edges will generally be linked to more than one surface # and hence to more than one group. It is possible for a TBD JSON file # to hold 2x group PSI sets that end up targetting one or more edges # common to both groups. In such cases, TBD retains the most conductive # PSI type/value from either group PSI set. edges.values.each do |edge| next unless edge.key?(:psi) next unless edge.key?(groups) edge[:psi].keys.each do |type| vals = {} edge[groups].keys.each do |set| sh = json[:psi].shorthands(set) next if sh[:val].empty? safer = json[:psi].safe(set, type) vals[set] = sh[:val][safer] if safer end next if vals.empty? edge[:psi ][type] = vals.values.max edge[:sets] = {} unless edge.key?(:sets) edge[:sets][type] = vals.key(vals.values.max) end end end if json[:io].key?(:surfaces) json[:io][:surfaces].each do |surface| next unless surface.key?(:psi) next unless surface.key?(:id) next unless tbd[:surfaces].key?(surface[:id ]) next unless json[:psi].set.key?(surface[:psi]) sh = json[:psi].shorthands(surface[:psi]) next if sh[:val].empty? edges.values.each do |edge| next if edge.key?(:io_set) next unless edge.key?(:psi) next unless edge.key?(:surfaces) next unless edge[:surfaces].keys.include?(surface[:id]) s = edge[:surfaces][surface[:id]] set = {} if edge.key?(:io_type) safer = json[:psi].safe(surface[:psi], edge[:io_type]) set[:io_type] = sh[:val][safer] if safer else edge[:psi].keys.each do |type| safer = json[:psi].safe(surface[:psi], type) set[type] = sh[:val][safer] if safer end end next if set.empty? s[:psi] = set s[:set] = surface[:psi] end end # TBD/Topolys edges will generally be linked to more than one surface. A # TBD JSON file may hold 2x surface PSI sets that target a shared edge. # TBD retains the most conductive PSI type/value from either set. edges.values.each do |edge| next unless edge.key?(:psi) next unless edge.key?(:surfaces) edge[:psi].keys.each do |type| vals = {} edge[:surfaces].each do |id, s| next unless s.key?(:psi) next unless s.key?(:set) next if s[:set].empty? sh = json[:psi].shorthands(s[:set]) next if sh[:val].empty? safer = json[:psi].safe(s[:set], type) vals[s[:set]] = sh[:val][safer] if safer end next if vals.empty? edge[:psi ][type] = vals.values.max edge[:sets] = {} unless edge.key?(:sets) edge[:sets][type] = vals.key(vals.values.max) end end end # Loop through all customized edges on file w/w/o a custom PSI set. edges.values.each do |edge| next unless edge.key?(:psi) next unless edge.key?(:io_type) next unless edge.key?(:surfaces) if edge.key?(:io_set) next unless json[:psi].set.key?(edge[:io_set]) set = edge[:io_set] else next unless edge[:sets].key?(edge[:io_type]) next unless json[:psi].set.key?(edge[:sets][edge[:io_type]]) set = edge[:sets][edge[:io_type]] end sh = json[:psi].shorthands(set) next if sh[:val].empty? safer = json[:psi].safe(set, edge[:io_type]) next unless safer if edge.key?(:io_set) edge[:psi] = {} edge[:set] = edge[:io_set] else edge[:sets] = {} unless edge.key?(:sets) edge[:sets][edge[:io_type]] = sh[:val][safer] end edge[:psi][edge[:io_type]] = sh[:val][safer] end end # Fetch edge multipliers for subsurfaces, if applicable. edges.values.each do |edge| next if edge.key?(:mult) # skip if already assigned next unless edge.key?(:surfaces) next unless edge.key?(:psi) ok = false edge[:psi].keys.each do |k| break if ok jamb = k.to_s.include?("jamb") sill = k.to_s.include?("sill") head = k.to_s.include?("head") ok = jamb || sill || head end next unless ok # if OK, edge links subsurface(s) ... yet which one(s)? edge[:surfaces].each do |id, surface| next unless tbd[:surfaces].key?(id) # look up parent (opaque) surface [:windows, :doors, :skylights].each do |subtypes| next unless tbd[:surfaces][id].key?(subtypes) tbd[:surfaces][id][subtypes].each do |nom, sub| next unless edge[:surfaces].key?(nom) next unless sub[:mult] > 1 # An edge may be tagged with (potentially conflicting) multipliers. # This is only possible if the edge links 2 subsurfaces, e.g. a # shared jamb between window & door. By default, TBD tags common # subsurface edges as (mild) "transitions" (i.e. PSI 0 W/K•m), so # there would be no point in assigning an edge multiplier. Users # can however reset an edge type via a TBD JSON input file (e.g. # "joint" instead of "transition"). It would be a very odd choice, # but TBD doesn't prohibit it. If linked subsurfaces have different # multipliers (e.g. 2 vs 3), TBD tracks the highest value. edge[:mult] = sub[:mult] unless edge.key?(:mult) edge[:mult] = sub[:mult] if sub[:mult] > edge[:mult] end end end end # Unless a user has set the thermal bridge type of an individual edge via # JSON input, reset any subsurface's head, sill or jamb edges as (mild) # transitions when in close proximity to another subsurface edge. Both # edges' origin and terminal vertices must be in close proximity. Edges # of unhinged subsurfaces are ignored. edges.each do |id, edge| nb = 0 # linked subsurfaces (i.e. "holes") match = false next if edge.key?(:io_type) # skip if set in JSON next unless edge.key?(:v0) next unless edge.key?(:v1) next unless edge.key?(:psi) next unless edge.key?(:surfaces) edge[:surfaces].keys.each do |identifier| break if match next unless holes.key?(identifier) if holes[identifier].attributes.key?(:unhinged) nb = 0 if holes[identifier].attributes[:unhinged] break if holes[identifier].attributes[:unhinged] end nb += 1 match = true if nb > 1 end if nb == 1 # linking 1x subsurface, search for 1x other. e1 = { v0: edge[:v0].point, v1: edge[:v1].point } edges.each do |nom, e| nb = 0 break if match next if nom == id next if e.key?(:io_type) next unless e.key?(:psi) next unless e.key?(:surfaces) e[:surfaces].keys.each do |identifier| next unless holes.key?(identifier) if holes[identifier].attributes.key?(:unhinged) nb = 0 if holes[identifier].attributes[:unhinged] break if holes[identifier].attributes[:unhinged] end nb += 1 end next unless nb == 1 # only process edge if linking 1x subsurface e2 = { v0: e[:v0].point, v1: e[:v1].point } match = matches?(e1, e2, argh[:sub_tol]) end end next unless match edge[:psi] = { transition: 0.000 } edge[:set] = json[:io][:building][:psi] end # Loop through each edge and assign heat loss to linked surfaces. edges.each do |identifier, edge| next unless edge.key?(:psi) rsi = 0 max = edge[:psi ].values.max type = edge[:psi ].key(max) length = edge[:length] length *= edge[:mult ] if edge.key?(:mult) bridge = { psi: max, type: type, length: length } deratables = {} apertures = {} if edge.key?(:sets) && edge[:sets].key?(type) edge[:set] = edge[:sets][type] unless edge.key?(:io_set) end # Retrieve valid linked surfaces as deratables. edge[:surfaces].each do |id, s| next unless tbd[:surfaces].key?(id) next unless tbd[:surfaces][id][:deratable] deratables[id] = s end edge[:surfaces].each { |id, s| apertures[id] = s if holes.key?(id) } next if apertures.size > 1 # edge links 2x openings # Prune dad if edge links an opening, its dad and an uncle. if deratables.size > 1 && apertures.size > 0 deratables.each do |id, deratable| [:windows, :doors, :skylights].each do |types| next unless tbd[:surfaces][id].key?(types) tbd[:surfaces][id][types].keys.each do |sub| deratables.delete(id) if apertures.key?(sub) end end end end next if deratables.empty? # Sum RSI of targeted insulating layer from each deratable surface. deratables.each do |id, deratable| next unless tbd[:surfaces][id].key?(:r) rsi += tbd[:surfaces][id][:r] end # Assign heat loss from thermal bridges to surfaces, in proportion to # insulating layer thermal resistance. deratables.each do |id, deratable| ratio = 0 ratio = tbd[:surfaces][id][:r] / rsi if rsi > 0.001 loss = bridge[:psi] * ratio b = { psi: loss, type: bridge[:type], length: length, ratio: ratio } tbd[:surfaces][id][:edges] = {} unless tbd[:surfaces][id].key?(:edges) tbd[:surfaces][id][:edges][identifier] = b end end # Assign thermal bridging heat loss [in W/K] to each deratable surface. tbd[:surfaces].each do |id, surface| next unless surface.key?(:edges) surface[:heatloss] = 0 e = surface[:edges].values e.each { |edge| surface[:heatloss] += edge[:psi] * edge[:length] } end # Add point conductances (W/K x count), in TBD JSON file (under surfaces). tbd[:surfaces].each do |id, s| next unless s[:deratable] next unless json[:io] next unless json[:io].key?(:surfaces) json[:io][:surfaces].each do |surface| next unless surface.key?(:khis) next unless surface.key?(:id) next unless surface[:id] == id surface[:khis].each do |k| next unless k.key?(:id) next unless k.key?(:count) next unless json[:khi].point.key?(k[:id]) next unless json[:khi].point[k[:id]] > 0.001 s[:heatloss] = 0 unless s.key?(:heatloss) s[:heatloss] += json[:khi].point[k[:id]] * k[:count] s[:pts ] = {} unless s.key?(:pts) s[:pts][k[:id]] = { val: json[:khi].point[k[:id]], n: k[:count] } end end end # If user has selected a Ut to meet, e.g. argh'ments: # :uprate_walls # :wall_ut # :wall_option ... (same triple arguments for roofs and exposed floors) # # ... first 'uprate' targeted insulation layers (see ua.rb) before derating. # Check for new argh keys [:wall_uo], [:roof_uo] and/or [:floor_uo]. up = argh[:uprate_walls] || argh[:uprate_roofs] || argh[:uprate_floors] uprate(model, tbd[:surfaces], argh) if up # Derated (cloned) constructions are unique to each deratable surface. # Unique construction names are prefixed with the surface name, # and suffixed with " tbd", indicating that the construction is # henceforth thermally derated. The " tbd" expression is also key in # avoiding inadvertent derating - TBD will not derate constructions # (or rather layered materials) having " tbd" in their OpenStudio name. tbd[:surfaces].each do |id, surface| next unless surface.key?(:construction) next unless surface.key?(:index) next unless surface.key?(:ltype) next unless surface.key?(:r) next unless surface.key?(:edges) next unless surface.key?(:heatloss) next unless surface[:heatloss].abs > TOL s = model.getSurfaceByName(id) next if s.empty? s = s.get index = surface[:index ] current_c = surface[:construction] c = current_c.clone(model).to_LayeredConstruction.get m = nil m = derate(id, surface, c) if index # m may be nilled simply because the targeted construction has already # been derated, i.e. holds " tbd" in its name. Names of cloned/derated # constructions (due to TBD) include the surface name (since derated # constructions are now unique to each surface) and the suffix " c tbd". if m c.setLayer(index, m) c.setName("#{id} c tbd") current_R = rsi(current_c, s.filmResistance) # In principle, the derated "ratio" could be calculated simply by # accessing a surface's uFactor. Yet air layers within constructions # (not air films) are ignored in OpenStudio's uFactor calculation. # An example would be 25mm-50mm pressure-equalized air gaps behind # brick veneer. This is not always compliant to some energy codes. # TBD currently factors-in air gap (and exterior cladding) R-values. # # If one comments out the following loop (3 lines), tested surfaces # with air layers will generate discrepencies between the calculed RSi # value above and the inverse of the uFactor. All other surface # constructions pass the test. # # if ((1/current_R) - s.uFactor.to_f).abs > 0.005 # puts "#{s.nameString} - Usi:#{1/current_R} UFactor: #{s.uFactor}" # end s.setConstruction(c) # If the derated surface construction separates CONDITIONED space from # UNCONDITIONED or UNENCLOSED space, then derate the adjacent surface # construction as well (unless defaulted). if s.outsideBoundaryCondition.downcase == "surface" unless s.adjacentSurface.empty? adjacent = s.adjacentSurface.get nom = adjacent.nameString default = adjacent.isConstructionDefaulted == false if default && tbd[:surfaces].key?(nom) current_cc = tbd[:surfaces][nom][:construction] cc = current_cc.clone(model).to_LayeredConstruction.get cc.setLayer(tbd[:surfaces][nom][:index], m) cc.setName("#{nom} c tbd") adjacent.setConstruction(cc) end end end # Compute updated RSi value from layers. updated_c = s.construction.get.to_LayeredConstruction.get updated_R = rsi(updated_c, s.filmResistance) ratio = -(current_R - updated_R) * 100 / current_R surface[:ratio] = ratio if ratio.abs > TOL surface[:u ] = 1 / current_R # un-derated U-factors (for UA') end end # Ensure deratable surfaces have U-factors (even if NOT derated). tbd[:surfaces].each do |id, surface| next unless surface[:deratable] next unless surface.key?(:construction) next if surface.key?(:u) s = model.getSurfaceByName(id) msg = "Skipping missing surface '#{id}' (#{mth})" log(ERR, msg) if s.empty? next if s.empty? surface[:u] = 1.0 / rsi(surface[:construction], s.get.filmResistance) end json[:io][:edges] = [] # Enrich io with TBD/Topolys edge info before returning: # 1. edge custom PSI set, if on file # 2. edge PSI type # 3. edge length (m) # 4. edge origin & end vertices # 5. array of linked outside- or ground-facing surfaces edges.values.each do |e| next unless e.key?(:psi) next unless e.key?(:set) v = e[:psi].values.max set = e[:set] t = e[:psi].key(v) l = e[:length] l *= e[:mult] if e.key?(:mult) edge = { psi: set, type: t, length: l, surfaces: e[:surfaces].keys } edge[:v0x] = e[:v0].point.x edge[:v0y] = e[:v0].point.y edge[:v0z] = e[:v0].point.z edge[:v1x] = e[:v1].point.x edge[:v1y] = e[:v1].point.y edge[:v1z] = e[:v1].point.z json[:io][:edges] << edge end if json[:io][:edges].empty? json[:io].delete(:edges) else json[:io][:edges].sort_by { |e| [ e[:v0x], e[:v0y], e[:v0z], e[:v1x], e[:v1y], e[:v1z] ] } end # Populate UA' trade-off reference values (optional). if argh[:gen_ua] && argh[:ua_ref] case argh[:ua_ref] when "code (Quebec)" qc33(tbd[:surfaces], json[:psi], argh[:setpoints]) end end tbd[:io ] = json[:io ] argh[:io ] = tbd[:io ] argh[:surfaces] = tbd[:surfaces] argh[:version ] = model.getVersion.versionIdentifier tbd end |
#properties(surface = nil, argh = {}) ⇒ Hash?
Fetches OpenStudio surface properties, including opening areas & vertices.
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# File 'lib/tbd/geo.rb', line 276 def properties(surface = nil, argh = {}) mth = "TBD::#{__callee__}" cl1 = OpenStudio::Model::Surface cl2 = OpenStudio::Model::LayeredConstruction cl3 = Hash return mismatch("surface", surface, cl1, mth) unless surface.is_a?(cl1) return mismatch("argh" , argh , cl3, mth) unless argh.is_a?(cl3) nom = surface.nameString surf = {} subs = {} fd = false return invalid("#{nom}", mth, 1, ERR) if poly(surface).empty? return empty("#{nom} space", mth, ERR) if surface.space.empty? space = surface.space.get stype = space.spaceType story = space.buildingStory tr = transforms(space) return invalid("#{nom} transform", mth, 0, ERR) unless tr[:t] && tr[:r] t = tr[:t] n = truNormal(surface, tr[:r]) return invalid("#{nom} normal", mth, 0, ERR) unless n type = surface.surfaceType.downcase facing = surface.outsideBoundaryCondition setpts = setpoints(space) if facing.downcase == "surface" empty = surface.adjacentSurface.empty? return invalid("#{nom}: adjacent surface", mth, 0, ERR) if empty facing = surface.adjacentSurface.get.nameString end unless surface.construction.empty? construction = surface.construction.get.to_LayeredConstruction unless construction.empty? construction = construction.get lyr = insulatingLayer(construction) lyr[:index] = nil unless lyr[:index].is_a?(Numeric) lyr[:index] = nil unless lyr[:index] >= 0 lyr[:index] = nil unless lyr[:index] < construction.layers.size if lyr[:index] surf[:construction] = construction # index: ... of layer/material (to derate) within construction # ltype: either :massless (RSi) or :standard (k + d) # r : initial RSi value of the indexed layer to derate surf[:index] = lyr[:index] surf[:ltype] = lyr[:type ] surf[:r ] = lyr[:r ] end end end unless argh.key?(:setpoints) heat = heatingTemperatureSetpoints?(model) cool = coolingTemperatureSetpoints?(model) argh[:setpoints] = heat || cool end if argh[:setpoints] surf[:heating] = setpts[:heating] unless setpts[:heating].nil? surf[:cooling] = setpts[:cooling] unless setpts[:cooling].nil? else surf[:heating] = 21.0 surf[:cooling] = 24.0 end surf[:conditioned] = surf.key?(:heating) || surf.key?(:cooling) surf[:space ] = space surf[:occupied ] = space.partofTotalFloorArea surf[:boundary ] = facing surf[:ground ] = surface.isGroundSurface surf[:type ] = :floor surf[:type ] = :ceiling if type.include?("ceiling") surf[:type ] = :wall if type.include?("wall" ) surf[:stype ] = stype.get unless stype.empty? surf[:story ] = story.get unless story.empty? surf[:n ] = n surf[:gross ] = surface.grossArea surf[:filmRSI ] = surface.filmResistance surf[:spandrel ] = spandrel?(surface) surface.subSurfaces.sort_by { |s| s.nameString }.each do |s| next if poly(s).empty? id = s.nameString typ = surface.surfaceType.downcase unless (3..4).cover?(s.vertices.size) log(ERR, "Skipping '#{id}': vertex # 3 or 4 (#{mth})") next end vec = s.vertices area = s.grossArea mult = s.multiplier # An OpenStudio subsurface has a "type" (string), either defaulted during # initialization or explicitely set by the user (from a built-in list): # # OpenStudio::Model::SubSurface.validSubSurfaceTypeValues # - "FixedWindow" # - "OperableWindow" # - "Door" # - "GlassDoor" # - "OverheadDoor" # - "Skylight" # - "TubularDaylightDome" # - "TubularDaylightDiffuser" typ = s.subSurfaceType.downcase # An OpenStudio default subsurface construction set can hold unique # constructions assigned for each of these admissible types. In addition, # type assignment determines whether frame/divider attributes can be # linked to a subsurface (this shortlist has evolved between OpenStudio # releases). Type assignment is relied upon when calculating (admissible) # fenestration areas. TBD also relies on OpenStudio subsurface type # assignment, with resulting TBD tags being a bit more concise, e.g.: # # - :window includes "FixedWindow" and "OperableWindow" # - :door includes "Door", "OverheadWindow" and "GlassDoor" # ... a (roof) access roof hatch should be assigned as a "Door" # - :skylight includes "Skylight", "TubularDaylightDome", etc. # type = :skylight type = :window if typ.include?("window") # operable or not type = :door if typ.include?("door") # fenestrated or not # In fact, ANY subsurface other than :window or :door is tagged as # :skylight, e.g. a glazed floor opening (CN, Calgary, Tokyo towers). This # happens to reflect OpenStudio default initialization behaviour. For # instance, a subsurface added to an exposed (horizontal) floor in # OpenStudio is automatically assigned a "Skylight" type. This is similar # to the auto-assignment of (opaque) walls, roof/ceilings and floors # (based on surface tilt) in OpenStudio. # # When it comes to major thermal bridging, ASHRAE 90.1 (2022) makes a # clear distinction between "vertical fenestration" (a defined term) and # all other subsurfaces. "Vertical fenestration" would include both # instances of "Window", as well as "GlassDoor". It would exclude however # a non-fenestrated "door" (another defined term), like "Door" & # "OverheadDoor", as well as skylights. TBD tracks relevant subsurface # attributes via a handful of boolean variables: glazed = type == :door && typ.include?("glass") # fenestrated door tubular = typ.include?("tubular") # dome or diffuser domed = typ.include?("dome") # (tubular) dome unhinged = false # (tubular) dome # It would be tempting (and simple) to have TBD further validate whether a # "GlassDoor" is actually integrated within a (vertical) wall. The # automated type assignment in OpenStudio is very simple and reliable (as # discussed in the preceding paragraphs), yet users can nonetheless reset # this explicitly. For instance, while a vertical surface may indeed be # auto-assigned "Wall", a modeller can just as easily reset its type as # "Floor". Although OpenStudio supports 90.1 rules by default, it's not # enforced. TBD retains the same approach: for whatever osbcur reason a # modeller may decide (and hopefully the "authority having jurisdiction" # may authorize) to reset a wall as a "Floor" or a roof skylight as a # "GlassDoor", TBD maintains the same OpenStudio policy. Either OpenStudio # (and consequently EnergyPlus) sub/surface type assignment is reliable, # or it is not. # Determine if TDD dome subsurface is 'unhinged', i.e. unconnected to its # base surface (not same 3D plane). if domed unhinged = true unless s.plane.equal(surface.plane) n = s.outwardNormal if unhinged end if area < TOL log(ERR, "Skipping '#{id}': gross area ~zero (#{mth})") next end c = s.construction if c.empty? log(ERR, "Skipping '#{id}': missing construction (#{mth})") next end c = c.get.to_LayeredConstruction if c.empty? log(WRN, "Skipping '#{id}': subs limited to #{cl2} (#{mth})") next end c = c.get # A subsurface may have an overall U-factor set by the user - a less # accurate option, yet easier to process (and often the only option # available). With EnergyPlus' "simple window" model, a subsurface's # construction has a single SimpleGlazing material/layer holding the # whole product U-factor. # # https://bigladdersoftware.com/epx/docs/9-6/engineering-reference/ # window-calculation-module.html#simple-window-model # # TBD will instead rely on Tubular Daylighting Device (TDD) effective # dome-to-diffuser RSi-factors (if valid). # # https://bigladdersoftware.com/epx/docs/9-6/engineering-reference/ # daylighting-devices.html#tubular-daylighting-devices # # In other cases, TBD will recover an 'additional property' tagged # "uFactor", assigned either to the individual subsurface itself, or else # assigned to its referenced construction (a more generic fallback). # # If all else fails, TBD will calculate an approximate whole product # U-factor by adding up the subsurface's layered construction material # thermal resistances (as well as the subsurface's parent surface film # resistances). This is the least reliable option, especially if # subsurfaces have Frame & Divider objects, or irregular geometry. u = s.uFactor u = u.get unless u.empty? if tubular & s.respond_to?(:daylightingDeviceTubular) # OSM > v3.3.0 unless s.daylightingDeviceTubular.empty? r = s.daylightingDeviceTubular.get.effectiveThermalResistance u = 1 / r if r > TOL end end unless u.is_a?(Numeric) u = s.additionalProperties.getFeatureAsDouble("uFactor") end unless u.is_a?(Numeric) r = rsi(c, surface.filmResistance) if r < TOL log(ERR, "Skipping '#{id}': U-factor unavailable (#{mth})") next end u = 1 / r end frame = s.allowWindowPropertyFrameAndDivider frame = false if s.windowPropertyFrameAndDivider.empty? if frame fd = true width = s.windowPropertyFrameAndDivider.get.frameWidth vec = offset(vec, width, 300) area = OpenStudio.getArea(vec) if area.empty? log(ERR, "Skipping '#{id}': invalid offset (#{mth})") next end area = area.get end sub = { v: s.vertices, points: vec, n: n, gross: s.grossArea, area: area, mult: mult, type: type, u: u, unhinged: unhinged } sub[:glazed] = true if glazed subs[id ] = sub end valid = true # Test for conflicts (with fits?, overlaps?) between sub/surfaces to # determine whether to keep original points or switch to std::vector of # revised coordinates, offset by Frame & Divider frame width. This will # also inadvertently catch pre-existing (yet nonetheless invalid) # OpenStudio inputs (without Frame & Dividers). subs.each do |id, sub| break unless fd break unless valid valid = fits?(sub[:points], surface.vertices) log(ERR, "Skipping '#{id}': can't fit in '#{nom}' (#{mth})") unless valid subs.each do |i, sb| break unless valid next if i == id if overlaps?(sb[:points], sub[:points]) log(ERR, "Skipping '#{id}': overlaps sibling '#{i}' (#{mth})") valid = false end end end if fd subs.values.each { |sub| sub[:gross ] = sub[:area ] } if valid subs.values.each { |sub| sub[:points] = sub[:v ] } unless valid subs.values.each { |sub| sub[:area ] = sub[:gross] } unless valid end = 0 subs.values.each { |sub| += sub[:area] * sub[:mult] } surf[:net] = surf[:gross] - # Tranform final Point 3D sets, and store. pts = (t * surface.vertices).map { |v| Topolys::Point3D.new(v.x, v.y, v.z) } surf[:points] = pts surf[:minz ] = ( pts.map { |pt| pt.z } ).min subs.each do |id, sub| pts = (t * sub[:points]).map { |v| Topolys::Point3D.new(v.x, v.y, v.z) } sub[:points] = pts sub[:minz ] = ( pts.map { |p| p.z } ).min [:windows, :doors, :skylights].each do |types| type = types.slice(0..-2).to_sym next unless sub[:type] == type surf[types] = {} unless surf.key?(types) surf[types][id] = sub end end surf end |
#qc33(s = {}, sets = nil, spts = true) ⇒ Bool, false
Sets reference values for points, edges & surfaces (& subsurfaces) to compute Quebec energy code (Section 3.3) UA’ comparison (2021).
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# File 'lib/tbd/ua.rb', line 437 def qc33(s = {}, sets = nil, spts = true) mth = "TBD::#{__callee__}" cl1 = Hash cl2 = TBD::PSI return mismatch("surfaces", s, cl1, mth, DBG, false) unless s.is_a?(cl1) return mismatch("sets", sets, cl1, mth, DBG, false) unless sets.is_a?(cl2) shorts = sets.shorthands("code (Quebec)") empty = shorts[:has].empty? || shorts[:val].empty? log(DBG, "Missing QC PSI set for 3.3 UA' tradeoff (#{mth})") if empty return false if empty ok = [true, false].include?(spts) log(DBG, "setpoints must be true or false for 3.3 UA' tradeoff") unless ok return false unless ok s.each do |id, surface| next unless surface.key?(:deratable) next unless surface[:deratable] next unless surface.key?(:type) heating = -50 if spts cooling = 50 if spts heating = 21 unless spts cooling = 24 unless spts heating = surface[:heating] if surface.key?(:heating) cooling = surface[:cooling] if surface.key?(:cooling) # Start with surface U-factors. ref = 1 / 5.46 ref = 1 / 3.60 if surface[:type] == :wall # Adjust for lower heating setpoint (assumes -25°C design conditions). ref *= 43 / (heating + 25) if heating < 18 && cooling > 40 surface[:ref] = ref if surface.key?(:skylights) # loop through subsurfaces ref = 2.85 ref *= 43 / (heating + 25) if heating < 18 && cooling > 40 surface[:skylights].values.map { |skylight| skylight[:ref] = ref } end if surface.key?(:windows) ref = 2.0 ref *= 43 / (heating + 25) if heating < 18 && cooling > 40 surface[:windows].values.map { |window| window[:ref] = ref } end if surface.key?(:doors) surface[:doors].each do |i, door| ref = 0.9 ref = 2.0 if door.key?(:glazed) && door[:glazed] ref *= 43 / (heating + 25) if heating < 18 && cooling > 40 door[:ref] = ref end end # Loop through point thermal bridges. surface[:pts].map { |i, pt| pt[:ref] = 0.5 } if surface.key?(:pts) # Loop through linear thermal bridges. if surface.key?(:edges) surface[:edges].values.each do |edge| next unless edge.key?(:type) next unless edge.key?(:ratio) safe = sets.safe("code (Quebec)", edge[:type]) edge[:ref] = shorts[:val][safe] * edge[:ratio] if safe end end end true end |
#resetKIVA(model = nil, boundary = "Foundation") ⇒ Bool, false
Purge existing KIVA-related objects in an OpenStudio model. Resets ground- facing surface outside boundary condition to “Ground” or “Foundation”.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
# File 'lib/tbd/geo.rb', line 706 def resetKIVA(model = nil, boundary = "Foundation") mth = "TBD::#{__callee__}" cl = OpenStudio::Model::Model ck1 = model.is_a?(cl) ck2 = boundary.respond_to?(:to_s) kva = false b = ["Ground", "Foundation"] return mismatch("model" , model , cl , mth, DBG, kva) unless ck1 return mismatch("boundary", boundary, String, mth, DBG, kva) unless ck2 boundary.capitalize! return invalid("boundary", mth, 2, DBG, kva) unless b.include?(boundary) # Reset surface KIVA-related objects. model.getSurfaces.each do |surface| kva = true unless surface.adjacentFoundation.empty? kva = true unless surface.surfacePropertyExposedFoundationPerimeter.empty? surface.resetAdjacentFoundation surface.resetSurfacePropertyExposedFoundationPerimeter next unless surface.isGroundSurface next if surface.outsideBoundaryCondition.capitalize == boundary lc = surface.construction.empty? ? nil : surface.construction.get surface.setOutsideBoundaryCondition(boundary) next if boundary == "Ground" next if lc.nil? surface.setConstruction(lc) if surface.construction.empty? end perimeters = model.getSurfacePropertyExposedFoundationPerimeters kva = true unless perimeters.empty? # Remove KIVA exposed perimeters. perimeters.each { |perimeter| perimeter.remove } # Remove KIVA custom blocks, & foundations. model.getFoundationKivas.each do |kiva| kiva.removeAllCustomBlocks kiva.remove end log(INF, "Purged KIVA objects from model (#{mth})") if kva true end |
#truNormal(s = nil, r = 0) ⇒ Topolys::Vector3D?
Returns site (or true) Topolys normal vector of OpenStudio surface.
254 255 256 257 258 259 260 261 262 263 264 265 |
# File 'lib/tbd/geo.rb', line 254 def truNormal(s = nil, r = 0) mth = "TBD::#{__callee__}" cl = OpenStudio::Model::PlanarSurface return mismatch("surface", s, cl, mth) unless s.is_a?(cl) return invalid("rotation angle", mth, 2) unless r.respond_to?(:to_f) r = -r.to_f * Math::PI / 180.0 vx = s.outwardNormal.x * Math.cos(r) - s.outwardNormal.y * Math.sin(r) vy = s.outwardNormal.x * Math.sin(r) + s.outwardNormal.y * Math.cos(r) vz = s.outwardNormal.z Topolys::Vector3D.new(vx, vy, vz) end |
#ua_md(ua = {}, lang = :en) ⇒ Array<String>
Generates MD-formatted, UA’ summary file.
option ua [#to_s] :objective ua[:objective] = “COMPLIANCE […]” option ua [#&] :details ua[:details] = “QC Energy Code […]” option ua [#to_s] :model “∑U•A + ∑PSI•L + ∑KHI•n […]” option ua [#key?] :b1 TB block of CONDITIONED spaces, ua[:b1] option ua [#key?] :b2 TB block of SEMIHEATED spaces, ua[:b2] option ua [#to_s] :descr user-provided project/summary description option ua [#to_s] :file OpenStudio file, e.g. “school23.osm” option ua [#to_s] :version OpenStudio SDK, e.g. “3.6.1” option ua [Time] :date time signature option ua [#to_s] :notes advisory info, ua[:notes] option ua [#key?] :areas binned areas (String), ua[:areas]
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 |
# File 'lib/tbd/ua.rb', line 934 def ua_md(ua = {}, lang = :en) mth = "TBD::#{__callee__}" report = [] ck1 = ua.respond_to?(:key?) ck2 = lang.respond_to?(:to_sym) return mismatch( "ua", ua, Hash, mth, DBG, report) unless ck1 return mismatch("lang", lang, Symbol, mth, DBG, report) unless ck2 lang = lang.to_sym return hashkey("language", ua, lang, mth, DBG, report) unless ua.key?(lang) return empty("ua" , mth, DBG, report) if ua.empty? if ua[lang].key?(:objective) && ua[lang][:objective].respond_to?(:to_s) report << "# #{ua[lang][:objective].to_s} " report << " " end if ua[lang].key?(:details) && ua[lang][:details].respond_to?(:&) ua[lang][:details].each do |d| report << "#{d.to_s} " if d.respond_to?(:to_s) end report << " " end if ua.key?(:model) && ua[:model].respond_to?(:to_s) report << "##### SUMMARY " if lang == :en report << "##### SOMMAIRE " if lang == :fr report << " " report << "#{ua[:model].to_s} " report << " " end if ua[lang].key?(:b1) && ua[lang][:b1].key?(:summary) last = ua[lang][:b1].keys.to_a.last report << "* #{ua[lang][:b1][:summary]}" ua[lang][:b1].each do |k, v| next if k == :summary report << " * #{v}" unless k == last report << " * #{v} " if k == last report << " " if k == last end report << " " end if ua[lang].key?(:b2) && ua[lang][:b2].key?(:summary) last = ua[lang][:b2].keys.to_a.last report << "* #{ua[lang][:b2][:summary]}" ua[lang][:b2].each do |k, v| next if k == :summary report << " * #{v}" unless k == last report << " * #{v} " if k == last report << " " if k == last end report << " " end if ua.key?(:date) report << "##### DESCRIPTION " report << " " report << "* project : #{ua[:descr]}" if ua.key?(:descr) && lang == :en report << "* projet : #{ua[:descr]}" if ua.key?(:descr) && lang == :fr model = "" model = "* model : #{ua[:file]}" if ua.key?(:file) && lang == :en model = "* modèle : #{ua[:file]}" if ua.key?(:file) && lang == :fr model += " (v#{ua[:version]})" if ua.key?(:version) report << model unless model.empty? report << "* TBD : v3.4.3" report << "* date : #{ua[:date]}" if lang == :en report << "* status : #{msg(status)}" unless status.zero? report << "* status : success !" if status.zero? elsif lang == :fr report << "* statut : #{msg(status)}" unless status.zero? report << "* statut : succès !" if status.zero? end report << " " end if ua[lang].key?(:areas) report << "##### AREAS " if lang == :en report << "##### AIRES " if lang == :fr report << " " ok = ua[lang][:areas].key?(:walls) report << "* #{ua[lang][:areas][:walls]}" if ok ok = ua[lang][:areas].key?(:roofs) report << "* #{ua[lang][:areas][:roofs]}" if ok ok = ua[lang][:areas].key?(:floors) report << "* #{ua[lang][:areas][:floors]}" if ok report << " " end if ua[lang].key?(:notes) report << "##### NOTES " report << " " report << "#{ua[lang][:notes]} " report << " " end report end |
#ua_summary(date = Time.now, argh = {}) ⇒ Hash
Generates multilingual UA’ summary.
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
# File 'lib/tbd/ua.rb', line 527 def ua_summary(date = Time.now, argh = {}) mth = "TBD::#{__callee__}" cl1 = Time cl2 = String cl3 = Hash ua = {} return mismatch("date", date, cl1, mth, DBG, ua) unless date.is_a?(cl1) return mismatch("argh", argh, cl3, mth, DBG, ua) unless argh.is_a?(cl3) argh[:seed ] = "" unless argh.key?(:seed) argh[:ua_ref ] = "" unless argh.key?(:ua_ref) argh[:surfaces] = nil unless argh.key?(:surfaces) argh[:version ] = "" unless argh.key?(:version) argh[:io ] = {} unless argh.key?(:io) file = argh[:seed ] ref = argh[:ua_ref ] s = argh[:surfaces] v = argh[:version ] io = argh[:io ] return mismatch( "seed", file, cl2, mth, DBG, ua) unless file.is_a?(cl2) return mismatch( "UA' ref", ref, cl2, mth, DBG, ua) unless ref.is_a?(cl2) return mismatch( "version", v, cl2, mth, DBG, ua) unless v.is_a?(cl2) return mismatch("surfaces", s, cl3, mth, DBG, ua) unless s.is_a?(cl3) return mismatch( "io", io, cl3, mth, DBG, ua) unless io.is_a?(cl3) return empty( "surfaces", mth, WRN, ua) if s.empty? argh[:io][:description] = "" unless argh[:io].key?(:description) descr = argh[:io][:description] ua[:descr ] = "" ua[:file ] = "" ua[:version] = "" ua[:model ] = "∑U•A + ∑PSI•L + ∑KHI•n" ua[:date ] = date ua[:descr ] = descr unless descr.nil? || descr.empty? ua[:file ] = file unless file.nil? || file.empty? ua[:version] = v unless v.nil? || v.empty? [:en, :fr].each { |lang| ua[lang] = {} } ua[:en][:notes] = "Automated assessment from the OpenStudio Measure, "\ "Thermal Bridging and Derating (TBD). Open source and MIT-licensed, "\ "TBD is provided as is (without warranty). Procedures are documented "\ "in the source code: https://github.com/rd2/tbd. " ua[:fr][:notes] = "Analyse automatisée à partir de la measure "\ "OpenStudio, 'Thermal Bridging and Derating' (ou TBD). Distribuée "\ "librement (licence MIT), TBD est offerte telle quelle (sans "\ "garantie). L'approche est documentée au sein du code source : "\ "https://github.com/rd2/tbd." walls = { net: 0, gross: 0, subs: 0 } roofs = { net: 0, gross: 0, subs: 0 } floors = { net: 0, gross: 0, subs: 0 } areas = { walls: walls, roofs: roofs, floors: floors } has = {} val = {} psi = PSI.new unless ref.empty? shorts = psi.shorthands(ref) empty = shorts[:has].empty? && shorts[:val].empty? has = shorts[:has] unless empty val = shorts[:val] unless empty log(ERR, "Invalid UA' reference set (#{mth})") if empty unless empty ua[:model] += " : Design vs '#{ref}'" case ref when "code (Quebec)" ua[:en][:objective] = "COMPLIANCE ASSESSMENT" ua[:en][:details ] = [] ua[:en][:details ] << "Quebec Construction Code, Chapter I.1" ua[:en][:details ] << "NECB 2015, modified version (2020)" ua[:en][:details ] << "Division B, Section 3.3" ua[:en][:details ] << "Building Envelope Trade-off Path" ua[:en][:notes] << " Calculations comply with Section 3.3 "\ "requirements. Results are based on user input not subject to "\ "prior validation (see DESCRIPTION), and as such the assessment "\ "shall not be considered as a certification of compliance." ua[:fr][:objective] = "ANALYSE DE CONFORMITÉ" ua[:fr][:details ] = [] ua[:fr][:details ] << "Code de construction du Québec, Chapitre I.1" ua[:fr][:details ] << "CNÉB 2015, version modifiée (2020)" ua[:fr][:details ] << "Division B, Section 3.3" ua[:fr][:details ] << "Méthode des solutions de remplacement" ua[:fr][:notes] << " Les calculs sont conformes aux dispositions "\ "de la Section 3.3. Les résultats sont tributaires d'intrants "\ "fournis par l'utilisateur, sans validation préalable (voir "\ "DESCRIPTION). Ce document ne peut constituer une attestation de "\ "conformité." else ua[:en][:objective] = "UA'" ua[:fr][:objective] = "UA'" end end end # Set up 2x heating setpoint (HSTP) "blocks" (or bins): # bloc1: spaces/zones with HSTP >= 18°C # bloc2: spaces/zones with HSTP < 18°C # (ref: 2021 Quebec energy code 3.3. UA' trade-off methodology) # (... can be extended in the future to cover other standards) # # Determine UA' compliance separately for (i) bloc1 & (ii) bloc2. # # Each block's UA' = ∑ U•area + ∑ PSI•length + ∑ KHI•count blc = { walls: 0, roofs: 0, floors: 0, doors: 0, windows: 0, skylights: 0, rimjoists: 0, parapets: 0, trim: 0, corners: 0, balconies: 0, grade: 0, other: 0 } # party edges, expansion joints, spandrel edges, etc. b1 = {} b2 = {} b1[:pro] = blc # proposed design b1[:ref] = blc.clone # reference b2[:pro] = blc.clone # proposed design b2[:ref] = blc.clone # reference # Loop through surfaces, subsurfaces and edges and populate bloc1 & bloc2. s.each do |id, surface| next unless surface.key?(:deratable) next unless surface[:deratable] next unless surface.key?(:type) type = surface[:type] next unless [:wall, :ceiling, :floor].include?(type) next unless surface.key?(:net) next unless surface[:net] > TOL next unless surface.key?(:u) next unless surface[:u] > TOL heating = 21.0 heating = surface[:heating] if surface.key?(:heating) bloc = b1 bloc = b2 if heating < 18 reference = surface.key?(:ref) if type == :wall areas[:walls][:net ] += surface[:net] bloc[:pro][:walls ] += surface[:net] * surface[:u ] bloc[:ref][:walls ] += surface[:net] * surface[:ref] if reference bloc[:ref][:walls ] += surface[:net] * surface[:u ] unless reference elsif type == :ceiling areas[:roofs][:net ] += surface[:net] bloc[:pro][:roofs ] += surface[:net] * surface[:u ] bloc[:ref][:roofs ] += surface[:net] * surface[:ref] if reference bloc[:ref][:roofs ] += surface[:net] * surface[:u ] unless reference else areas[:floors][:net] += surface[:net] bloc[:pro][:floors ] += surface[:net] * surface[:u ] bloc[:ref][:floors ] += surface[:net] * surface[:ref] if reference bloc[:ref][:floors ] += surface[:net] * surface[:u ] unless reference end [:doors, :windows, :skylights].each do |subs| next unless surface.key?(subs) surface[subs].values.each do |sub| next unless sub.key?(:gross) next unless sub.key?(:u ) next unless sub[:gross] > TOL next unless sub[:u ] > TOL gross = sub[:gross] gross *= sub[:mult ] if sub.key?(:mult) areas[:walls ][:subs] += gross if type == :wall areas[:roofs ][:subs] += gross if type == :ceiling areas[:floors][:subs] += gross if type == :floor bloc[:pro ][subs ] += gross * sub[:u ] bloc[:ref ][subs ] += gross * sub[:ref] if sub.key?(:ref) bloc[:ref ][subs ] += gross * sub[:u ] unless sub.key?(:ref) end end if surface.key?(:edges) surface[:edges].values.each do |edge| next unless edge.key?(:type) next unless edge.key?(:length) next unless edge[:length] > TOL next unless edge.key?(:psi) loss = edge[:length] * edge[:psi] type = edge[:type].to_s.downcase if edge[:type].to_s.downcase.include?("balcony") bloc[:pro][:balconies] += loss elsif edge[:type].to_s.downcase.include?("door") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("skylight") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("fenestration") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("head") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("sill") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("jamb") bloc[:pro][:trim ] += loss elsif edge[:type].to_s.downcase.include?("rimjoist") bloc[:pro][:rimjoists] += loss elsif edge[:type].to_s.downcase.include?("parapet") bloc[:pro][:parapets ] += loss elsif edge[:type].to_s.downcase.include?("roof") bloc[:pro][:parapets ] += loss elsif edge[:type].to_s.downcase.include?("corner") bloc[:pro][:corners ] += loss elsif edge[:type].to_s.downcase.include?("grade") bloc[:pro][:grade ] += loss else bloc[:pro][:other ] += loss end next if val.empty? next if ref.empty? safer = psi.safe(ref, edge[:type]) ok = edge.key?(:ref) loss = edge[:length] * edge[:ref] if ok loss = edge[:length] * val[safer] * edge[:ratio] unless ok if edge[:type].to_s.downcase.include?("balcony") bloc[:ref][:balconies] += loss elsif edge[:type].to_s.downcase.include?("door") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("skylight") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("fenestration") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("head") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("sill") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("jamb") bloc[:ref][:trim ] += loss elsif edge[:type].to_s.downcase.include?("rimjoist") bloc[:ref][:rimjoists] += loss elsif edge[:type].to_s.downcase.include?("parapet") bloc[:ref][:parapets ] += loss elsif edge[:type].to_s.downcase.include?("roof") bloc[:ref][:parapets ] += loss elsif edge[:type].to_s.downcase.include?("corner") bloc[:ref][:corners ] += loss elsif edge[:type].to_s.downcase.include?("grade") bloc[:ref][:grade ] += loss else bloc[:ref][:other ] += loss end end end if surface.key?(:pts) surface[:pts].values.each do |pts| next unless pts.key?(:val) next unless pts.key?(:n) bloc[:pro][:other] += pts[:val] * pts[:n] next unless pts.key?(:ref) bloc[:ref][:other] += pts[:ref] * pts[:n] end end end [:en, :fr].each do |lang| blc = [:b1, :b2] blc.each do |b| bloc = b1 bloc = b2 if b == :b2 pro_sum = bloc[:pro].values.sum ref_sum = bloc[:ref].values.sum if pro_sum > TOL || ref_sum > TOL ratio = nil ratio = (100.0 * (pro_sum - ref_sum) / ref_sum).abs if ref_sum > TOL str = format("%.1f W/K (vs %.1f W/K)", pro_sum, ref_sum) str += format(" +%.1f%%", ratio) if ratio && pro_sum > ref_sum # ** str += format(" -%.1f%%", ratio) if ratio && pro_sum < ref_sum ua[lang][b] = {} if b == :b1 ua[:en][b][:summary] = "heated : #{str}" if lang == :en ua[:fr][b][:summary] = "chauffé : #{str}" if lang == :fr else ua[:en][b][:summary] = "semi-heated : #{str}" if lang == :en ua[:fr][b][:summary] = "semi-chauffé : #{str}" if lang == :fr end bloc[:pro].each do |k, v| rf = bloc[:ref][k] next if v < TOL && rf < TOL ratio = nil ratio = (100.0 * (v - rf) / rf).abs if rf > TOL str = format("%.1f W/K (vs %.1f W/K)", v, rf) str += format(" +%.1f%%", ratio) if ratio && v > rf str += format(" -%.1f%%", ratio) if ratio && v < rf case k when :walls ua[:en][b][k] = "walls : #{str}" if lang == :en ua[:fr][b][k] = "murs : #{str}" if lang == :fr when :roofs ua[:en][b][k] = "roofs : #{str}" if lang == :en ua[:fr][b][k] = "toits : #{str}" if lang == :fr when :floors ua[:en][b][k] = "floors : #{str}" if lang == :en ua[:fr][b][k] = "planchers : #{str}" if lang == :fr when :doors ua[:en][b][k] = "doors : #{str}" if lang == :en ua[:fr][b][k] = "portes : #{str}" if lang == :fr when :windows ua[:en][b][k] = "windows : #{str}" if lang == :en ua[:fr][b][k] = "fenêtres : #{str}" if lang == :fr when :skylights ua[:en][b][k] = "skylights : #{str}" if lang == :en ua[:fr][b][k] = "lanterneaux : #{str}" if lang == :fr when :rimjoists ua[:en][b][k] = "rimjoists : #{str}" if lang == :en ua[:fr][b][k] = "rives : #{str}" if lang == :fr when :parapets ua[:en][b][k] = "parapets : #{str}" if lang == :en ua[:fr][b][k] = "parapets : #{str}" if lang == :fr when :trim ua[:en][b][k] = "trim : #{str}" if lang == :en ua[:fr][b][k] = "chassis : #{str}" if lang == :fr when :corners ua[:en][b][k] = "corners : #{str}" if lang == :en ua[:fr][b][k] = "coins : #{str}" if lang == :fr when :balconies ua[:en][b][k] = "balconies : #{str}" if lang == :en ua[:fr][b][k] = "balcons : #{str}" if lang == :fr when :grade ua[:en][b][k] = "grade : #{str}" if lang == :en ua[:fr][b][k] = "tracé : #{str}" if lang == :fr else ua[:en][b][k] = "other : #{str}" if lang == :en ua[:fr][b][k] = "autres : #{str}" if lang == :fr end end # Deterministic sorting. ua[lang][b][:summary] = ua[lang][b].delete(:summary) ua[lang][b].keys.each { |k| ua[lang][b][k] = ua[lang][b].delete(k) } end end end # Areas (m2). areas[:walls ][:gross] = areas[:walls ][:net] + areas[:walls ][:subs] areas[:roofs ][:gross] = areas[:roofs ][:net] + areas[:roofs ][:subs] areas[:floors][:gross] = areas[:floors][:net] + areas[:floors][:subs] ua[:en][:areas] = {} ua[:fr][:areas] = {} str = format("walls : %.1f m2 (net)", areas[:walls][:net]) str += format(", %.1f m2 (gross)", areas[:walls][:gross]) ua[:en][:areas][:walls] = str unless areas[:walls ][:gross] < TOL str = format("roofs : %.1f m2 (net)", areas[:roofs][:net]) str += format(", %.1f m2 (gross)", areas[:roofs][:gross]) ua[:en][:areas][:roofs] = str unless areas[:roofs ][:gross] < TOL str = format("floors : %.1f m2 (net)", areas[:floors][:net]) str += format(", %.1f m2 (gross)", areas[:floors][:gross]) ua[:en][:areas][:floors] = str unless areas[:floors][:gross] < TOL str = format("murs : %.1f m2 (net)", areas[:walls][:net]) str += format(", %.1f m2 (brut)", areas[:walls][:gross]) ua[:fr][:areas][:walls] = str unless areas[:walls ][:gross] < TOL str = format("toits : %.1f m2 (net)", areas[:roofs][:net]) str += format(", %.1f m2 (brut)", areas[:roofs][:gross]) ua[:fr][:areas][:roofs] = str unless areas[:roofs ][:gross] < TOL str = format("planchers : %.1f m2 (net)", areas[:floors][:net]) str += format(", %.1f m2 (brut)", areas[:floors][:gross]) ua[:fr][:areas][:floors] = str unless areas[:floors][:gross] < TOL ua end |
#uo(model = nil, lc = nil, id = "", hloss = 0.0, film = 0.0, ut = 0.0) ⇒ Hash
Calculates construction Uo (including surface film resistances) to meet Ut.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# File 'lib/tbd/ua.rb', line 36 def uo(model = nil, lc = nil, id = "", hloss = 0.0, film = 0.0, ut = 0.0) mth = "TBD::#{__callee__}" res = { uo: nil, m: nil } cl1 = OpenStudio::Model::Model cl2 = OpenStudio::Model::LayeredConstruction cl3 = Numeric cl4 = String id = trim(id) return mismatch("model", model, cl1, mth, DBG, res) unless model.is_a?(cl1) return mismatch("id" , id, cl4, mth, DBG, res) if id.empty? return mismatch("lc" , lc, cl2, mth, DBG, res) unless lc.is_a?(cl2) return mismatch("hloss", hloss, cl3, mth, DBG, res) unless hloss.is_a?(cl3) return mismatch("film" , film, cl3, mth, DBG, res) unless film.is_a?(cl3) return mismatch("Ut" , ut, cl3, mth, DBG, res) unless ut.is_a?(cl3) loss = 0.0 # residual heatloss (not assigned) [W/K] area = lc.getNetArea lyr = insulatingLayer(lc) lyr[:index] = nil unless lyr[:index].is_a?(Numeric) lyr[:index] = nil unless lyr[:index] >= 0 lyr[:index] = nil unless lyr[:index] < lc.layers.size return invalid("#{id} layer index", mth, 3, ERR, res) unless lyr[:index] return zero("#{id}: heatloss" , mth, WRN, res) unless hloss > TOL return zero("#{id}: films" , mth, WRN, res) unless film > TOL return zero("#{id}: Ut" , mth, WRN, res) unless ut > TOL return invalid("#{id}: Ut" , mth, 6, WRN, res) unless ut < 5.678 return zero("#{id}: net area (m2)", mth, ERR, res) unless area > TOL # First, calculate initial layer RSi to initially meet Ut target. rt = 1 / ut # target construction Rt ro = rsi(lc, film) # current construction Ro new_r = lyr[:r] + (rt - ro) # new, un-derated layer RSi new_u = 1 / new_r # Then, uprate (if possible) to counter expected thermal bridging effects. u_psi = hloss / area # from psi+khi new_u -= u_psi # uprated layer USi to counter psi+khi new_r = 1 / new_u # uprated layer RSi to counter psi+khi return zero("#{id}: new Rsi", mth, ERR, res) unless new_r > 0.001 if lyr[:type] == :massless m = lc.getLayer(lyr[:index]).to_MasslessOpaqueMaterial return invalid("#{id} massless layer?", mth, 0, DBG, res) if m.empty? m = m.get.clone(model).to_MasslessOpaqueMaterial.get m.setName("#{id} uprated") new_r = 0.001 unless new_r > 0.001 loss = (new_u - 1 / new_r) * area unless new_r > 0.001 m.setThermalResistance(new_r) else # type == :standard m = lc.getLayer(lyr[:index]).to_StandardOpaqueMaterial return invalid("#{id} standard layer?", mth, 0, DBG, res) if m.empty? m = m.get.clone(model).to_StandardOpaqueMaterial.get m.setName("#{id} uprated") k = m.thermalConductivity if new_r > 0.001 d = new_r * k unless d > 0.003 d = 0.003 k = d / new_r k = 3.0 unless k < 3.0 loss = (new_u - k / d) * area unless k < 3.0 end else # new_r < 0.001 m2•K/W d = 0.001 * k d = 0.003 unless d > 0.003 k = d / 0.001 unless d > 0.003 loss = (new_u - k / d) * area end if m.setThickness(d) m.setThermalConductivity(k) else return invalid("Can't uprate #{id}: #{d} > 3m", mth, 0, ERR, res) end end return invalid("Can't ID insulating layer", mth, 0, ERR, res) unless m lc.setLayer(lyr[:index], m) uo = 1 / rsi(lc, film) if loss > TOL h_loss = format "%.3f", loss return invalid("Can't assign #{h_loss} W/K to #{id}", mth, 0, ERR, res) end res[:uo] = uo res[:m ] = m res end |
#uprate(model = nil, s = {}, argh = {}) ⇒ Bool, false
Uprates insulation layer of construction, based on user-selected Ut (argh).
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# File 'lib/tbd/ua.rb', line 157 def uprate(model = nil, s = {}, argh = {}) mth = "TBD::#{__callee__}" cl1 = OpenStudio::Model::Model cl2 = Hash cl3 = OpenStudio::Model::LayeredConstruction tout = [] tout << "all wall constructions" tout << "all roof constructions" tout << "all floor constructions" a = false groups = { wall: {}, roof: {}, floor: {} } return mismatch("model" , model, cl1, mth, DBG, a) unless model.is_a?(cl1) return mismatch("surfaces", s, cl2, mth, DBG, a) unless s.is_a?(cl2) return mismatch("argh" , model, cl1, mth, DBG, a) unless argh.is_a?(cl2) argh[:uprate_walls ] = false unless argh.key?(:uprate_walls) argh[:uprate_roofs ] = false unless argh.key?(:uprate_roofs) argh[:uprate_floors] = false unless argh.key?(:uprate_floors) argh[:wall_ut ] = 5.678 unless argh.key?(:wall_ut) argh[:roof_ut ] = 5.678 unless argh.key?(:roof_ut) argh[:floor_ut ] = 5.678 unless argh.key?(:floor_ut) argh[:wall_option ] = "" unless argh.key?(:wall_option) argh[:roof_option ] = "" unless argh.key?(:roof_option) argh[:floor_option ] = "" unless argh.key?(:floor_option) argh[:wall_option ] = trim(argh[:wall_option ]) argh[:roof_option ] = trim(argh[:roof_option ]) argh[:floor_option ] = trim(argh[:floor_option]) groups[:wall ][:up] = argh[:uprate_walls ] groups[:roof ][:up] = argh[:uprate_roofs ] groups[:floor][:up] = argh[:uprate_floors] groups[:wall ][:ut] = argh[:wall_ut ] groups[:roof ][:ut] = argh[:roof_ut ] groups[:floor][:ut] = argh[:floor_ut ] groups[:wall ][:op] = trim(argh[:wall_option ]) groups[:roof ][:op] = trim(argh[:roof_option ]) groups[:floor][:op] = trim(argh[:floor_option ]) groups.each do |type, g| next unless g[:up] next unless g[:ut].is_a?(Numeric) next unless g[:ut] < 5.678 next if g[:ut] < 0 typ = type typ = :ceiling if typ == :roof coll = {} area = 0 film = 100000000000000 lc = nil id = "" op = g[:op].downcase all = tout.include?(op) if g[:op].empty? log(ERR, "Construction (#{type}) to uprate? (#{mth})") elsif all s.each do |nom, surface| next unless surface.key?(:deratable ) next unless surface.key?(:type ) next unless surface.key?(:construction) next unless surface.key?(:filmRSI ) next unless surface.key?(:index ) next unless surface.key?(:ltype ) next unless surface.key?(:r ) next unless surface[:deratable ] next unless surface[:type ] == typ next unless surface[:construction].is_a?(cl3) next if surface[:index ].nil? # Retain lowest surface film resistance (e.g. tilted surfaces). c = surface[:construction] i = c.nameString aire = c.getNetArea film = surface[:filmRSI] if surface[:filmRSI] < film # Retain construction covering largest area. The following conditional # is reliable UNLESS linked to other deratable surface types e.g. both # floors AND walls (see "elsif lc" corrections below). if aire > area lc = c area = aire id = i end coll[i] = { area: aire, lc: c, s: {} } unless coll.key?(i) coll[i][:s][nom] = { a: surface[:net] } unless coll[i][:s].key?(nom) end else id = g[:op] lc = model.getConstructionByName(id) log(ERR, "Construction '#{id}'? (#{mth})") if lc.empty? next if lc.empty? lc = lc.get.to_LayeredConstruction log(ERR, "'#{id}' layered construction? (#{mth})") if lc.empty? next if lc.empty? lc = lc.get area = lc.getNetArea coll[id] = { area: area, lc: lc, s: {} } s.each do |nom, surface| next unless surface.key?(:deratable ) next unless surface.key?(:type ) next unless surface.key?(:construction) next unless surface.key?(:filmRSI ) next unless surface.key?(:index ) next unless surface.key?(:ltype ) next unless surface.key?(:r ) next unless surface[:deratable ] next unless surface[:type ] == typ next unless surface[:construction].is_a?(cl3) next if surface[:index ].nil? i = surface[:construction].nameString next unless i == id # Retain lowest surface film resistance (e.g. tilted surfaces). film = surface[:filmRSI] if surface[:filmRSI] < film coll[i][:s][nom] = { a: surface[:net] } unless coll[i][:s].key?(nom) end end if coll.empty? log(ERR, "No #{type} construction to uprate - skipping (#{mth})") next elsif lc # Valid layered construction - good to uprate! lyr = insulatingLayer(lc) lyr[:index] = nil unless lyr[:index].is_a?(Numeric) lyr[:index] = nil unless lyr[:index] >= 0 lyr[:index] = nil unless lyr[:index] < lc.layers.size log(ERR, "Insulation index for '#{id}'? (#{mth})") unless lyr[:index] next unless lyr[:index] # Ensure lc is exclusively linked to deratable surfaces of right type. # If not, assign new lc clone to non-targeted surfaces. s.each do |nom, surface| next unless surface.key?(:type ) next unless surface.key?(:deratable ) next unless surface.key?(:construction) next unless surface[:construction].is_a?(cl3) next unless surface[:construction] == lc ok = true ok = false unless surface[:type ] == typ ok = false unless surface[:deratable] ok = false unless coll.key?(id) ok = false unless coll[id][:s].key?(nom) unless ok log(WRN, "Cloning '#{nom}' construction - not '#{id}' (#{mth})") sss = model.getSurfaceByName(nom) next if sss.empty? sss = sss.get cloned = lc.clone(model).to_LayeredConstruction.get cloned.setName("#{nom} - cloned") sss.setConstruction(cloned) surface[:construction] = cloned coll[id][:s].delete(nom) end end hloss = 0 # sum of applicable psi+khi-related losses [W/K] # Tally applicable psi+khi losses. Possible construction reassignment. coll.each do |i, col| col[:s].keys.each do |nom| next unless s.key?(nom) next unless s[nom].key?(:construction) next unless s[nom].key?(:index) next unless s[nom].key?(:ltype) next unless s[nom].key?(:r) # Tally applicable psi+khi. hloss += s[nom][:heatloss ] if s[nom].key?(:heatloss) next if s[nom][:construction] == lc # Reassign construction unless referencing lc. sss = model.getSurfaceByName(nom) next if sss.empty? sss = sss.get if sss.isConstructionDefaulted set = defaultConstructionSet(sss) # building? story? constructions = set.defaultExteriorSurfaceConstructions unless constructions.empty? constructions = constructions.get constructions.setWallConstruction(lc) if typ == :wall constructions.setFloorConstruction(lc) if typ == :floor constructions.setRoofCeilingConstruction(lc) if typ == :ceiling end else sss.setConstruction(lc) end s[nom][:construction] = lc # reset TBD attributes s[nom][:index ] = lyr[:index] s[nom][:ltype ] = lyr[:type ] s[nom][:r ] = lyr[:r ] # temporary end end # Merge to ensure a single entry for coll Hash. coll.each do |i, col| next if i == id col[:s].each do |nom, sss| coll[id][:s][nom] = sss unless coll[id][:s].key?(nom) end end coll.delete_if { |i, _| i != id } unless coll.size == 1 log(DBG, "Collection == 1? for '#{id}' (#{mth})") next end coll[id][:area] = lc.getNetArea res = uo(model, lc, id, hloss, film, g[:ut]) unless res[:uo] && res[:m] log(ERR, "Unable to uprate '#{id}' (#{mth})") next end lyr = insulatingLayer(lc) # Loop through coll :s, and reset :r - likely modified by uo(). coll.values.first[:s].keys.each do |nom| next unless s.key?(nom) next unless s[nom].key?(:index) next unless s[nom].key?(:ltype) next unless s[nom].key?(:r ) next unless s[nom][:index] == lyr[:index] next unless s[nom][:ltype] == lyr[:type ] s[nom][:r] = lyr[:r] # uprated insulating RSi factor, before derating end argh[:wall_uo ] = res[:uo] if typ == :wall argh[:roof_uo ] = res[:uo] if typ == :ceiling argh[:floor_uo] = res[:uo] if typ == :floor else log(ERR, "Nilled construction to uprate - (#{mth})") return false end end true end |