Module: LSModel

Defined in:
lib/lsmodel.rb

Overview

Modelling funtionality with the least square method

Constant Summary collapse

MINIMAL_VARIATION_SIZE =
8

Class Method Summary collapse

Class Method Details

.abstract_model(ins, outs, model, force = false) ⇒ Object

Abstract modelling method. See test files for usage.



154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# File 'lib/lsmodel.rb', line 154

def LSModel.abstract_model(ins, outs, model, force=false)
  minimal_variaion_size = (force) ? 2 : MINIMAL_VARIATION_SIZE
  unless (ins[0].size == outs.size and outs.size >= minimal_variaion_size)
    $stdout << "ERROR:\nMINIMAL_VARIATION_SIZE #{MINIMAL_VARIATION_SIZE} is not reached!\n"
    $stdout << "Only #{ins[0].size} measurements are present.\n"
    raise
  end

  params = [outs,ins]
  params.each_with_index {|param,index|
    if index == 0 
      # 'out' is a single array 
      params[index] = param.each_with_index {|v,i| param[i] = v.to_f}
    else 
      # 'ins' is an array of arrays
      param.each_with_index {|inn,i|
        param[i] = inn.each_with_index {|v,i| inn[i] = v.to_f}
      }
      params[index] = param
    end
  }
  out_vector = Vector.elements(outs)
  rows       = []
  (0..ins.first.size-1).each {|i|
    rows << eval(model)
    var = eval(model)
  }
  matrix       = Matrix.rows(rows)
  model_coeffs = (matrix.transpose * matrix).inverse * matrix.transpose * out_vector
  r,           = abstract_stability_index(ins,
                                          outs,
                                          model,
                                          model_coeffs)
  [model_coeffs,r]
end

.abstract_modelD(ins, outs, model) ⇒ Object

mode abstract Modelling: multiple (but same) dimesions are allowed in input/output data arrays (ins, out) model should have the form: "[1.0,input[0][i],input[1][i]]" for affine model

!!EXPERIMENTAL!! Better use abstract_model



60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# File 'lib/lsmodel.rb', line 60

def LSModel.abstract_modelD(ins, outs, model)
  ###########################################################################
  # Calculation of the coefficients for the given model
  #
  # check for data quality
  # 1. Is there enough data?
  if ins[0].size < 2
    puts "To few datasets!"
    raise
  end
  # 2. Has any dataset the same size?
  sizes = []
  [ins,outs].each {|datas| datas.each {|dataset| sizes << dataset.size}}
  if sizes.uniq.size != 1
    puts "Use datasets with same number of values!"
    raise
  end
  # 3. Convert everything from String to Float
  [ins,outs].each {|datas| datas.collect!{|data| data.collect {|data_| data_.to_f}}}
  # 4. preprocess the model
  model = convertModelInputString(model)
  # Create input/output matrices
  input  = Matrix.columns(ins)
  output = Matrix.columns(outs)

  # Create the modelling Matrix
  rows = []
  (0...sizes[0]).each {|i| rows << eval(model) }
  model_matrix = Matrix.rows(rows)

  # Computation of coefficients
  model_coeffs = (model_matrix.transpose * model_matrix).inverse * model_matrix.transpose * output
  
  ###########################################################################
  # Calculation of the stability
  r_total  = 0.0
  r_reg    = 0.0
  r_res    = 0.0
  modelDim = modelDim(model,true)
  #test p model + "=>" + "modelDim: " + modelDim.to_s
  # mean values for each measured variable
  n = output.row_size
  meanValues = []
  output.column_vectors.each {|cv| meanValues << cv.to_a.inject {|sum,v| sum + v}/n}
  # each measurement variable has to be treated separately
  stability = []
  output.column_vectors.each_with_index {|output_vector,k|
    modelOutput = model_matrix * model_coeffs.column(k)
    output_vector.to_a.each_with_index {|output_value,i|
      r_total += (output_value   - meanValues[k])**2
      r_res   += (output_value   - modelOutput[i])**2
      r_reg   += (modelOutput[i] - meanValues[k])**2
    }
    r = r_reg/r_total
    r_improved = 1.0 - (1.0 - r**2)*(k-1.0)/(k - modelDim -1.0)
    stability << [r,r_improved]
  }

  return [model_coeffs, stability]
end

.abstract_stability_index(ins, outs, model, model_coeffs) ⇒ Object

Computation of fjhgugui<F5>zt56789gfrihi

,löl,00, <- this was nick ;)

Computation of stability index according the the given model with its coeffs



196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# File 'lib/lsmodel.rb', line 196

def LSModel.abstract_stability_index(ins,outs,model,model_coeffs)
  r_total  = 0.0
  r_reg    = 0.0
  r_res    = 0.0
  n        = outs.size.to_f
  outs_mid = outs.inject {|sum,i| sum + i } / n

  outs.each_with_index {|out,i|
    out_by_model = model_coeffs.inner_product(Vector.elements(eval(model)))
    r_total += (outs[i] - outs_mid)      * (outs[i] - outs_mid)   
    r_res   += (outs[i] - out_by_model)  * (outs[i] - out_by_model)  
    r_reg   += (out_by_model - outs_mid) * (out_by_model - outs_mid)
  }

  r_ = r_reg/r_total
  r  = 1.0 - r_res/r_total

  [r, r_]
end

.affine_model(x, y) ⇒ Object

Method for affine regression y = ax + b This is the direct version of what the abstract modelling method would do



33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# File 'lib/lsmodel.rb', line 33

def LSModel.affine_model(x,y)
  return nil if x.size != y.size
  n = x.size.to_f
  params = [x, y]
  params.each_with_index {|param,index|
    params[index] = param.each_with_index {|v,i| param[i] = v.to_f}
  }
  x_V = Vector.elements(x)
  y_V = Vector.elements(y)
  x_S = x.inject {|sum,x_i| sum += x_i}
  y_S = y.inject {|sum,y_i| sum += y_i}
  # gradient
  a = (n*x_V.inner_product(y_V) - x_S*y_S)/(n*x_V.inner_product(x_V) - x_S*x_S)
  # offset
  b = (y_S - a*x_S)/n
  # fitnes
  r,  = stability_index("affine",[a,b],y,x)
  [a,b,r]
end

.convertModelInputString(model) ⇒ Object



121
122
123
# File 'lib/lsmodel.rb', line 121

def LSModel.convertModelInputString(model)
  "[" + model.gsub(/\[(\d+)\]/,"\[i,\\1\]") + "]"
end

.linear_model(x, y) ⇒ Object

Function for simple computation of the slope of y over x, i.e. y = ax, x is input and y is the measured value. Both should behave like arrays. This is the direct version of what the abstract modelling method would do



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# File 'lib/lsmodel.rb', line 12

def LSModel.linear_model(x,y)
  return nil if x.size != y.size

  # recursive to_f for x and y
  params = [x, y]
  params.each_with_index {|param,index|
    params[index] = param.each_with_index {|v,i| param[i] = v.to_f}
  }

  s   = nil
  x_V = Vector.elements(x)
  y_V = Vector.elements(y)
  s   = x_V.inner_product(y_V)/x_V.inner_product(x_V)
 
  r,  = stability_index("linear",s,y,x)

  [s, r]
end

.modelDim(model, forAdjustedStability = false) ⇒ Object

For the calculation of the adjusted stability index, a special Dimensionis needed: the number of coefficients without the constant term.



134
135
136
137
138
139
# File 'lib/lsmodel.rb', line 134

def LSModel.modelDim(model,forAdjustedStability=false)
  input      = Matrix.scalar(100,0.0)
  i          = 0
  dim = eval(model).size
  (forAdjustedStability and modelHasConstant?(model)) ? dim - 1 : dim
end

.modelHasConstant?(model) ⇒ Boolean

Returns:

  • (Boolean)


125
126
127
128
129
130
# File 'lib/lsmodel.rb', line 125

def LSModel.modelHasConstant?(model)
  input      = Matrix.scalar(100,0.0)
  i          = 0
  modelArray = eval(model)
  modelArray.include?(1.0)
end

.modelOutput(model, model_coeffs, inputs) ⇒ Object



141
142
143
144
145
146
147
148
149
150
151
# File 'lib/lsmodel.rb', line 141

def LSModel.modelOutput(model, model_coeffs, inputs)
  inputs.collect!{|input| input.collect {|inn| inn.to_f}}
  input = Matrix.rows(inputs)
  model = convertModelInputString(model)
  # Create the modelling Matrix
  rows  = []
  (0...input.row_size).each {|i| rows << eval(model) }
  model_matrix = Matrix.rows(rows)
  #test pp model_matrix
  modelOutput = model_matrix * model_coeffs
end

.stability_index(mode, s, y, *x) ⇒ Object

This function computed the know variance according the the model given by the ‘mode’ parameter:

  • ‘linear’ for the linear model y=s*x



219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'lib/lsmodel.rb', line 219

def LSModel.stability_index(mode, s, y, *x)
  r_total = 0.0
  r_reg   = 0.0
  r_res   = 0.0
  n       = y.size.to_f
  y_mid   = y.inject {|sum,i| sum + i } / n

  case mode
  when "linear"
    x = x[0]
    y.each_with_index {|y_i,i|
      ys_i     = s*x[i]
      r_total += (y_i - y_mid)  * (y_i - y_mid)   
      r_res   += (y_i - ys_i)   * (y_i - ys_i)  
      r_reg   += (ys_i - y_mid) * (ys_i - y_mid)
    }
  when "affine"
    a, b = s
    y.each_with_index {|y_i,i|
      ys_i     = a*x[0][i] + b
      r_total += (y_i - y_mid)  * (y_i - y_mid)   
      r_res   += (y_i - ys_i)   * (y_i - ys_i)  
      r_reg   += (ys_i - y_mid) * (ys_i - y_mid)
    }
  else
    puts "Wrong working mode in function 'stability_index'! " +
         "Use 'linear' or 'affine' instead.'"
    raise
  end

  r_ = r_reg/r_total
  r  = 1.0 - r_res/r_total

  [r, r_]
end

.test_model(ins, out, model, model_coeffs) ⇒ Object



254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# File 'lib/lsmodel.rb', line 254

def LSModel.test_model(ins, out, model, model_coeffs)
  params = [out,ins]
  params.each_with_index {|param,index|
    if index == 0 # 'out' is a single array 
      params[index] = param.each_with_index {|v,i| param[i] = v.to_f}
    else # 'ins' is an array of arrays
      param.each_with_index {|inn,i|
        param[i] = inn.each_with_index {|v,i| inn[i] = v.to_f}
      }
      params[index] = param
    end
  }
  r_total  = 0.0
  r_reg    = 0.0
  r_res    = 0.0
  n        = out.size.to_f
  out_mid  = out.inject {|sum,i| sum + i } / n

  model_out  = []
  model_diff = []

  out.each_with_index {|value,i|
    out_by_model = model_coeffs.inner_product(Vector.elements(eval(model)))
    model_out  << out_by_model
    model_diff << out_by_model - value
    r_total += (value - out_mid)       * (value - out_mid)   
    r_res   += (value - out_by_model)  * (value - out_by_model)  
    r_reg   += (out_by_model - out_mid) * (out_by_model - out_mid)
  }

  r_ = r_reg/r_total
  r  = 1.0 - r_res/r_total

  {:r => r,:model => model_out, :diff => model_diff}
end