Class: AppMath::Vec

Inherits:
Object
  • Object
show all
Includes:
Comparable, Enumerable
Defined in:
lib/linalg.rb

Overview

Vector space of arbitrary dimension. The intended usage is that the components of a vector are all either real or complex. Since

x = Vec.new(anyArray); x[1] = anyObject

works, there is no guaranty for type-uniformity of the components of a vector.

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(*arg) ⇒ Vec

These are the 3 mehods to generate a vector via ‘new’

a = Vec.new(anArray)
b = Vec.new(aVec)
c = Vec.new(aPositiveInteger, aRealOrComplex)


59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# File 'lib/linalg.rb', line 59

def initialize(*arg)
  case arg.size
  when 1
    a0 = arg[0]
    if a0.is_a?(Array)
      @x = Array.new(a0)
     # @x = a0 # seems to work but can't be safe
    elsif a0.is_a?(Vec)
      @x = Array.new(a0.x)
    else
      fail "object can't be used to build a vector"
    end
  when 2
    n = arg[0]
    fail "first argument has to be an integer" unless n.integer?
    fail "first argument must be non-negative" unless n >= 0
    @x = Array.new(n,arg[1])
  end
end

Instance Attribute Details

#xObject

Returns the value of attribute x.



49
50
51
# File 'lib/linalg.rb', line 49

def x
  @x
end

Class Method Details

.test(n0, verbose = true, complex = false) ⇒ Object

Consistency test of class Vec.



307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# File 'lib/linalg.rb', line 307

def Vec.test(n0, verbose = true , complex = false)
  puts "Doing Vec.test( n = #{n0}, verbose = #{verbose}, " +
  "complex = #{complex}) for R.prec = #{R.prec}:"
  puts "*************************************************"
  
  t1 = Time.now
  s = R.c0
  puts "class of s is " + s.class.to_s
  i = n0
  a = Vec.tob(n0, i, complex) 
  i += 1
  b = Vec.tob(n0, i, complex) 
  i += 1
  c = Vec.tob(n0, i, complex) 
  i += 1
  s1 = complex ? C.ran(i) : R.ran(i)
  i += 1
  s2 = complex ? C.ran(i) : R.ran(i)

  r = (a + b) + c
  l = a + (b + c)
  ds = r.dis(l)
  puts "associativity: ds = " + ds.to_s if verbose
  s += ds

  r = (a - b) + c
  l = a - (b - c)
  ds = r.dis(l)
  puts "associativity 2: ds = " + ds.to_s if verbose
  s += ds

  r = (a + b) * s1
  l = a * s1 + b * s1
  ds = r.dis(l)
  puts "distributivity: ds = " + ds.to_s if verbose
  s += ds

  r = c * (s1*s2)
  l = (c * s1) * s2
  ds = r.dis(l)
  puts "distributivity of multiplication by scalars: ds = " + ds.to_s if verbose
  s += ds

  r = a
  l = -(-a)
  ds = r.dis(l)
  puts "idempotency of unary minus: ds = " + ds.to_s if verbose
  s += ds

  r = (a + b).spr(c)
  l = a.spr(c) + b.spr(c)
  ds = r.dis(l)
  puts "distributivity of spr: ds = " + ds.to_s if verbose
  s += ds
  
  t2 = Time.now

  if verbose
    puts
    a.prn("a")
    puts
    b.prn("b")
    puts
    c.prn("c")
    puts
    s1.prn("s1")
    puts
    s2.prn("s2")
  end

  puts "class of s is " + s.class.to_s + " ."
  puts "The error sum s is " + s.to_s + " ."
  puts "It should be close to 0."
  puts "Computation time was " + (t2-t1).to_s
  s
end

.tob(n, i, complex = false) ⇒ Object

Test object.

Returns a Vec res such that res.dim == n. Vector res depends rather chaotically on the integer argument i. If the last argument is ‘false’ res will have R-typed components, and C-typed components else.



89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# File 'lib/linalg.rb', line 89

def Vec.tob(n,i,complex=false)
  vi = complex ? C.tob(i) : R.tob(i)
  res=Vec.new(n, vi)
  if complex 
    rg1 = Ran.new(-vi.re,vi.re)
    rg2 = Ran.new(-vi.im,vi.im)
    for j in 1..res.dim
      res[j] = C.new(rg1.ran,rg2.ran)
    end
  else
    rg = Ran.new(-vi,vi)
    for j in 1..res.dim
      res[j] = rg.ran
    end
  end
  res
end

Instance Method Details

#*(s) ⇒ Object

Returns self * s, where s has the same type as the components of self.



178
179
180
181
182
183
184
# File 'lib/linalg.rb', line 178

def *(s)
  res = clone
  for i in 1..dim
    res[i] *= s
  end
  res
end

#+(v) ⇒ Object

Returns self + v, where v is a Vec



156
157
158
159
160
161
162
163
164
# File 'lib/linalg.rb', line 156

def +(v)
  fail "object can't be added to a Vec" unless v.is_a?(Vec)
  fail "dimension mismatch" unless dim == v.dim
  res = clone
  for i in 1..dim
    res[i] += v[i]
  end
  res
end

#-(v) ⇒ Object

Returns self - v , where v is a Vec



167
168
169
170
171
172
173
174
175
# File 'lib/linalg.rb', line 167

def -(v)
  fail "object can't be subtracted from a Vec" unless v.is_a?(Vec)
  fail "dimension mismatch" unless dim == v.dim
  res = clone
  for i in 1..dim
    res[i] -= v[i]
  end
  res
end

#-@Object

Returns -self.



187
188
189
190
191
192
193
# File 'lib/linalg.rb', line 187

def -@
  res = clone
  for i in 1..dim
    res[i] = -res[i]
  end
  res
end

#<=>(v) ⇒ Object

The order relation is here lexicographic ordering of lists. Needed only for book-keeping purposes. Defines the functionality of self as a Comparable.



215
216
217
218
219
220
221
222
223
224
225
226
227
228
# File 'lib/linalg.rb', line 215

def <=> (v)
  d1 = dim; d2 = v.dim
  if d1 < d2
    return -1
  elsif d1 > d2 
    return 1
  else
    for i in 0...d1
      ci = x[i] <=> v.x[i]
      return ci unless ci == 0
    end
  end
  return 0
end

#[](i) ⇒ Object

Valid indexes start with 1 not with 0. Read access to the components also works via indexes such as

y = x[3]


144
145
146
# File 'lib/linalg.rb', line 144

def [](i)
  @x[i-1]
end

#[]=(i, a) ⇒ Object

Valid indexes start with 1 not with 0. Write access to the components also works via indexes such as

x[1] = 3.14


151
152
153
# File 'lib/linalg.rb', line 151

def []=(i,a)
  @x[i-1] = a
end

#absObject

Returns the absolute value of self. This is also known as the L2-norm.



267
268
269
270
271
272
273
# File 'lib/linalg.rb', line 267

def abs
  if complex?
    abs2.re.sqrt
  else
    abs2.sqrt
  end
end

#abs2Object

Returns the square of absolute value of self.



261
262
263
# File 'lib/linalg.rb', line 261

def abs2
  spr(self)
end

#cloneObject

Returns an independent copy of self.



80
81
82
# File 'lib/linalg.rb', line 80

def clone
  Vec.new(self)
end

#complex?Boolean

Returns ‘true’ if the first component is complex. Notice that the normal usage of Vec is to have all components of the same type.

Returns:

  • (Boolean)


301
302
303
304
# File 'lib/linalg.rb', line 301

def complex? 
  return nil if dim.zero?
  @x[0].complex?
end

#convolution(v) ⇒ Object

Returns a ‘modified scalar product’ in which no complex conjugation is involved.



250
251
252
253
254
255
256
257
258
# File 'lib/linalg.rb', line 250

def convolution(v)
  fail "dimension mismatch" unless dim == v.dim
  return nil if dim.zero?
  s = self[1] * v[1] 
  for i in 2..dim
    s += self[i] * v[i] 
  end
  s
end

#dimObject

Returns the ‘dimension’ of the vector, i.e. the number of its components.



53
# File 'lib/linalg.rb', line 53

def dim; @x.size; end

#dis(v) ⇒ Object

Returns a relative distance between self and v.



288
289
290
291
292
293
294
295
296
# File 'lib/linalg.rb', line 288

def dis(v)
  a = abs
  b = v.abs
  d = (self - v).abs
  s = a + b
  return R.c0 if s.zero?
  d1 = d/s
  Basics.inf(d,d1)
end

#eachObject

Defines the functionality of self as an Enumerable.



231
232
233
# File 'lib/linalg.rb', line 231

def each
  @x.each{ |c| yield c}
end

#prn(name) ⇒ Object

Prints the content of self and naming the output.



206
207
208
209
210
# File 'lib/linalg.rb', line 206

def prn(name)
  for i in 1..dim 
    puts " #{name}[#{i}] = " + self[i].to_s
  end
end

#pseudo_inv(acc = 0) ⇒ Object

Gives the pseudoinverse of the vector self. This means that all components get inverted except those that are close to zero in comparison to the component with the largest absolute value. For small components c ( |c| ~ acc * sup |self| ) a continuous transition between the inverse and zero becomes operational.



114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# File 'lib/linalg.rb', line 114

def pseudo_inv(acc=0)
  n = dim
  fail "dim = 0" if n.zero?
  res = clone
  if acc.zero? # most common case, thus first and without ordering 
   # overhead
    for i in 1..n 
      si = self[i]
      res[i] = si.zero? ? si.to_0 : si.inv
    end
  else
    arr = @x.clone
    arr.each{ |v| v = v.abs }
    arr.sort!
    a_max = arr.last
    eta = a_max * acc
    eta *= 0.5
    eta *= eta
    for i in 1..n 
      si = self[i]
      ni = si * si + eta
      res[i] = si / ni
    end
  end
  res
end

#spr(v) ⇒ Object

Returns the scalar product (self|v). The complex conjugation (which acts trivially on R) affects here the first factor. This is the convention preferred in physics.



238
239
240
241
242
243
244
245
246
# File 'lib/linalg.rb', line 238

def spr(v)
  fail "dimension mismatch" unless dim == v.dim
  return nil if dim.zero?
  s = self[1].conj * v[1] 
  for i in 2..dim
    s += self[i].conj * v[i] 
  end
  s
end

#to_sObject

Returns a string which consists of a list of the strings which represent the components.



197
198
199
200
201
202
203
# File 'lib/linalg.rb', line 197

def to_s
  res = "\n Vec"
  for i in 0...dim
    res += "\n    " + x[i].to_s
  end
  res + "\n end Vec"
end

#uvObject

Returns a unit vector which has the same direction as self, (or self if this is the zero-vector).



277
278
279
280
281
282
283
284
285
# File 'lib/linalg.rb', line 277

def uv
  r = abs
  if r.zero?
    clone
  else 
    ri = r.inv
    self * ri
  end
end