Class: Date

Inherits:
Object
  • Object
show all
Includes:
Comparable
Defined in:
lib/date.rb,
date_core.c

Direct Known Subclasses

DateTime

Defined Under Namespace

Classes: Infinity

Constant Summary collapse

MONTHNAMES =

An array of strings of full month names in English. The first element is nil.

mk_ary_of_str(13, monthnames)
ABBR_MONTHNAMES =

An array of strings of abbreviated month names in English. The first element is nil.

mk_ary_of_str(13, abbr_monthnames)
DAYNAMES =

An array of strings of the full names of days of the week in English. The first is “Sunday”.

mk_ary_of_str(7, daynames)
ABBR_DAYNAMES =

An array of strings of abbreviated day names in English. The first is “Sun”.

mk_ary_of_str(7, abbr_daynames)
ITALY =

The Julian day number of the day of calendar reform for Italy and some catholic countries.

INT2FIX(ITALY)
ENGLAND =

The Julian day number of the day of calendar reform for England and her colonies.

INT2FIX(ENGLAND)
JULIAN =

The Julian day number of the day of calendar reform for the proleptic Julian calendar

DBL2NUM(JULIAN)
GREGORIAN =

The Julian day number of the day of calendar reform for the proleptic Gregorian calendar

DBL2NUM(GREGORIAN)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._httpdate(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4560
4561
4562
4563
4564
# File 'date_core.c', line 4560

static VALUE
date_s__httpdate(VALUE klass, VALUE str)
{
    return date__httpdate(str);
}

._iso8601(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4391
4392
4393
4394
4395
# File 'date_core.c', line 4391

static VALUE
date_s__iso8601(VALUE klass, VALUE str)
{
    return date__iso8601(str);
}

._jisx0301(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4602
4603
4604
4605
4606
# File 'date_core.c', line 4602

static VALUE
date_s__jisx0301(VALUE klass, VALUE str)
{
    return date__jisx0301(str);
}

._loadObject

:nodoc:



7151
7152
7153
7154
7155
7156
7157
7158
7159
# File 'date_core.c', line 7151

static VALUE
date_s__load(VALUE klass, VALUE s)
{
    VALUE a, obj;

    a = rb_marshal_load(s);
    obj = d_lite_s_alloc(klass);
    return d_lite_marshal_load(obj, a);
}

._parse(string[, comp = true]) ⇒ Hash

Parses the given representation of date and time, and returns a hash of parsed elements. This method does not function as a validator.

If the optional second argument is true and the detected year is in the range “00” to “99”, considers the year a 2-digit form and makes it full.

Date._parse('2001-02-03') #=> {:year=>2001, :mon=>2, :mday=>3}

Returns:

  • (Hash)


4331
4332
4333
4334
4335
# File 'date_core.c', line 4331

static VALUE
date_s__parse(int argc, VALUE *argv, VALUE klass)
{
    return date_s__parse_internal(argc, argv, klass);
}

._rfc2822(string) ⇒ Hash ._rfc822(string) ⇒ Hash

Returns a hash of parsed elements.

Overloads:

  • ._rfc2822(string) ⇒ Hash

    Returns:

    • (Hash)
  • ._rfc822(string) ⇒ Hash

    Returns:

    • (Hash)


4517
4518
4519
4520
4521
# File 'date_core.c', line 4517

static VALUE
date_s__rfc2822(VALUE klass, VALUE str)
{
    return date__rfc2822(str);
}

._rfc3339(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4434
4435
4436
4437
4438
# File 'date_core.c', line 4434

static VALUE
date_s__rfc3339(VALUE klass, VALUE str)
{
    return date__rfc3339(str);
}

._rfc2822(string) ⇒ Hash ._rfc822(string) ⇒ Hash

Returns a hash of parsed elements.

Overloads:

  • ._rfc2822(string) ⇒ Hash

    Returns:

    • (Hash)
  • ._rfc822(string) ⇒ Hash

    Returns:

    • (Hash)


4517
4518
4519
4520
4521
# File 'date_core.c', line 4517

static VALUE
date_s__rfc2822(VALUE klass, VALUE str)
{
    return date__rfc2822(str);
}

._strptime(string[, format = '%F']) ⇒ Hash

Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.

Date._strptime('2001-02-03', '%Y-%m-%d')

#=> :mon=>2, :mday=>3

See also strptime(3) and strftime.

Returns:

  • (Hash)


4237
4238
4239
4240
4241
# File 'date_core.c', line 4237

static VALUE
date_s__strptime(int argc, VALUE *argv, VALUE klass)
{
    return date_s__strptime_internal(argc, argv, klass, "%F");
}

._xmlschema(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4475
4476
4477
4478
4479
# File 'date_core.c', line 4475

static VALUE
date_s__xmlschema(VALUE klass, VALUE str)
{
    return date__xmlschema(str);
}

.civil([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object .new([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given calendar date.

In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.

The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.

Date.new(2001)    #=> #<Date: 2001-01-01 ...>
Date.new(2001,2,3)  #=> #<Date: 2001-02-03 ...>
Date.new(2001,2,-1) #=> #<Date: 2001-02-28 ...>

See also jd.



3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
# File 'date_core.c', line 3385

static VALUE
date_s_civil(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg, y, fr, fr2, ret;
    int m, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg);

    y = INT2FIX(-4712);
    m = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
  val2sg(vsg, sg);
      case 3:
  num2int_with_frac(d, positive_inf);
      case 2:
  m = NUM2INT(vm);
      case 1:
  y = vy;
    }

    if (guess_style(y, sg) < 0) {
  VALUE nth;
  int ry, rm, rd;

  if (!valid_gregorian_p(y, m, d,
             &nth, &ry,
             &rm, &rd))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
            nth, 0,
            sg,
            ry, rm, rd,
            HAVE_CIVIL);
    }
    else {
  VALUE nth;
  int ry, rm, rd, rjd, ns;

  if (!valid_civil_p(y, m, d, sg,
         &nth, &ry,
         &rm, &rd, &rjd,
         &ns))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
            nth, rjd,
            sg,
            ry, rm, rd,
            HAVE_JD | HAVE_CIVIL);
    }
    add_frac();
    return ret;
}

.commercial([cwyear = -4712[, cweek=1[, cwday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given week date.

The week and the day of week should be a negative or a positive number (as a relative week/day from the end of year/week when negative). They should not be zero.

Date.commercial(2001) #=> #<Date: 2001-01-01 ...>
Date.commercial(2002) #=> #<Date: 2001-12-31 ...>
Date.commercial(2001,5,6) #=> #<Date: 2001-02-03 ...>

See also jd and new.



3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
# File 'date_core.c', line 3462

static VALUE
date_s_commercial(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vw, vd, vsg, y, fr, fr2, ret;
    int w, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vw, &vd, &vsg);

    y = INT2FIX(-4712);
    w = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
  val2sg(vsg, sg);
      case 3:
  num2int_with_frac(d, positive_inf);
      case 2:
  w = NUM2INT(vw);
      case 1:
  y = vy;
    }

    {
  VALUE nth;
  int ry, rw, rd, rjd, ns;

  if (!valid_commercial_p(y, w, d, sg,
        &nth, &ry,
        &rw, &rd, &rjd,
        &ns))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
            nth, rjd,
            sg,
            0, 0, 0,
            HAVE_JD);
    }
    add_frac();
    return ret;
}

.gregorian_leap?(year) ⇒ Boolean .leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Gregorian calendar.

Date.gregorian_leap?(1900)  #=> false
Date.gregorian_leap?(2000)  #=> true

Overloads:

  • .gregorian_leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)
  • .leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2937
2938
2939
2940
2941
2942
2943
2944
2945
# File 'date_core.c', line 2937

static VALUE
date_s_gregorian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, -1, &nth, &ry);
    return f_boolcast(c_gregorian_leap_p(ry));
}

.httpdate(string = 'Mon, 01 Jan -4712 00:00:00 GMT'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some RFC 2616 format.

Date.httpdate('Sat, 03 Feb 2001 00:00:00 GMT')

#=> #<Date: 2001-02-03 …>



4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
# File 'date_core.c', line 4576

static VALUE
date_s_httpdate(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("Mon, 01 Jan -4712 00:00:00 GMT");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__httpdate(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.iso8601(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical ISO 8601 formats.

Date.iso8601('2001-02-03')  #=> #<Date: 2001-02-03 ...>
Date.iso8601('20010203')    #=> #<Date: 2001-02-03 ...>
Date.iso8601('2001-W05-6')  #=> #<Date: 2001-02-03 ...>


4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
# File 'date_core.c', line 4408

static VALUE
date_s_iso8601(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__iso8601(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.jd([jd = 0[, start=Date::ITALY]]) ⇒ Object

Creates a date object denoting the given chronological Julian day number.

Date.jd(2451944)    #=> #<Date: 2001-02-03 ...>
Date.jd(2451945)    #=> #<Date: 2001-02-04 ...>
Date.jd(0)    #=> #<Date: -4712-01-01 ...>

See also new.



3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
# File 'date_core.c', line 3267

static VALUE
date_s_jd(int argc, VALUE *argv, VALUE klass)
{
    VALUE vjd, vsg, jd, fr, fr2, ret;
    double sg;

    rb_scan_args(argc, argv, "02", &vjd, &vsg);

    jd = INT2FIX(0);
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 2:
  val2sg(vsg, sg);
      case 1:
  num2num_with_frac(jd, positive_inf);
    }

    {
  VALUE nth;
  int rjd;

  decode_jd(jd, &nth, &rjd);
  ret = d_simple_new_internal(klass,
            nth, rjd,
            sg,
            0, 0, 0,
            HAVE_JD);
    }
    add_frac();
    return ret;
}

.jisx0301(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical JIS X 0301 formats.

Date.jisx0301('H13.02.03')    #=> #<Date: 2001-02-03 ...>


4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
# File 'date_core.c', line 4617

static VALUE
date_s_jisx0301(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__jisx0301(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.julian_leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Julian calendar.

Date.julian_leap?(1900)   #=> true
Date.julian_leap?(1901)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2916
2917
2918
2919
2920
2921
2922
2923
2924
# File 'date_core.c', line 2916

static VALUE
date_s_julian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, +1, &nth, &ry);
    return f_boolcast(c_julian_leap_p(ry));
}

.gregorian_leap?(year) ⇒ Boolean .leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Gregorian calendar.

Date.gregorian_leap?(1900)  #=> false
Date.gregorian_leap?(2000)  #=> true

Overloads:

  • .gregorian_leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)
  • .leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2937
2938
2939
2940
2941
2942
2943
2944
2945
# File 'date_core.c', line 2937

static VALUE
date_s_gregorian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, -1, &nth, &ry);
    return f_boolcast(c_gregorian_leap_p(ry));
}

.civil([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object .new([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given calendar date.

In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.

The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.

Date.new(2001)    #=> #<Date: 2001-01-01 ...>
Date.new(2001,2,3)  #=> #<Date: 2001-02-03 ...>
Date.new(2001,2,-1) #=> #<Date: 2001-02-28 ...>

See also jd.



3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
# File 'date_core.c', line 3385

static VALUE
date_s_civil(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg, y, fr, fr2, ret;
    int m, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg);

    y = INT2FIX(-4712);
    m = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
  val2sg(vsg, sg);
      case 3:
  num2int_with_frac(d, positive_inf);
      case 2:
  m = NUM2INT(vm);
      case 1:
  y = vy;
    }

    if (guess_style(y, sg) < 0) {
  VALUE nth;
  int ry, rm, rd;

  if (!valid_gregorian_p(y, m, d,
             &nth, &ry,
             &rm, &rd))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
            nth, 0,
            sg,
            ry, rm, rd,
            HAVE_CIVIL);
    }
    else {
  VALUE nth;
  int ry, rm, rd, rjd, ns;

  if (!valid_civil_p(y, m, d, sg,
         &nth, &ry,
         &rm, &rd, &rjd,
         &ns))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
            nth, rjd,
            sg,
            ry, rm, rd,
            HAVE_JD | HAVE_CIVIL);
    }
    add_frac();
    return ret;
}

.ordinal([year = -4712[, yday=1[, start=Date::ITALY]]]) ⇒ Object

Creates a date object denoting the given ordinal date.

The day of year should be a negative or a positive number (as a relative day from the end of year when negative). It should not be zero.

Date.ordinal(2001)  #=> #<Date: 2001-01-01 ...>
Date.ordinal(2001,34) #=> #<Date: 2001-02-03 ...>
Date.ordinal(2001,-1) #=> #<Date: 2001-12-31 ...>

See also jd and new.



3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
# File 'date_core.c', line 3317

static VALUE
date_s_ordinal(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vd, vsg, y, fr, fr2, ret;
    int d;
    double sg;

    rb_scan_args(argc, argv, "03", &vy, &vd, &vsg);

    y = INT2FIX(-4712);
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 3:
  val2sg(vsg, sg);
      case 2:
  num2int_with_frac(d, positive_inf);
      case 1:
  y = vy;
    }

    {
  VALUE nth;
  int ry, rd, rjd, ns;

  if (!valid_ordinal_p(y, d, sg,
           &nth, &ry,
           &rd, &rjd,
           &ns))
      rb_raise(rb_eArgError, "invalid date");

  ret = d_simple_new_internal(klass,
             nth, rjd,
             sg,
             0, 0, 0,
             HAVE_JD);
    }
    add_frac();
    return ret;
}

.parse(string = '-4712-01-01'[, comp=true[, start=ITALY]]) ⇒ Object

Parses the given representation of date and time, and creates a date object. This method does not function as a validator.

If the optional second argument is true and the detected year is in the range “00” to “99”, considers the year a 2-digit form and makes it full.

Date.parse('2001-02-03')    #=> #<Date: 2001-02-03 ...>
Date.parse('20010203')    #=> #<Date: 2001-02-03 ...>
Date.parse('3rd Feb 2001')  #=> #<Date: 2001-02-03 ...>


4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
# File 'date_core.c', line 4352

static VALUE
date_s_parse(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, comp, sg;

    rb_scan_args(argc, argv, "03", &str, &comp, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01");
      case 1:
  comp = Qtrue;
      case 2:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE argv2[2], hash;

  argv2[0] = str;
  argv2[1] = comp;
  hash = date_s__parse(2, argv2, klass);
  return d_new_by_frags(klass, hash, sg);
    }
}

.rfc2822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object .rfc822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.

Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000')

#=> #<Date: 2001-02-03 …>



4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
# File 'date_core.c', line 4534

static VALUE
date_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__rfc2822(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.rfc3339(string = '-4712-01-01T00:00:00+00:00'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 3339 formats.

Date.rfc3339('2001-02-03T04:05:06+07:00') #=> #<Date: 2001-02-03 ...>


4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
# File 'date_core.c', line 4449

static VALUE
date_s_rfc3339(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01T00:00:00+00:00");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__rfc3339(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.rfc2822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object .rfc822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.

Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000')

#=> #<Date: 2001-02-03 …>



4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
# File 'date_core.c', line 4534

static VALUE
date_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__rfc2822(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

.strptime([string = '-4712-01-01'[, format='%F'[, start=ITALY]]]) ⇒ Object

Parses the given representation of date and time with the given template, and creates a date object. strptime does not support specification of flags and width unlike strftime.

Date.strptime('2001-02-03', '%Y-%m-%d') #=> #<Date: 2001-02-03 ...>
Date.strptime('03-02-2001', '%d-%m-%Y') #=> #<Date: 2001-02-03 ...>
Date.strptime('2001-034', '%Y-%j')  #=> #<Date: 2001-02-03 ...>
Date.strptime('2001-W05-6', '%G-W%V-%u')  #=> #<Date: 2001-02-03 ...>
Date.strptime('2001 04 6', '%Y %U %w')  #=> #<Date: 2001-02-03 ...>
Date.strptime('2001 05 6', '%Y %W %u')  #=> #<Date: 2001-02-03 ...>
Date.strptime('sat3feb01', '%a%d%b%y')  #=> #<Date: 2001-02-03 ...>

See also strptime(3) and strftime.



4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
# File 'date_core.c', line 4261

static VALUE
date_s_strptime(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, fmt, sg;

    rb_scan_args(argc, argv, "03", &str, &fmt, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01");
      case 1:
  fmt = rb_str_new2("%F");
      case 2:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE argv2[2], hash;

  argv2[0] = str;
  argv2[1] = fmt;
  hash = date_s__strptime(2, argv2, klass);
  return d_new_by_frags(klass, hash, sg);
    }
}

.today([start = Date::ITALY]) ⇒ Object

Date.today #=> #<Date: 2011-06-11 ..>

Creates a date object denoting the present day.



3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
# File 'date_core.c', line 3638

static VALUE
date_s_today(int argc, VALUE *argv, VALUE klass)
{
    VALUE vsg, nth, ret;
    double sg;
    time_t t;
    struct tm tm;
    int y, ry, m, d;

    rb_scan_args(argc, argv, "01", &vsg);

    if (argc < 1)
  sg = DEFAULT_SG;
    else
  val2sg(vsg, sg);

    if (time(&t) == -1)
  rb_sys_fail("time");
    tzset();
    if (!localtime_r(&t, &tm))
  rb_sys_fail("localtime");

    y = tm.tm_year + 1900;
    m = tm.tm_mon + 1;
    d = tm.tm_mday;

    decode_year(INT2FIX(y), -1, &nth, &ry);

    ret = d_simple_new_internal(klass,
        nth, 0,
        GREGORIAN,
        ry, m, d,
        HAVE_CIVIL);
    {
  get_d1(ret);
  set_sg(dat, sg);
    }
    return ret;
}

.valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given calendar date is valid, and false if not.

Date.valid_date?(2001,2,3)  #=> true
Date.valid_date?(2001,2,29) #=> false

See also jd and civil.

Overloads:

  • .valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)
  • .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
# File 'date_core.c', line 2570

static VALUE
date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vm;
    argv2[2] = vd;
    if (argc < 4)
  argv2[3] = INT2FIX(DEFAULT_SG);
    else
  argv2[3] = vsg;

    if (NIL_P(valid_civil_sub(4, argv2, klass, 0)))
  return Qfalse;
    return Qtrue;
}

.valid_commercial?(cwyear, cweek, cwday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given week date is valid, and false if not.

Date.valid_commercial?(2001,5,6)  #=> true
Date.valid_commercial?(2001,5,8)  #=> false

See also jd and commercial.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
# File 'date_core.c', line 2733

static VALUE
date_s_valid_commercial_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vw, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vw, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vw;
    argv2[2] = vd;
    if (argc < 4)
  argv2[3] = INT2FIX(DEFAULT_SG);
    else
  argv2[3] = vsg;

    if (NIL_P(valid_commercial_sub(4, argv2, klass, 0)))
  return Qfalse;
    return Qtrue;
}

.valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given calendar date is valid, and false if not.

Date.valid_date?(2001,2,3)  #=> true
Date.valid_date?(2001,2,29) #=> false

See also jd and civil.

Overloads:

  • .valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)
  • .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
# File 'date_core.c', line 2570

static VALUE
date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vm;
    argv2[2] = vd;
    if (argc < 4)
  argv2[3] = INT2FIX(DEFAULT_SG);
    else
  argv2[3] = vsg;

    if (NIL_P(valid_civil_sub(4, argv2, klass, 0)))
  return Qfalse;
    return Qtrue;
}

.valid_jd?(jd[, start = Date::ITALY]) ⇒ Boolean

Just returns true. It’s nonsense, but is for symmetry.

Date.valid_jd?(2451944)   #=> true

See also jd.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
# File 'date_core.c', line 2481

static VALUE
date_s_valid_jd_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vjd, vsg;
    VALUE argv2[2];

    rb_scan_args(argc, argv, "11", &vjd, &vsg);

    argv2[0] = vjd;
    if (argc < 2)
  argv2[1] = INT2FIX(DEFAULT_SG);
    else
  argv2[1] = vsg;

    if (NIL_P(valid_jd_sub(2, argv2, klass, 0)))
  return Qfalse;
    return Qtrue;
}

.valid_ordinal?(year, yday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given ordinal date is valid, and false if not.

Date.valid_ordinal?(2001,34)  #=> true
Date.valid_ordinal?(2001,366) #=> false

See also jd and ordinal.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
# File 'date_core.c', line 2651

static VALUE
date_s_valid_ordinal_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vd, vsg;
    VALUE argv2[3];

    rb_scan_args(argc, argv, "21", &vy, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vd;
    if (argc < 3)
  argv2[2] = INT2FIX(DEFAULT_SG);
    else
  argv2[2] = vsg;

    if (NIL_P(valid_ordinal_sub(3, argv2, klass, 0)))
  return Qfalse;
    return Qtrue;
}

.xmlschema(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical XML Schema formats.

Date.xmlschema('2001-02-03')  #=> #<Date: 2001-02-03 ...>


4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
# File 'date_core.c', line 4490

static VALUE
date_s_xmlschema(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
  str = rb_str_new2("-4712-01-01");
      case 1:
  sg = INT2FIX(DEFAULT_SG);
    }

    {
  VALUE hash = date_s__xmlschema(klass, str);
  return d_new_by_frags(klass, hash, sg);
    }
}

Instance Method Details

#+(other) ⇒ Object

Returns a date object pointing other days after self. The other should be a numeric value. If the other is flonum, assumes its precision is at most nanosecond.

Date.new(2001,2,3) + 1  #=> #<Date: 2001-02-04 ...>
DateTime.new(2001,2,3) + Rational(1,2)

#=> #<DateTime: 2001-02-03T12:00:00+00:00 …>

DateTime.new(2001,2,3) + Rational(-1,2)

#=> #<DateTime: 2001-02-02T12:00:00+00:00 …>

DateTime.jd(0,12) + DateTime.new(2001,2,3).ajd

#=> #<DateTime: 2001-02-03T00:00:00+00:00 …>



5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
# File 'date_core.c', line 5504

static VALUE
d_lite_plus(VALUE self, VALUE other)
{
    get_d1(self);

    switch (TYPE(other)) {
      case T_FIXNUM:
  {
      VALUE nth;
      long t;
      int jd;

      nth = m_nth(dat);
      t = FIX2LONG(other);
      if (DIV(t, CM_PERIOD)) {
    nth = f_add(nth, INT2FIX(DIV(t, CM_PERIOD)));
    t = MOD(t, CM_PERIOD);
      }

      if (!t)
    jd = m_jd(dat);
      else {
    jd = m_jd(dat) + (int)t;
    canonicalize_jd(nth, jd);
      }

      if (simple_dat_p(dat))
    return d_simple_new_internal(rb_obj_class(self),
               nth, jd,
               dat->s.sg,
               0, 0, 0,
               (dat->s.flags | HAVE_JD) &
               ~HAVE_CIVIL);
      else
    return d_complex_new_internal(rb_obj_class(self),
                nth, jd,
                dat->c.df, dat->c.sf,
                dat->c.of, dat->c.sg,
                0, 0, 0,
#ifndef USE_PACK
                dat->c.hour,
                dat->c.min,
                dat->c.sec,
#else
                EX_HOUR(dat->c.pc),
                EX_MIN(dat->c.pc),
                EX_SEC(dat->c.pc),
#endif
                (dat->c.flags | HAVE_JD) &
                ~HAVE_CIVIL);
  }
  break;
      case T_BIGNUM:
  {
      VALUE nth;
      int jd, s;

      if (f_positive_p(other))
    s = +1;
      else {
    s = -1;
    other = f_negate(other);
      }

      nth = f_idiv(other, INT2FIX(CM_PERIOD));
      jd = FIX2INT(f_mod(other, INT2FIX(CM_PERIOD)));

      if (s < 0) {
    nth = f_negate(nth);
    jd = -jd;
      }

      if (!jd)
    jd = m_jd(dat);
      else {
    jd = m_jd(dat) + jd;
    canonicalize_jd(nth, jd);
      }

      if (f_zero_p(nth))
    nth = m_nth(dat);
      else
    nth = f_add(m_nth(dat), nth);

      if (simple_dat_p(dat))
    return d_simple_new_internal(rb_obj_class(self),
               nth, jd,
               dat->s.sg,
               0, 0, 0,
               (dat->s.flags | HAVE_JD) &
               ~HAVE_CIVIL);
      else
    return d_complex_new_internal(rb_obj_class(self),
                nth, jd,
                dat->c.df, dat->c.sf,
                dat->c.of, dat->c.sg,
                0, 0, 0,
#ifndef USE_PACK
                dat->c.hour,
                dat->c.min,
                dat->c.sec,
#else
                EX_HOUR(dat->c.pc),
                EX_MIN(dat->c.pc),
                EX_SEC(dat->c.pc),
#endif
                (dat->c.flags | HAVE_JD) &
                ~HAVE_CIVIL);
  }
  break;
      case T_FLOAT:
  {
      double jd, o, tmp;
      int s, df;
      VALUE nth, sf;

      o = RFLOAT_VALUE(other);

      if (o > 0)
    s = +1;
      else {
    s = -1;
    o = -o;
      }

      o = modf(o, &tmp);

      if (!floor(tmp / CM_PERIOD)) {
    nth = INT2FIX(0);
    jd = (int)tmp;
      }
      else {
    double i, f;

    f = modf(tmp / CM_PERIOD, &i);
    nth = f_floor(DBL2NUM(i));
    jd = (int)(f * CM_PERIOD);
      }

      o *= DAY_IN_SECONDS;
      o = modf(o, &tmp);
      df = (int)tmp;
      o *= SECOND_IN_NANOSECONDS;
      sf = INT2FIX((int)round(o));

      if (s < 0) {
    jd = -jd;
    df = -df;
    sf = f_negate(sf);
      }

      if (f_zero_p(sf))
    sf = m_sf(dat);
      else {
    sf = f_add(m_sf(dat), sf);
    if (f_lt_p(sf, INT2FIX(0))) {
        df -= 1;
        sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
    }
    else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
        df += 1;
        sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
    }
      }

      if (!df)
    df = m_df(dat);
      else {
    df = m_df(dat) + df;
    if (df < 0) {
        jd -= 1;
        df += DAY_IN_SECONDS;
    }
    else if (df >= DAY_IN_SECONDS) {
        jd += 1;
        df -= DAY_IN_SECONDS;
    }
      }

      if (!jd)
    jd = m_jd(dat);
      else {
    jd = m_jd(dat) + jd;
    canonicalize_jd(nth, jd);
      }

      if (f_zero_p(nth))
    nth = m_nth(dat);
      else
    nth = f_add(m_nth(dat), nth);

      if (!df && f_zero_p(sf) && !m_of(dat))
    return d_simple_new_internal(rb_obj_class(self),
               nth, (int)jd,
               m_sg(dat),
               0, 0, 0,
               (dat->s.flags | HAVE_JD) &
               ~(HAVE_CIVIL | HAVE_TIME |
                 COMPLEX_DAT));
      else
    return d_complex_new_internal(rb_obj_class(self),
                nth, (int)jd,
                df, sf,
                m_of(dat), m_sg(dat),
                0, 0, 0,
                0, 0, 0,
                (dat->c.flags |
                 HAVE_JD | HAVE_DF) &
                ~(HAVE_CIVIL | HAVE_TIME));
  }
  break;
      default:
  if (!k_numeric_p(other))
      rb_raise(rb_eTypeError, "expected numeric");
  other = f_to_r(other);
#ifdef CANONICALIZATION_FOR_MATHN
  if (!k_rational_p(other))
      return d_lite_plus(self, other);
#endif
  /* fall through */
      case T_RATIONAL:
  {
      VALUE nth, sf, t;
      int jd, df, s;

      if (wholenum_p(other))
    return d_lite_plus(self, RRATIONAL(other)->num);

      if (f_positive_p(other))
    s = +1;
      else {
    s = -1;
    other = f_negate(other);
      }

      nth = f_idiv(other, INT2FIX(CM_PERIOD));
      t = f_mod(other, INT2FIX(CM_PERIOD));

      jd = FIX2INT(f_idiv(t, INT2FIX(1)));
      t = f_mod(t, INT2FIX(1));

      t = f_mul(t, INT2FIX(DAY_IN_SECONDS));
      df = FIX2INT(f_idiv(t, INT2FIX(1)));
      t = f_mod(t, INT2FIX(1));

      sf = f_mul(t, INT2FIX(SECOND_IN_NANOSECONDS));

      if (s < 0) {
    nth = f_negate(nth);
    jd = -jd;
    df = -df;
    sf = f_negate(sf);
      }

      if (f_zero_p(sf))
    sf = m_sf(dat);
      else {
    sf = f_add(m_sf(dat), sf);
    if (f_lt_p(sf, INT2FIX(0))) {
        df -= 1;
        sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
    }
    else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
        df += 1;
        sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
    }
      }

      if (!df)
    df = m_df(dat);
      else {
    df = m_df(dat) + df;
    if (df < 0) {
        jd -= 1;
        df += DAY_IN_SECONDS;
    }
    else if (df >= DAY_IN_SECONDS) {
        jd += 1;
        df -= DAY_IN_SECONDS;
    }
      }

      if (!jd)
    jd = m_jd(dat);
      else {
    jd = m_jd(dat) + jd;
    canonicalize_jd(nth, jd);
      }

      if (f_zero_p(nth))
    nth = m_nth(dat);
      else
    nth = f_add(m_nth(dat), nth);

      if (!df && f_zero_p(sf) && !m_of(dat))
    return d_simple_new_internal(rb_obj_class(self),
               nth, jd,
               m_sg(dat),
               0, 0, 0,
               (dat->s.flags | HAVE_JD) &
               ~(HAVE_CIVIL | HAVE_TIME |
                 COMPLEX_DAT));
      else
    return d_complex_new_internal(rb_obj_class(self),
                nth, jd,
                df, sf,
                m_of(dat), m_sg(dat),
                0, 0, 0,
                0, 0, 0,
                (dat->c.flags |
                 HAVE_JD | HAVE_DF) &
                ~(HAVE_CIVIL | HAVE_TIME));
  }
  break;
    }
}

#-(other) ⇒ Object

Returns the difference between the two dates if the other is a date object. If the other is a numeric value, returns a date object pointing other days before self. If the other is flonum, assumes its precision is at most nanosecond.

Date.new(2001,2,3) - 1  #=> #<Date: 2001-02-02 ...>
DateTime.new(2001,2,3) - Rational(1,2)

#=> #<DateTime: 2001-02-02T12:00:00+00:00 …>

Date.new(2001,2,3) - Date.new(2001)

#=> (33/1)

DateTime.new(2001,2,3) - DateTime.new(2001,2,2,12)

#=> (1/2)



5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
# File 'date_core.c', line 5889

static VALUE
d_lite_minus(VALUE self, VALUE other)
{
    if (k_date_p(other))
  return minus_dd(self, other);

    switch (TYPE(other)) {
      case T_FIXNUM:
  return d_lite_plus(self, LONG2NUM(-FIX2LONG(other)));
      case T_FLOAT:
  return d_lite_plus(self, DBL2NUM(-RFLOAT_VALUE(other)));
      default:
  if (!k_numeric_p(other))
      rb_raise(rb_eTypeError, "expected numeric");
  /* fall through */
      case T_BIGNUM:
      case T_RATIONAL:
  return d_lite_plus(self, f_negate(other));
    }
}

#<<(n) ⇒ Object

Returns a date object pointing n months before self. The n should be a numeric value.

Date.new(2001,2,3) << 1 #=> #<Date: 2001-01-03 ...>
Date.new(2001,1,31) << 11 #=> #<Date: 2000-02-29 ...>
Date.new(2001,2,3) << -1  #=> #<Date: 2001-03-03 ...>


6018
6019
6020
6021
6022
# File 'date_core.c', line 6018

static VALUE
d_lite_lshift(VALUE self, VALUE other)
{
    return d_lite_rshift(self, f_negate(other));
}

#<=>(other) ⇒ -1, ...

Compares the two dates and returns -1, zero, 1 or nil. The other should be a date object or a numeric value as an astronomical Julian day number.

Date.new(2001,2,3) <=> Date.new(2001,2,4) #=> -1
Date.new(2001,2,3) <=> Date.new(2001,2,3) #=> 0
Date.new(2001,2,3) <=> Date.new(2001,2,2) #=> 1
Date.new(2001,2,3) <=> Object.new   #=> nil
Date.new(2001,2,3) <=> Rational(4903887,2)#=> 0

See also Comparable.

Returns:

  • (-1, 0, +1, nil)


6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
# File 'date_core.c', line 6275

static VALUE
d_lite_cmp(VALUE self, VALUE other)
{
    if (!k_date_p(other))
  return cmp_gen(self, other);

    {
  get_d2(self, other);

  if (!(simple_dat_p(adat) && simple_dat_p(bdat) &&
        m_gregorian_p(adat) == m_gregorian_p(bdat)))
      return cmp_dd(self, other);

  {
      VALUE a_nth, b_nth;
      int a_jd, b_jd;

      m_canonicalize_jd(adat);
      m_canonicalize_jd(bdat);
      a_nth = m_nth(adat);
      b_nth = m_nth(bdat);
      if (f_eqeq_p(a_nth, b_nth)) {
    a_jd = m_jd(adat);
    b_jd = m_jd(bdat);
    if (a_jd == b_jd) {
        return INT2FIX(0);
    }
    else if (a_jd < b_jd) {
        return INT2FIX(-1);
    }
    else {
        return INT2FIX(1);
    }
      }
      else if (a_nth < b_nth) {
    return INT2FIX(-1);
      }
      else {
    return INT2FIX(1);
      }
  }
    }
}

#===(other) ⇒ Boolean

Returns true if they are the same day.

Date.new(2001,2,3) === Date.new(2001,2,3)

#=> true

Date.new(2001,2,3) === Date.new(2001,2,4)

#=> false

DateTime.new(2001,2,3) === DateTime.new(2001,2,3,12)

#=> true

DateTime.new(2001,2,3) === DateTime.new(2001,2,3,0,0,0,'+24:00')

#=> true

DateTime.new(2001,2,3) === DateTime.new(2001,2,4,0,0,0,'+24:00')

#=> false

Returns:

  • (Boolean)


6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
# File 'date_core.c', line 6348

static VALUE
d_lite_equal(VALUE self, VALUE other)
{
    if (!k_date_p(other))
  return equal_gen(self, other);

    {
  get_d2(self, other);

  if (!(m_gregorian_p(adat) == m_gregorian_p(bdat)))
      return equal_gen(self, other);

  {
      VALUE a_nth, b_nth;
      int a_jd, b_jd;

      m_canonicalize_jd(adat);
      m_canonicalize_jd(bdat);
      a_nth = m_nth(adat);
      b_nth = m_nth(bdat);
      a_jd = m_local_jd(adat);
      b_jd = m_local_jd(bdat);
      if (f_eqeq_p(a_nth, b_nth) &&
    a_jd == b_jd)
    return Qtrue;
      return Qfalse;
  }
    }
}

#>>(n) ⇒ Object

Returns a date object pointing n months after self. The n should be a numeric value.

Date.new(2001,2,3) >> 1 #=> #<Date: 2001-03-03 ...>
Date.new(2001,1,31) >> 1  #=> #<Date: 2001-02-28 ...>
Date.new(2001,2,3) >> -2  #=> #<Date: 2000-12-03 ...>


5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
# File 'date_core.c', line 5968

static VALUE
d_lite_rshift(VALUE self, VALUE other)
{
    VALUE t, y, nth, rjd2;
    int m, d, rjd;
    double sg;

    get_d1(self);
    t = f_add3(f_mul(m_real_year(dat), INT2FIX(12)),
         INT2FIX(m_mon(dat) - 1),
         other);
    if (FIXNUM_P(t)) {
  long it = FIX2LONG(t);
  y = LONG2NUM(DIV(it, 12));
  it = MOD(it, 12);
  m = (int)it + 1;
    }
    else {
  y = f_idiv(t, INT2FIX(12));
  t = f_mod(t, INT2FIX(12));
  m = FIX2INT(t) + 1;
    }
    d = m_mday(dat);
    sg = m_sg(dat);

    while (1) {
  int ry, rm, rd, ns;

  if (valid_civil_p(y, m, d, sg,
        &nth, &ry,
        &rm, &rd, &rjd, &ns))
      break;
  if (--d < 1)
      rb_raise(rb_eArgError, "invalid date");
    }
    encode_jd(nth, rjd, &rjd2);
    return d_lite_plus(self, f_sub(rjd2, m_real_local_jd(dat)));
}

#ajdObject

Returns the astronomical Julian day number. This is a fractional number, which is not adjusted by the offset.

DateTime.new(2001,2,3,4,5,6,'+7').ajd #=> (11769328217/4800)
DateTime.new(2001,2,2,14,5,6,'-7').ajd  #=> (11769328217/4800)


4809
4810
4811
4812
4813
4814
# File 'date_core.c', line 4809

static VALUE
d_lite_ajd(VALUE self)
{
    get_d1(self);
    return m_ajd(dat);
}

#amjdObject

Returns the astronomical modified Julian day number. This is a fractional number, which is not adjusted by the offset.

DateTime.new(2001,2,3,4,5,6,'+7').amjd  #=> (249325817/4800)
DateTime.new(2001,2,2,14,5,6,'-7').amjd #=> (249325817/4800)


4826
4827
4828
4829
4830
4831
# File 'date_core.c', line 4826

static VALUE
d_lite_amjd(VALUE self)
{
    get_d1(self);
    return m_amjd(dat);
}

#asctimeString #ctimeString

Returns a string in asctime(3) format (but without “n0” at the end). This method is equivalent to strftime(‘%c’).

See also asctime(3) or ctime(3).

Overloads:

  • #asctimeString

    Returns:

    • (String)
  • #ctimeString

    Returns:

    • (String)


6913
6914
6915
6916
6917
# File 'date_core.c', line 6913

static VALUE
d_lite_asctime(VALUE self)
{
    return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx);
}

#asctimeString #ctimeString

Returns a string in asctime(3) format (but without “n0” at the end). This method is equivalent to strftime(‘%c’).

See also asctime(3) or ctime(3).

Overloads:

  • #asctimeString

    Returns:

    • (String)
  • #ctimeString

    Returns:

    • (String)


6913
6914
6915
6916
6917
# File 'date_core.c', line 6913

static VALUE
d_lite_asctime(VALUE self)
{
    return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx);
}

#cwdayFixnum

Returns the day of calendar week (1-7, Monday is 1).

Date.new(2001,2,3).cwday    #=> 6

Returns:

  • (Fixnum)


5002
5003
5004
5005
5006
5007
# File 'date_core.c', line 5002

static VALUE
d_lite_cwday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_cwday(dat));
}

#cweekFixnum

Returns the calendar week number (1-53).

Date.new(2001,2,3).cweek    #=> 5

Returns:

  • (Fixnum)


4987
4988
4989
4990
4991
4992
# File 'date_core.c', line 4987

static VALUE
d_lite_cweek(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_cweek(dat));
}

#cwyearInteger

Returns the calendar week based year.

Date.new(2001,2,3).cwyear   #=> 2001
Date.new(2000,1,1).cwyear   #=> 1999

Returns:

  • (Integer)


4972
4973
4974
4975
4976
4977
# File 'date_core.c', line 4972

static VALUE
d_lite_cwyear(VALUE self)
{
    get_d1(self);
    return m_real_cwyear(dat);
}

#mdayFixnum #dayFixnum

Returns the day of the month (1-31).

Date.new(2001,2,3).mday   #=> 3

Overloads:

  • #mdayFixnum

    Returns:

    • (Fixnum)
  • #dayFixnum

    Returns:

    • (Fixnum)


4939
4940
4941
4942
4943
4944
# File 'date_core.c', line 4939

static VALUE
d_lite_mday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mday(dat));
}

#day_fractionObject

Returns the fractional part of the day.

DateTime.new(2001,2,3,12).day_fraction  #=> (1/2)


4954
4955
4956
4957
4958
4959
4960
4961
# File 'date_core.c', line 4954

static VALUE
d_lite_day_fraction(VALUE self)
{
    get_d1(self);
    if (simple_dat_p(dat))
  return INT2FIX(0);
    return m_fr(dat);
}

#downto(min) ⇒ Object #downto(min) {|date| ... } ⇒ self

This method is equivalent to step(min, -1){|date| …}.

Overloads:

  • #downto(min) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
# File 'date_core.c', line 6175

static VALUE
d_lite_downto(VALUE self, VALUE min)
{
    VALUE date;

    RETURN_ENUMERATOR(self, 1, &min);

    date = self;
    while (FIX2INT(d_lite_cmp(date, min)) >= 0) {
  rb_yield(date);
  date = d_lite_plus(date, INT2FIX(-1));
    }
    return self;
}

#englandObject

This method is equivalent to new_start(Date::ENGLAND).



5412
5413
5414
5415
5416
# File 'date_core.c', line 5412

static VALUE
d_lite_england(VALUE self)
{
    return dup_obj_with_new_start(self, ENGLAND);
}

#eql?Boolean

:nodoc:

Returns:

  • (Boolean)


6379
6380
6381
6382
6383
6384
6385
# File 'date_core.c', line 6379

static VALUE
d_lite_eql_p(VALUE self, VALUE other)
{
    if (!k_date_p(other))
  return Qfalse;
    return f_zero_p(d_lite_cmp(self, other));
}

#friday?Boolean

Returns true if the date is Friday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5111
5112
5113
5114
5115
5116
# File 'date_core.c', line 5111

static VALUE
d_lite_friday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 5);
}

#gregorianObject

This method is equivalent to new_start(Date::GREGORIAN).



5436
5437
5438
5439
5440
# File 'date_core.c', line 5436

static VALUE
d_lite_gregorian(VALUE self)
{
    return dup_obj_with_new_start(self, GREGORIAN);
}

#gregorian?Boolean

Retunrs true if the date is on or after the day of calendar reform.

Date.new(1582,10,15).gregorian?   #=> true
(Date.new(1582,10,15) - 1).gregorian? #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5269
5270
5271
5272
5273
5274
# File 'date_core.c', line 5269

static VALUE
d_lite_gregorian_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_gregorian_p(dat));
}

#hashObject

:nodoc:



6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
# File 'date_core.c', line 6388

static VALUE
d_lite_hash(VALUE self)
{
    st_index_t v, h[4];

    get_d1(self);
    h[0] = m_nth(dat);
    h[1] = m_jd(dat);
    h[2] = m_df(dat);
    h[3] = m_sf(dat);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#httpdateString

This method is equivalent to strftime(‘%a, %d %b %Y %T GMT’). See also RFC 2616.

Returns:

  • (String)


6964
6965
6966
6967
6968
6969
# File 'date_core.c', line 6964

static VALUE
d_lite_httpdate(VALUE self)
{
    volatile VALUE dup = dup_obj_with_new_offset(self, 0);
    return strftimev("%a, %d %b %Y %T GMT", dup, set_tmx);
}

#initialize_copyObject

:nodoc:



4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
# File 'date_core.c', line 4753

static VALUE
d_lite_initialize_copy(VALUE copy, VALUE date)
{
    rb_check_frozen(copy);
    rb_check_trusted(copy);

    if (copy == date)
  return copy;
    {
  get_d2(copy, date);
  if (simple_dat_p(bdat)) {
      adat->s = bdat->s;
      adat->s.flags &= ~COMPLEX_DAT;
  }
  else {
      if (!complex_dat_p(adat))
    rb_raise(rb_eArgError,
       "cannot load complex into simple");

      adat->c = bdat->c;
      adat->c.flags |= COMPLEX_DAT;
  }
    }
    return copy;
}

#inspectString

Returns the value as a string for inspection.

Date.new(2001,2,3).inspect

#=> “#<Date: 2001-02-03 ((2451944j,0s,0n),+0s,2299161j)>”

DateTime.new(2001,2,3,4,5,6,'-7').inspect

#=> “#<DateTime: 2001-02-03T04:05:06-07:00 ((2451944j,39906s,0n),-25200s,2299161j)>”

Returns:

  • (String)


6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
# File 'date_core.c', line 6521

static VALUE
d_lite_inspect(VALUE self)
{
    get_d1(self);
    {
  VALUE to_s;

  RB_GC_GUARD(to_s) = f_to_s(self);
  return mk_inspect(dat, rb_obj_classname(self), RSTRING_PTR(to_s));
    }
}

#iso8601String #xmlschemaString

This method is equivalent to strftime(‘%F’).

Overloads:

  • #iso8601String

    Returns:

    • (String)
  • #xmlschemaString

    Returns:

    • (String)


6926
6927
6928
6929
6930
# File 'date_core.c', line 6926

static VALUE
d_lite_iso8601(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#italyObject

This method is equivalent to new_start(Date::ITALY).



5400
5401
5402
5403
5404
# File 'date_core.c', line 5400

static VALUE
d_lite_italy(VALUE self)
{
    return dup_obj_with_new_start(self, ITALY);
}

#jdInteger

Returns the Julian day number. This is a whole number, which is adjusted by the offset as the local time.

DateTime.new(2001,2,3,4,5,6,'+7').jd  #=> 2451944
DateTime.new(2001,2,3,4,5,6,'-7').jd  #=> 2451944

Returns:

  • (Integer)


4843
4844
4845
4846
4847
4848
# File 'date_core.c', line 4843

static VALUE
d_lite_jd(VALUE self)
{
    get_d1(self);
    return m_real_local_jd(dat);
}

#jisx0301String

Returns a string in a JIS X 0301 format.

Date.new(2001,2,3).jisx0301 #=> "H13.02.03"

Returns:

  • (String)


7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
# File 'date_core.c', line 7005

static VALUE
d_lite_jisx0301(VALUE self)
{
    VALUE s;

    get_d1(self);
    s = jisx0301_date(m_real_local_jd(dat),
          m_real_year(dat));
    return strftimev(RSTRING_PTR(s), self, set_tmx);
}

#julianObject

This method is equivalent to new_start(Date::JULIAN).



5424
5425
5426
5427
5428
# File 'date_core.c', line 5424

static VALUE
d_lite_julian(VALUE self)
{
    return dup_obj_with_new_start(self, JULIAN);
}

#julian?Boolean

Retruns true if the date is before the day of calendar reform.

Date.new(1582,10,15).julian?    #=> false
(Date.new(1582,10,15) - 1).julian?  #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5253
5254
5255
5256
5257
5258
# File 'date_core.c', line 5253

static VALUE
d_lite_julian_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_julian_p(dat));
}

#ldInteger

Returns the Lilian day number. This is a whole number, which is adjusted by the offset as the local time.

Date.new(2001,2,3).ld   #=> 152784

Returns:

  • (Integer)


4876
4877
4878
4879
4880
4881
# File 'date_core.c', line 4876

static VALUE
d_lite_ld(VALUE self)
{
    get_d1(self);
    return f_sub(m_real_local_jd(dat), INT2FIX(2299160));
}

#leap?Boolean

Returns true if the year is a leap year.

Date.new(2000).leap?  #=> true
Date.new(2001).leap?  #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
# File 'date_core.c', line 5285

static VALUE
d_lite_leap_p(VALUE self)
{
    int rjd, ns, ry, rm, rd;

    get_d1(self);
    if (m_gregorian_p(dat))
  return f_boolcast(c_gregorian_leap_p(m_year(dat)));

    c_civil_to_jd(m_year(dat), 3, 1, m_virtual_sg(dat),
      &rjd, &ns);
    c_jd_to_civil(rjd - 1, m_virtual_sg(dat), &ry, &rm, &rd);
    return f_boolcast(rd == 29);
}

#marshal_dumpObject

:nodoc:



7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
# File 'date_core.c', line 7039

static VALUE
d_lite_marshal_dump(VALUE self)
{
    VALUE a;

    get_d1(self);

    a = rb_ary_new3(6,
        m_nth(dat),
        INT2FIX(m_jd(dat)),
        INT2FIX(m_df(dat)),
        m_sf(dat),
        INT2FIX(m_of(dat)),
        DBL2NUM(m_sg(dat)));

    if (FL_TEST(self, FL_EXIVAR)) {
  rb_copy_generic_ivar(a, self);
  FL_SET(a, FL_EXIVAR);
    }

    return a;
}

#marshal_loadObject

:nodoc:



7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
# File 'date_core.c', line 7063

static VALUE
d_lite_marshal_load(VALUE self, VALUE a)
{
    get_d1(self);

    rb_check_frozen(self);
    rb_check_trusted(self);

    if (TYPE(a) != T_ARRAY)
  rb_raise(rb_eTypeError, "expected an array");

    switch (RARRAY_LEN(a)) {
      case 2: /* 1.6.x */
      case 3: /* 1.8.x, 1.9.2 */
  {
      VALUE ajd, of, sg, nth, sf;
      int jd, df, rof;
      double rsg;


      if  (RARRAY_LEN(a) == 2) {
    ajd = f_sub(RARRAY_PTR(a)[0], half_days_in_day);
    of = INT2FIX(0);
    sg = RARRAY_PTR(a)[1];
    if (!k_numeric_p(sg))
        sg = DBL2NUM(RTEST(sg) ? GREGORIAN : JULIAN);
      }
      else {
    ajd = RARRAY_PTR(a)[0];
    of = RARRAY_PTR(a)[1];
    sg = RARRAY_PTR(a)[2];
      }

      old_to_new(ajd, of, sg,
           &nth, &jd, &df, &sf, &rof, &rsg);

      if (!df && f_zero_p(sf) && !rof) {
    set_to_simple(&dat->s, nth, jd, rsg, 0, 0, 0, HAVE_JD);
      } else {
    if (!complex_dat_p(dat))
        rb_raise(rb_eArgError,
           "cannot load complex into simple");

    set_to_complex(&dat->c, nth, jd, df, sf, rof, rsg,
             0, 0, 0, 0, 0, 0,
             HAVE_JD | HAVE_DF | COMPLEX_DAT);
      }
  }
  break;
      case 6:
  {
      VALUE nth, sf;
      int jd, df, of;
      double sg;

      nth = RARRAY_PTR(a)[0];
      jd = NUM2INT(RARRAY_PTR(a)[1]);
      df = NUM2INT(RARRAY_PTR(a)[2]);
      sf = RARRAY_PTR(a)[3];
      of = NUM2INT(RARRAY_PTR(a)[4]);
      sg = NUM2DBL(RARRAY_PTR(a)[5]);
      if (!df && f_zero_p(sf) && !of) {
    set_to_simple(&dat->s, nth, jd, sg, 0, 0, 0, HAVE_JD);
      } else {
    if (!complex_dat_p(dat))
        rb_raise(rb_eArgError,
           "cannot load complex into simple");

    set_to_complex(&dat->c, nth, jd, df, sf, of, sg,
             0, 0, 0, 0, 0, 0,
             HAVE_JD | HAVE_DF | COMPLEX_DAT);
      }
  }
  break;
      default:
  rb_raise(rb_eTypeError, "invalid size");
  break;
    }

    if (FL_TEST(a, FL_EXIVAR)) {
  rb_copy_generic_ivar(self, a);
  FL_SET(self, FL_EXIVAR);
    }

    return self;
}

#mdayFixnum #dayFixnum

Returns the day of the month (1-31).

Date.new(2001,2,3).mday   #=> 3

Overloads:

  • #mdayFixnum

    Returns:

    • (Fixnum)
  • #dayFixnum

    Returns:

    • (Fixnum)


4939
4940
4941
4942
4943
4944
# File 'date_core.c', line 4939

static VALUE
d_lite_mday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mday(dat));
}

#mjdInteger

Returns the modified Julian day number. This is a whole number, which is adjusted by the offset as the local time.

DateTime.new(2001,2,3,4,5,6,'+7').mjd #=> 51943
DateTime.new(2001,2,3,4,5,6,'-7').mjd #=> 51943

Returns:

  • (Integer)


4860
4861
4862
4863
4864
4865
# File 'date_core.c', line 4860

static VALUE
d_lite_mjd(VALUE self)
{
    get_d1(self);
    return f_sub(m_real_local_jd(dat), INT2FIX(2400001));
}

#monFixnum #monthFixnum

Returns the month (1-12).

Date.new(2001,2,3).mon    #=> 2

Overloads:

  • #monFixnum

    Returns:

    • (Fixnum)
  • #monthFixnum

    Returns:

    • (Fixnum)


4923
4924
4925
4926
4927
4928
# File 'date_core.c', line 4923

static VALUE
d_lite_mon(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mon(dat));
}

#monday?Boolean

Returns true if the date is Monday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5059
5060
5061
5062
5063
5064
# File 'date_core.c', line 5059

static VALUE
d_lite_monday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 1);
}

#monFixnum #monthFixnum

Returns the month (1-12).

Date.new(2001,2,3).mon    #=> 2

Overloads:

  • #monFixnum

    Returns:

    • (Fixnum)
  • #monthFixnum

    Returns:

    • (Fixnum)


4923
4924
4925
4926
4927
4928
# File 'date_core.c', line 4923

static VALUE
d_lite_mon(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mon(dat));
}

#new_start([start = Date::ITALY]) ⇒ Object

Duplicates self and resets its the day of calendar reform.

d = Date.new(1582,10,15)
d.new_start(Date::JULIAN)   #=> #<Date: 1582-10-05 ...>


5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
# File 'date_core.c', line 5379

static VALUE
d_lite_new_start(int argc, VALUE *argv, VALUE self)
{
    VALUE vsg;
    double sg;

    rb_scan_args(argc, argv, "01", &vsg);

    sg = DEFAULT_SG;
    if (argc >= 1)
  val2sg(vsg, sg);

    return dup_obj_with_new_start(self, sg);
}

#succObject #nextObject

Returns a date object denoting the following day.



5951
5952
5953
5954
5955
# File 'date_core.c', line 5951

static VALUE
d_lite_next(VALUE self)
{
    return d_lite_next_day(0, (VALUE *)NULL, self);
}

#next_day([n = 1]) ⇒ Object

This method is equivalent to d + n.



5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
# File 'date_core.c', line 5916

static VALUE
d_lite_next_day(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_plus(self, n);
}

#next_month([n = 1]) ⇒ Object

This method is equivalent to d >> n



6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
# File 'date_core.c', line 6030

static VALUE
d_lite_next_month(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_rshift(self, n);
}

#next_year([n = 1]) ⇒ Object

This method is equivalent to d >> (n * 12)



6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
# File 'date_core.c', line 6064

static VALUE
d_lite_next_year(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_rshift(self, f_mul(n, INT2FIX(12)));
}

#prev_day([n = 1]) ⇒ Object

This method is equivalent to d - n.



5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
# File 'date_core.c', line 5933

static VALUE
d_lite_prev_day(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_minus(self, n);
}

#prev_month([n = 1]) ⇒ Object

This method is equivalent to d << n



6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
# File 'date_core.c', line 6047

static VALUE
d_lite_prev_month(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_lshift(self, n);
}

#prev_year([n = 1]) ⇒ Object

This method is equivalent to d << (n * 12)



6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
# File 'date_core.c', line 6081

static VALUE
d_lite_prev_year(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
  n = INT2FIX(1);
    return d_lite_lshift(self, f_mul(n, INT2FIX(12)));
}

#rfc2822String #rfc822String

This method is equivalent to strftime(‘%a, %-d %b %Y %T %z’).

Overloads:

  • #rfc2822String

    Returns:

    • (String)
  • #rfc822String

    Returns:

    • (String)


6951
6952
6953
6954
6955
# File 'date_core.c', line 6951

static VALUE
d_lite_rfc2822(VALUE self)
{
    return strftimev("%a, %-d %b %Y %T %z", self, set_tmx);
}

#rfc3339String

This method is equivalent to strftime(‘%FT%T%:z’).

Returns:

  • (String)


6938
6939
6940
6941
6942
# File 'date_core.c', line 6938

static VALUE
d_lite_rfc3339(VALUE self)
{
    return strftimev("%Y-%m-%dT%H:%M:%S%:z", self, set_tmx);
}

#rfc2822String #rfc822String

This method is equivalent to strftime(‘%a, %-d %b %Y %T %z’).

Overloads:

  • #rfc2822String

    Returns:

    • (String)
  • #rfc822String

    Returns:

    • (String)


6951
6952
6953
6954
6955
# File 'date_core.c', line 6951

static VALUE
d_lite_rfc2822(VALUE self)
{
    return strftimev("%a, %-d %b %Y %T %z", self, set_tmx);
}

#saturday?Boolean

Returns true if the date is Saturday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5124
5125
5126
5127
5128
5129
# File 'date_core.c', line 5124

static VALUE
d_lite_saturday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 6);
}

#startFloat

Returns the Julian day number denoting the day of calendar reform.

Date.new(2001,2,3).start      #=> 2299161.0
Date.new(2001,2,3,Date::GREGORIAN).start  #=> -Infinity

Returns:

  • (Float)


5309
5310
5311
5312
5313
5314
# File 'date_core.c', line 5309

static VALUE
d_lite_start(VALUE self)
{
    get_d1(self);
    return DBL2NUM(m_sg(dat));
}

#step(limit[, step = 1]) ⇒ Object #step(limit[, step = 1]) {|date| ... } ⇒ self

Iterates evaluation of the given block, which takes a date object. The limit should be a date object.

Date.new(2001).step(Date.new(2001,-1,-1)).select{|d| d.sunday?}.size

#=> 52

Overloads:

  • #step(limit[, step = 1]) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
# File 'date_core.c', line 6105

static VALUE
d_lite_step(int argc, VALUE *argv, VALUE self)
{
    VALUE limit, step, date;

    rb_scan_args(argc, argv, "11", &limit, &step);

    if (argc < 2)
  step = INT2FIX(1);

#if 0
    if (f_zero_p(step))
  rb_raise(rb_eArgError, "step can't be 0");
#endif

    RETURN_ENUMERATOR(self, argc, argv);

    date = self;
    switch (FIX2INT(f_cmp(step, INT2FIX(0)))) {
      case -1:
  while (FIX2INT(d_lite_cmp(date, limit)) >= 0) {
      rb_yield(date);
      date = d_lite_plus(date, step);
  }
  break;
      case 0:
  while (1)
      rb_yield(date);
  break;
      case 1:
  while (FIX2INT(d_lite_cmp(date, limit)) <= 0) {
      rb_yield(date);
      date = d_lite_plus(date, step);
  }
  break;
      default:
  abort();
    }
    return self;
}

#strftime([format = '%F']) ⇒ String

Formats date according to the directives in the given format

string.
The directives begins with a percent (%) character.
Any text not listed as a directive will be passed through to the
output string.

The directive consists of a percent (%) character,
zero or more flags, optional minimum field width,
optional modifier and a conversion specifier
as follows.

  %<flags><width><modifier><conversion>

Flags:
  -  don't pad a numerical output.
  _  use spaces for padding.
  0  use zeros for padding.
  ^  upcase the result string.
  #  change case.

The minimum field width specifies the minimum width.

The modifiers are "E", "O", ":", "::" and ":::".
"E" and "O" are ignored.  No effect to result currently.

Format directives:

  Date (Year, Month, Day):
    %Y - Year with century (can be negative, 4 digits at least)
            -0001, 0000, 1995, 2009, 14292, etc.
    %C - year / 100 (round down.  20 in 2009)
    %y - year % 100 (00..99)

    %m - Month of the year, zero-padded (01..12)
            %_m  blank-padded ( 1..12)
            %-m  no-padded (1..12)
    %B - The full month name (``January'')
            %^B  uppercased (``JANUARY'')
    %b - The abbreviated month name (``Jan'')
            %^b  uppercased (``JAN'')
    %h - Equivalent to %b

    %d - Day of the month, zero-padded (01..31)
            %-d  no-padded (1..31)
    %e - Day of the month, blank-padded ( 1..31)

    %j - Day of the year (001..366)

  Time (Hour, Minute, Second, Subsecond):
    %H - Hour of the day, 24-hour clock, zero-padded (00..23)
    %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
    %I - Hour of the day, 12-hour clock, zero-padded (01..12)
    %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
    %P - Meridian indicator, lowercase (``am'' or ``pm'')
    %p - Meridian indicator, uppercase (``AM'' or ``PM'')

    %M - Minute of the hour (00..59)

    %S - Second of the minute (00..59)

    %L - Millisecond of the second (000..999)
    %N - Fractional seconds digits, default is 9 digits (nanosecond)
            %3N  millisecond (3 digits)   %15N femtosecond (15 digits)
            %6N  microsecond (6 digits)   %18N attosecond  (18 digits)
            %9N  nanosecond  (9 digits)   %21N zeptosecond (21 digits)
            %12N picosecond (12 digits)   %24N yoctosecond (24 digits)

  Time zone:
    %z - Time zone as hour and minute offset from UTC (e.g. +0900)
            %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
            %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
            %:::z - hour, minute and second offset from UTC
                                              (e.g. +09, +09:30, +09:30:30)
    %Z - Time zone abbreviation name or something similar information.

  Weekday:
    %A - The full weekday name (``Sunday'')
            %^A  uppercased (``SUNDAY'')
    %a - The abbreviated name (``Sun'')
            %^a  uppercased (``SUN'')
    %u - Day of the week (Monday is 1, 1..7)
    %w - Day of the week (Sunday is 0, 0..6)

  ISO 8601 week-based year and week number:
  The week 1 of YYYY starts with a Monday and includes YYYY-01-04.
  The days in the year before the first week are in the last week of
  the previous year.
    %G - The week-based year
    %g - The last 2 digits of the week-based year (00..99)
    %V - Week number of the week-based year (01..53)

  Week number:
  The week 1 of YYYY starts with a Sunday or Monday (according to %U
  or %W).  The days in the year before the first week are in week 0.
    %U - Week number of the year.  The week starts with Sunday.  (00..53)
    %W - Week number of the year.  The week starts with Monday.  (00..53)

  Seconds since the Unix Epoch:
    %s - Number of seconds since 1970-01-01 00:00:00 UTC.
    %Q - Number of milliseconds since 1970-01-01 00:00:00 UTC.

  Literal string:
    %n - Newline character (\n)
    %t - Tab character (\t)
    %% - Literal ``%'' character

  Combination:
    %c - date and time (%a %b %e %T %Y)
    %D - Date (%m/%d/%y)
    %F - The ISO 8601 date format (%Y-%m-%d)
    %v - VMS date (%e-%b-%Y)
    %x - Same as %D
    %X - Same as %T
    %r - 12-hour time (%I:%M:%S %p)
    %R - 24-hour time (%H:%M)
    %T - 24-hour time (%H:%M:%S)
    %+ - date(1) (%a %b %e %H:%M:%S %Z %Y)

This method is similar to strftime() function defined in ISO C and POSIX.
Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z)
are locale dependent in the function.
However this method is locale independent.
So, the result may differ even if a same format string is used in other
systems such as C.
It is good practice to avoid %x and %X because there are corresponding
locale independent representations, %D and %T.

Examples:

  d = DateTime.new(2007,11,19,8,37,48,"-06:00")

#=> #<DateTime: 2007-11-19T08:37:48-0600 …>

  d.strftime("Printed on %m/%d/%Y")   #=> "Printed on 11/19/2007"
  d.strftime("at %I:%M%p")            #=> "at 08:37AM"

Various ISO 8601 formats:
  Y%m%d           => 20071119                  Calendar date (basic)
  F               => 2007-11-19                Calendar date (extended)
  Y-m            => 2007-11                   Calendar date, reduced accuracy, specific month
  Y               => 2007                      Calendar date, reduced accuracy, specific year
  C               => 20                        Calendar date, reduced accuracy, specific century
  Y%j             => 2007323                   Ordinal date (basic)
  Y-j            => 2007-323                  Ordinal date (extended)
  GW%V%u          => 2007W471                  Week date (basic)
  G-W%V-u        => 2007-W47-1                Week date (extended)
  GW%V            => 2007W47                   Week date, reduced accuracy, specific week (basic)
  G-W%V           => 2007-W47                  Week date, reduced accuracy, specific week (extended)
  H%M%S           => 083748                    Local time (basic)
  T               => 08:37:48                  Local time (extended)
  H%M             => 0837                      Local time, reduced accuracy, specific minute (basic)
  H:%M            => 08:37                     Local time, reduced accuracy, specific minute (extended)
  H               => 08                        Local time, reduced accuracy, specific hour
  H%M%S,L        => 083748,000                Local time with decimal fraction, comma as decimal sign (basic)
  T,L            => 08:37:48,000              Local time with decimal fraction, comma as decimal sign (extended)
  H%M%S.%L        => 083748.000                Local time with decimal fraction, full stop as decimal sign (basic)
  T.%L            => 08:37:48.000              Local time with decimal fraction, full stop as decimal sign (extended)
  H%M%S%z         => 083748-0600               Local time and the difference from UTC (basic)
  T%:z            => 08:37:48-06:00            Local time and the difference from UTC (extended)
  Y%m%dT%H%M%S%z  => 20071119T083748-0600      Date and time of day for calendar date (basic)
  FT%T%:z         => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
  Y%jT%H%M%S%z    => 2007323T083748-0600       Date and time of day for ordinal date (basic)
  Y-jT%T%:z      => 2007-323T08:37:48-06:00   Date and time of day for ordinal date (extended)
  GW%V%uT%H%M%S%z => 2007W471T083748-0600      Date and time of day for week date (basic)
  G-W%V-uT%T%:z  => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
  Y%m%dT%H%M      => 20071119T0837             Calendar date and local time (basic)
  FT%R            => 2007-11-19T08:37          Calendar date and local time (extended)
  Y%jT%H%MZ       => 2007323T0837Z             Ordinal date and UTC of day (basic)
  Y-jT%RZ        => 2007-323T08:37Z           Ordinal date and UTC of day (extended)
  GW%V%uT%H%M%z   => 2007W471T0837-0600        Week date and local time and difference from UTC (basic)
  G-W%V-uT%R%:z  => 2007-W47-1T08:37-06:00    Week date and local time and difference from UTC (extended)

See also strftime(3) and strptime.

Returns:

  • (String)


6880
6881
6882
6883
6884
6885
# File 'date_core.c', line 6880

static VALUE
d_lite_strftime(int argc, VALUE *argv, VALUE self)
{
    return date_strftime_internal(argc, argv, self,
          "%Y-%m-%d", set_tmx);
}

#succObject #nextObject

Returns a date object denoting the following day.



5951
5952
5953
5954
5955
# File 'date_core.c', line 5951

static VALUE
d_lite_next(VALUE self)
{
    return d_lite_next_day(0, (VALUE *)NULL, self);
}

#sunday?Boolean

Returns true if the date is Sunday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5046
5047
5048
5049
5050
5051
# File 'date_core.c', line 5046

static VALUE
d_lite_sunday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 0);
}

#thursday?Boolean

Returns true if the date is Thursday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5098
5099
5100
5101
5102
5103
# File 'date_core.c', line 5098

static VALUE
d_lite_thursday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 4);
}

#to_dateself

Returns self;

Returns:

  • (self)


8526
8527
8528
8529
8530
# File 'date_core.c', line 8526

static VALUE
date_to_date(VALUE self)
{
    return self;
}

#to_datetimeObject

Returns a DateTime object which denotes self.



8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
# File 'date_core.c', line 8538

static VALUE
date_to_datetime(VALUE self)
{
    get_d1a(self);

    if (simple_dat_p(adat)) {
  VALUE new = d_lite_s_alloc_simple(cDateTime);
  {
      get_d1b(new);
      bdat->s = adat->s;
      return new;
  }
    }
    else {
  VALUE new = d_lite_s_alloc_complex(cDateTime);
  {
      get_d1b(new);
      bdat->c = adat->c;
      bdat->c.df = 0;
      bdat->c.sf = INT2FIX(0);
#ifndef USE_PACK
      bdat->c.hour = 0;
      bdat->c.min = 0;
      bdat->c.sec = 0;
#else
      bdat->c.pc = PACK5(EX_MON(adat->c.pc), EX_MDAY(adat->c.pc),
             0, 0, 0);
      bdat->c.flags |= HAVE_DF | HAVE_TIME;
#endif
      return new;
  }
    }
}

#to_sString

Returns a string in an ISO 8601 format (This method doesn’t use the expanded representations).

Date.new(2001,2,3).to_s #=> "2001-02-03"

Returns:

  • (String)


6416
6417
6418
6419
6420
# File 'date_core.c', line 6416

static VALUE
d_lite_to_s(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#to_timeTime

Returns a Time object which denotes self.

Returns:

  • (Time)


8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
# File 'date_core.c', line 8509

static VALUE
date_to_time(VALUE self)
{
    get_d1(self);

    return f_local3(rb_cTime,
        m_real_year(dat),
        INT2FIX(m_mon(dat)),
        INT2FIX(m_mday(dat)));
}

#tuesday?Boolean

Returns true if the date is Tuesday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5072
5073
5074
5075
5076
5077
# File 'date_core.c', line 5072

static VALUE
d_lite_tuesday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 2);
}

#upto(max) ⇒ Object #upto(max) {|date| ... } ⇒ self

This method is equivalent to step(max, 1){|date| …}.

Overloads:

  • #upto(max) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
# File 'date_core.c', line 6153

static VALUE
d_lite_upto(VALUE self, VALUE max)
{
    VALUE date;

    RETURN_ENUMERATOR(self, 1, &max);

    date = self;
    while (FIX2INT(d_lite_cmp(date, max)) <= 0) {
  rb_yield(date);
  date = d_lite_plus(date, INT2FIX(1));
    }
    return self;
}

#wdayFixnum

Returns the day of week (0-6, Sunday is zero).

Date.new(2001,2,3).wday   #=> 6

Returns:

  • (Fixnum)


5033
5034
5035
5036
5037
5038
# File 'date_core.c', line 5033

static VALUE
d_lite_wday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_wday(dat));
}

#wednesday?Boolean

Returns true if the date is Wednesday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5085
5086
5087
5088
5089
5090
# File 'date_core.c', line 5085

static VALUE
d_lite_wednesday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 3);
}

#iso8601String #xmlschemaString

This method is equivalent to strftime(‘%F’).

Overloads:

  • #iso8601String

    Returns:

    • (String)
  • #xmlschemaString

    Returns:

    • (String)


6926
6927
6928
6929
6930
# File 'date_core.c', line 6926

static VALUE
d_lite_iso8601(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#ydayFixnum

Returns the day of the year (1-366).

Date.new(2001,2,3).yday   #=> 34

Returns:

  • (Fixnum)


4907
4908
4909
4910
4911
4912
# File 'date_core.c', line 4907

static VALUE
d_lite_yday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_yday(dat));
}

#yearInteger

Returns the year.

Date.new(2001,2,3).year   #=> 2001
(Date.new(1,1,1) - 1).year  #=> 0

Returns:

  • (Integer)


4892
4893
4894
4895
4896
4897
# File 'date_core.c', line 4892

static VALUE
d_lite_year(VALUE self)
{
    get_d1(self);
    return m_real_year(dat);
}