Class: GeoRuby::SimpleFeatures::Point

Inherits:
Geometry
  • Object
show all
Defined in:
lib/geo_ruby/simple_features/point.rb

Overview

Represents a point. It is in 3D if the Z coordinate is not nil.

Constant Summary collapse

DEG2RAD =
0.0174532925199433
HALFPI =
1.5707963267948966

Instance Attribute Summary collapse

Attributes inherited from Geometry

#srid, #with_m, #with_z

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Geometry

#as_ewkb, #as_ewkt, #as_georss, #as_hex_ewkb, #as_hex_wkb, #as_kml, #as_wkb, #as_wkt, #envelope, from_ewkb, from_ewkt, from_geojson, from_georss, from_georss_with_tags, from_hex_ewkb, from_kml

Constructor Details

#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point

Returns a new instance of Point.



21
22
23
24
25
26
# File 'lib/geo_ruby/simple_features/point.rb', line 21

def initialize(srid = DEFAULT_SRID, with_z = false, with_m = false)
  super(srid, with_z, with_m)
  @x = @y = 0.0
  @z=0.0 #default value : meaningful if with_z
  @m=0.0 #default value : meaningful if with_m
end

Instance Attribute Details

#mObject

Returns the value of attribute m.



10
11
12
# File 'lib/geo_ruby/simple_features/point.rb', line 10

def m
  @m
end

#rObject (readonly)



11
12
13
# File 'lib/geo_ruby/simple_features/point.rb', line 11

def r
  @r
end

#tObject (readonly) Also known as: tet, tetha

radium and theta



11
12
13
# File 'lib/geo_ruby/simple_features/point.rb', line 11

def t
  @t
end

#xObject Also known as: lon, lng

Returns the value of attribute x.



10
11
12
# File 'lib/geo_ruby/simple_features/point.rb', line 10

def x
  @x
end

#yObject Also known as: lat

Returns the value of attribute y.



10
11
12
# File 'lib/geo_ruby/simple_features/point.rb', line 10

def y
  @y
end

#zObject

Returns the value of attribute z.



10
11
12
# File 'lib/geo_ruby/simple_features/point.rb', line 10

def z
  @z
end

Class Method Details

.from_coordinates(coords, srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Object

creates a point from an array of coordinates



334
335
336
337
338
339
340
341
342
343
344
# File 'lib/geo_ruby/simple_features/point.rb', line 334

def self.from_coordinates(coords,srid=DEFAULT_SRID,with_z=false,with_m=false)
  if ! (with_z or with_m)
    from_x_y(coords[0],coords[1],srid)
  elsif with_z and with_m
    from_x_y_z_m(coords[0],coords[1],coords[2],coords[3],srid)
  elsif with_z
    from_x_y_z(coords[0],coords[1],coords[2],srid)
  else
    from_x_y_m(coords[0],coords[1],coords[2],srid)
  end
end

.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object

creates a point using coordinates like 22`34 23.45N



383
384
385
386
387
388
389
390
391
392
# File 'lib/geo_ruby/simple_features/point.rb', line 383

def self.from_latlong(lat, lon, srid=DEFAULT_SRID)
  p = [lat,lon].map do |l|
    sig, deg, min, sec, cen = l.scan(/(-)?(\d{1,2})\D*(\d{2})\D*(\d{2})(\D*(\d{1,3}))?/).flatten
    sig = true if l =~ /W|S/
    dec = deg.to_i + (min.to_i * 60 + "#{sec}#{cen}".to_f) / 3600
    sig ? dec * -1 : dec
  end
  point= new(srid)
  point.set_x_y(p[0],p[1])
end

.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object Also known as: from_rad_tet

creates a point using polar coordinates r and theta(degrees)



374
375
376
377
378
379
380
# File 'lib/geo_ruby/simple_features/point.rb', line 374

def self.from_r_t(r, t, srid=DEFAULT_SRID)
  t *= DEG2RAD
  x = r * Math.cos(t)
  y = r * Math.sin(t)
  point= new(srid)
  point.set_x_y(x,y)
end

.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object Also known as: xy, from_xy, from_lon_lat

creates a point from the X and Y coordinates



347
348
349
350
# File 'lib/geo_ruby/simple_features/point.rb', line 347

def self.from_x_y(x, y, srid=DEFAULT_SRID)
  point= new(srid)
  point.set_x_y(x,y)
end

.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_m

creates a point from the X, Y and M coordinates



359
360
361
362
363
# File 'lib/geo_ruby/simple_features/point.rb', line 359

def self.from_x_y_m(x, y, m, srid=DEFAULT_SRID)
  point= new(srid,false,true)
  point.m=m
  point.set_x_y(x,y)
end

.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object Also known as: xyz, from_xyz, from_lon_lat_z

creates a point from the X, Y and Z coordinates



353
354
355
356
# File 'lib/geo_ruby/simple_features/point.rb', line 353

def self.from_x_y_z(x, y, z, srid=DEFAULT_SRID)
  point= new(srid,true)
  point.set_x_y_z(x,y,z)
end

.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_z_m

creates a point from the X, Y, Z and M coordinates



366
367
368
369
370
# File 'lib/geo_ruby/simple_features/point.rb', line 366

def self.from_x_y_z_m(x, y, z, m, srid=DEFAULT_SRID)
  point= new(srid,true,true)
  point.m=m
  point.set_x_y_z(x,y,z)
end

Instance Method Details

#-@Object

invert signal of all coordinates



308
309
310
# File 'lib/geo_ruby/simple_features/point.rb', line 308

def -@
  set_x_y_z(-@x, -@y, -@z)
end

#==(other) ⇒ Object

Tests the equality of the position of points + m



173
174
175
176
# File 'lib/geo_ruby/simple_features/point.rb', line 173

def ==(other)
  return false unless other.kind_of?(Point)
  @x == other.x and @y == other.y and @z == other.z and @m == other.m
end

#as_json(options = {}) ⇒ Object



321
322
323
324
# File 'lib/geo_ruby/simple_features/point.rb', line 321

def as_json(options = {})
  {:type => 'Point',
   :coordinates => self.to_coordinates}
end

#as_lat(options = {}) ⇒ Object

Outputs the geometry coordinate in human format: 47°52′48″N



266
267
268
# File 'lib/geo_ruby/simple_features/point.rb', line 266

def as_lat(options = {})
  human_representation(options, { x: x }).join
end

#as_latlong(options = {}) ⇒ Object Also known as: as_ll

Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″



279
280
281
# File 'lib/geo_ruby/simple_features/point.rb', line 279

def as_latlong(options = {})
  human_representation(options).join(", ")
end

#as_long(options = {}) ⇒ Object Also known as: as_lng

Outputs the geometry coordinate in human format: -20°06′00W″



272
273
274
# File 'lib/geo_ruby/simple_features/point.rb', line 272

def as_long(options = {})
  human_representation(options, { y: y }).join
end

#as_polarObject

outputs an array containing polar distance and theta



305
# File 'lib/geo_ruby/simple_features/point.rb', line 305

def as_polar;        [r,t];      end

#bearing_text(other) ⇒ Object

Bearing from a point to another as symbols. (:n, :s, :sw, :ne…)



144
145
146
147
148
149
150
151
152
153
154
155
156
157
# File 'lib/geo_ruby/simple_features/point.rb', line 144

def bearing_text(other)
  case bearing_to(other)
  when 1..22    then :n
  when 23..66   then :ne
  when 67..112  then :e
  when 113..146 then :se
  when 147..202 then :s
  when 203..246 then :sw
  when 247..292 then :w
  when 293..336 then :nw
  when 337..360 then :n
  else nil
  end
end

#bearing_to(other) ⇒ Object

Bearing from a point to another, in degrees.



136
137
138
139
140
141
# File 'lib/geo_ruby/simple_features/point.rb', line 136

def bearing_to(other)
  return 0 if self == other
  a,b =  other.x - self.x, other.y - self.y
  res =  Math.acos(b / Math.sqrt(a*a+b*b)) / Math::PI * 180;
  a < 0 ? 360 - res : res
end

#binary_geometry_typeObject

WKB geometry type of a point



187
188
189
# File 'lib/geo_ruby/simple_features/point.rb', line 187

def binary_geometry_type#:nodoc:
  1
end

#binary_representation(allow_z = true, allow_m = true) ⇒ Object

Binary representation of a point. It lacks some headers to be a valid EWKB representation.



179
180
181
182
183
184
# File 'lib/geo_ruby/simple_features/point.rb', line 179

def binary_representation(allow_z=true,allow_m=true) #:nodoc:
  bin_rep = [@x.to_f,@y.to_f].pack("EE")
  bin_rep += [@z.to_f].pack("E") if @with_z and allow_z #Default value so no crash
  bin_rep += [@m.to_f].pack("E") if @with_m and allow_m #idem
  bin_rep
end

#bounding_boxObject

Bounding box in 2D/3D. Returns an array of 2 points



160
161
162
163
164
165
166
# File 'lib/geo_ruby/simple_features/point.rb', line 160

def bounding_box
  unless with_z
    [Point.from_x_y(@x,@y),Point.from_x_y(@x,@y)]
  else
    [Point.from_x_y_z(@x,@y,@z),Point.from_x_y_z(@x,@y,@z)]
  end
end

#ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) ⇒ Object

Ellipsoidal distance in m using Vincenty’s formula. Lifted entirely from Chris Veness’s code at www.movable-type.co.uk/scripts/LatLongVincenty.html and adapted for Ruby. Assumes the x and y are the lon and lat in degrees. a is the semi-major axis (equatorial radius) of the ellipsoid b is the semi-minor axis (polar radius) of the ellipsoid Their values by default are set to the ones of the WGS84 ellipsoid



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# File 'lib/geo_ruby/simple_features/point.rb', line 67

def ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142)
  f = (a-b) / a
  l = (point.lon - lon) * DEG2RAD

  u1 = Math.atan((1-f) * Math.tan(lat * DEG2RAD ))
  u2 = Math.atan((1-f) * Math.tan(point.lat * DEG2RAD))
  sinU1 = Math.sin(u1)
  cosU1 = Math.cos(u1)
  sinU2 = Math.sin(u2)
  cosU2 = Math.cos(u2)

  lambda = l
  lambdaP = 2 * Math::PI
  iterLimit = 20

  while (lambda-lambdaP).abs > 1e-12 && --iterLimit>0
    sinLambda = Math.sin(lambda)
    cosLambda = Math.cos(lambda)
    sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda))

    return 0 if sinSigma == 0 #coincident points

    cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda
    sigma = Math.atan2(sinSigma, cosSigma)
    sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma
    cosSqAlpha = 1 - sinAlpha*sinAlpha
    cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha

    cos2SigmaM = 0 if (cos2SigmaM.nan?) #equatorial line: cosSqAlpha=0

    c = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha))
    lambdaP = lambda
    lambda = l + (1-c) * f * sinAlpha * (sigma + c * sinSigma * (cos2SigmaM + c * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)))
  end
  return NaN if iterLimit==0 #formula failed to converge

  uSq = cosSqAlpha * (a*a - b*b) / (b*b)
  a_bis = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)))
  b_bis = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)))
  deltaSigma = b_bis * sinSigma*(cos2SigmaM + b_bis/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)- b_bis/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)))

  b*a_bis*(sigma-deltaSigma)
end

#euclidian_distance(point) ⇒ Object

Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates. Euclidian distance in whatever unit the x and y ordinates are.



46
47
48
# File 'lib/geo_ruby/simple_features/point.rb', line 46

def euclidian_distance(point)
  Math.sqrt((point.x - x)**2 + (point.y - y)**2)
end

#georss_gml_representation(options) ⇒ Object

georss gml representation



218
219
220
221
222
223
224
# File 'lib/geo_ruby/simple_features/point.rb', line 218

def georss_gml_representation(options) #:nodoc:
  georss_ns = options[:georss_ns] || "georss"
  gml_ns = options[:gml_ns] || "gml"
  out = "<#{georss_ns}:where>\n<#{gml_ns}:Point>\n<#{gml_ns}:pos>"
  out += "#{y} #{x}"
  out += "</#{gml_ns}:pos>\n</#{gml_ns}:Point>\n</#{georss_ns}:where>\n"
end

#georss_simple_representation(options) ⇒ Object

georss simple representation



205
206
207
208
209
# File 'lib/geo_ruby/simple_features/point.rb', line 205

def georss_simple_representation(options) #:nodoc:
  georss_ns = options[:georss_ns] || "georss"
  geom_attr = options[:geom_attr]
  "<#{georss_ns}:point#{geom_attr}>#{y} #{x}</#{georss_ns}:point>\n"
end

#georss_w3cgeo_representation(options) ⇒ Object

georss w3c representation



212
213
214
215
# File 'lib/geo_ruby/simple_features/point.rb', line 212

def georss_w3cgeo_representation(options) #:nodoc:
  w3cgeo_ns = options[:w3cgeo_ns] || "geo"
  "<#{w3cgeo_ns}:lat>#{y}</#{w3cgeo_ns}:lat>\n<#{w3cgeo_ns}:long>#{x}</#{w3cgeo_ns}:long>\n"
end

#html_representation(options = {}) ⇒ Object



238
239
240
241
242
243
244
# File 'lib/geo_ruby/simple_features/point.rb', line 238

def html_representation(options = {})
  options[:coord] = true if options[:coord].nil?
  out =  "<span class='geo'>"
  out += "<abbr class='latitude' title='#{x}'>#{as_lat(options)}</abbr>"
  out += "<abbr class='longitude' title='#{y}'>#{as_long(options)}</abbr>"
  out += "</span>"
end

#human_representation(options = { }, g = { :x => x, :y => y }) ⇒ Object

Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong



248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# File 'lib/geo_ruby/simple_features/point.rb', line 248

def human_representation(options = { }, g = { :x => x, :y => y })
  g.map do |k, v|
    deg = v.to_i.abs
    min = (60 * (v.abs - deg)).to_i
    labs = (v * 1000000).abs / 1000000
    sec = ((((labs - labs.to_i) * 60) - ((labs - labs.to_i) * 60).to_i) * 100000) * 60 / 100000
    str = options[:full] ? "%.i°%.2i′%05.2f″" :  "%.i°%.2i′%02.0f″"
    if options[:coord]
      out = str % [deg,min,sec]
      out += k == :x ? v > 0 ? "N" : "S" : v > 0 ? "E" : "W"
    else
      str % [v.to_i, min, sec]
    end
  end
end

#kml_representation(options = {}) ⇒ Object

outputs the geometry in kml format : options are :id, :tesselate, :extrude, :altitude_mode. If the altitude_mode option is not present, the Z (if present) will not be output (since it won’t be used by GE anyway: clampToGround is the default)



229
230
231
232
233
234
235
236
# File 'lib/geo_ruby/simple_features/point.rb', line 229

def kml_representation(options = {}) #:nodoc:
  out = "<Point#{options[:id_attr]}>\n"
  out += options[:geom_data] if options[:geom_data]
  out += "<coordinates>#{x},#{y}"
  out += ",#{options[:fixed_z] || z ||0}" if options[:allow_z]
  out += "</coordinates>\n"
  out += "</Point>\n"
end

#m_rangeObject



168
169
170
# File 'lib/geo_ruby/simple_features/point.rb', line 168

def m_range
  [@m,@m]
end

#orthogonal_distance(line, tail = nil) ⇒ Object

Orthogonal Distance Based www.allegro.cc/forums/thread/589720



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# File 'lib/geo_ruby/simple_features/point.rb', line 113

def orthogonal_distance(line, tail = nil)
  head, tail  = tail ?  [line, tail] : [line[0], line[-1]]
  a, b = @x - head.x, @y - head.y
  c, d = tail.x - head.x, tail.y - head.y

  dot = a * c + b * d
  len = c * c + d * d
  return 0.0 if len.zero?
  res = dot / len

  xx, yy = if res < 0
             [head.x, head.y]
           elsif res > 1
             [tail.x, tail.y]
           else
             [head.x + res * c, head.y + res * d]
           end
  # todo benchmark if worth creating an instance
  # euclidian_distance(Point.from_x_y(xx, yy))
  Math.sqrt((@x - xx) ** 2 + (@y - yy) ** 2)
end

#radObject

radium and theta



17
18
19
# File 'lib/geo_ruby/simple_features/point.rb', line 17

def r
  @r
end

#set_x_y(x, y) ⇒ Object Also known as: set_lon_lat

sets all coordinates of a 2D point in one call



37
38
39
40
41
# File 'lib/geo_ruby/simple_features/point.rb', line 37

def set_x_y(x, y)
  @x = x && !x.is_a?(Numeric) ? x.to_f : x
  @y = y && !y.is_a?(Numeric) ? y.to_f : y
  self
end

#set_x_y_z(x, y, z) ⇒ Object Also known as: set_lon_lat_z

sets all coordinates in one call. Use the m accessor to set the m.



28
29
30
31
32
33
# File 'lib/geo_ruby/simple_features/point.rb', line 28

def set_x_y_z(x, y, z)
  @x = x && !x.is_a?(Numeric) ? x.to_f : x
  @y = y && !y.is_a?(Numeric) ? y.to_f : y
  @z = z && !z.is_a?(Numeric) ? z.to_f : z
  self
end

#spherical_distance(point, r = 6370997.0) ⇒ Object

Spherical distance in meters, using ‘Haversine’ formula. with a radius of 6471000m Assumes x is the lon and y the lat, in degrees (Changed in version 1.1). The user has to make sure using this distance makes sense (ie she should be in latlon coordinates)



54
55
56
57
58
59
60
61
# File 'lib/geo_ruby/simple_features/point.rb', line 54

def spherical_distance(point, r = 6370997.0)
  dlat = (point.lat - lat) * DEG2RAD / 2
  dlon = (point.lon - lon) * DEG2RAD / 2

  a = Math.sin(dlat)**2 + Math.cos(lat * DEG2RAD) * Math.cos(point.lat * DEG2RAD) * Math.sin(dlon)**2
  c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a))
  r * c
end

#text_geometry_typeObject

WKT geometry type of a point



200
201
202
# File 'lib/geo_ruby/simple_features/point.rb', line 200

def text_geometry_type #:nodoc:
  "POINT"
end

#text_representation(allow_z = true, allow_m = true) ⇒ Object

Text representation of a point



192
193
194
195
196
197
# File 'lib/geo_ruby/simple_features/point.rb', line 192

def text_representation(allow_z=true,allow_m=true) #:nodoc:
  tex_rep = "#{@x} #{@y}"
  tex_rep += " #{@z}" if @with_z and allow_z
  tex_rep += " #{@m}" if @with_m and allow_m
  tex_rep
end

#theta_degObject

outputs theta in degrees



302
# File 'lib/geo_ruby/simple_features/point.rb', line 302

def theta_deg;        theta_rad / DEG2RAD;      end

#theta_radObject

outputs theta



292
293
294
295
296
297
298
299
# File 'lib/geo_ruby/simple_features/point.rb', line 292

def theta_rad
  if @x.zero?
    @y < 0 ? 3 * HALFPI : HALFPI
  else
    th = Math.atan(@y/@x)
    th += 2 * Math::PI if r > 0
  end
end

#to_coordinatesObject

TODO Perhaps should support with_m analogous to from_coordinates?



313
314
315
316
317
318
319
# File 'lib/geo_ruby/simple_features/point.rb', line 313

def to_coordinates
  if with_z
    [x,y,z]
  else
    [x,y]
  end
end

#to_json(options = {}) ⇒ Object Also known as: as_geojson

simple geojson representation TODO add CRS / SRID support?



328
329
330
# File 'lib/geo_ruby/simple_features/point.rb', line 328

def to_json(options = {})
  as_json(options).to_json(options)
end