Class: Module
Overview
*********************************************************************
A <code>Module</code> is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See <code>Module#module_function</code>)
In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
<code>Symbol</code> (such as <code>:name</code>).
module Mod
include Math
CONST = 1
def meth
# ...
end
end
Mod.class #=> Module
Mod.constants #=> [:CONST, :PI, :E]
Mod.instance_methods #=> [:meth]
Direct Known Subclasses
Class Method Summary collapse
-
.constants ⇒ Object
In the first form, returns an array of the names of all constants accessible from the point of call.
-
.nesting ⇒ Array
Returns the list of
Modules
nested at the point of call.
Instance Method Summary collapse
-
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other.
-
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other.
-
#<=>(other_mod) ⇒ -1, ...
Comparison---Returns -1 if mod includes other_mod, 0 if mod is the same as other_mod, and +1 if mod is included by other_mod.
-
#== ⇒ Object
Equality --- At the
Object
level,==
returnstrue
only ifobj
andother
are the same object. -
#===(obj) ⇒ Boolean
Case Equality---Returns
true
if anObject is an instance of mod or one of mod's descendants. -
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other.
-
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same.
-
#alias_method(new_name, old_name) ⇒ self
private
Makes new_name a new copy of the method old_name.
-
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
-
#append_features(mod) ⇒ Object
private
When this module is included in another, Ruby calls
append_features
in this module, passing it the receiving module in mod. - #attr ⇒ Object private
-
#attr_accessor(symbol, ...) ⇒ nil
private
Defines a named attribute for this module, where the name is symbol.
id2name
, creating an instance variable (@name
) and a corresponding access method to read it. -
#attr_reader ⇒ Object
private
Creates instance variables and corresponding methods that return the value of each instance variable.
-
#attr_writer(symbol, ...) ⇒ nil
private
Creates an accessor method to allow assignment to the attribute symbol
.id2name
. -
#autoload ⇒ nil
Registers filename to be loaded (using
Kernel::require
) the first time that module (which may be aString
or a symbol) is accessed in the namespace of mod. -
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod. -
#class_eval ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#class_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#class_variable_defined?(symbol) ⇒ Boolean
Returns
true
if the given class variable is defined in obj. -
#class_variable_get(symbol) ⇒ Object
Returns the value of the given class variable (or throws a
NameError
exception). -
#class_variable_set(symbol, obj) ⇒ Object
Sets the class variable names by symbol to object.
-
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod.
-
#const_defined?(sym, inherit = true) ⇒ Boolean
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (andObject
if mod is aModule
.). -
#const_get ⇒ Object
Checks for a constant with the given name in mod If
inherit
is set, the lookup will also search the ancestors (andObject
if mod is aModule
.). -
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod.
-
#const_set(sym, obj) ⇒ Object
Sets the named constant to the given object, returning that object.
-
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod.
-
#define_method ⇒ Object
private
Defines an instance method in the receiver.
-
#extend_object(obj) ⇒ Object
private
Extends the specified object by adding this module's constants and methods (which are added as singleton methods).
-
#extended ⇒ Object
private
Not documented.
-
#freeze ⇒ Object
Prevents further modifications to mod.
-
#include ⇒ self
private
Invokes
Module.append_features
on each parameter in reverse order. -
#include? ⇒ Boolean
Returns
true
if module is included in mod or one of mod's ancestors. -
#included ⇒ Object
private
Not documented.
-
#included_modules ⇒ Array
Returns the list of modules included in mod.
-
#initialize ⇒ Object
constructor
Creates a new anonymous module.
-
#initialize_copy ⇒ Object
:nodoc:.
-
#instance_method(symbol) ⇒ Object
Returns an
UnboundMethod
representing the given instance method in mod. -
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver.
-
#method_added ⇒ Object
private
Not documented.
-
#method_defined?(symbol) ⇒ Boolean
Returns
true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#method_removed ⇒ Object
private
Not documented.
-
#method_undefined ⇒ Object
private
Not documented.
-
#module_eval ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected.
-
#module_exec ⇒ Object
Evaluates the given block in the context of the class/module.
-
#module_function(symbol, ...) ⇒ self
private
Creates module functions for the named methods.
-
#name ⇒ String
Returns the name of the module mod.
-
#prepend ⇒ self
private
Invokes
Module.prepend_features
on each parameter in reverse order. -
#prepend_features(mod) ⇒ Object
private
When this module is prepended in another, Ruby calls
prepend_features
in this module, passing it the receiving module in mod. -
#prepended ⇒ Object
private
Not documented.
-
#private ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to private.
-
#private_class_method(symbol, ...) ⇒ Object
Makes existing class methods private.
-
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
-
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod.
-
#private_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). -
#protected ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to protected.
-
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod.
-
#protected_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#public ⇒ Object
private
With no arguments, sets the default visibility for subsequently defined methods to public.
-
#public_class_method(symbol, ...) ⇒ Object
Makes a list of existing class methods public.
-
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
-
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
-
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod.
-
#public_method_defined?(symbol) ⇒ Boolean
Returns
true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). -
#refine(klass) { ... } ⇒ Object
private
Refine klass in the receiver.
-
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant's value.
-
#remove_const(sym) ⇒ Object
private
Removes the definition of the given constant, returning that constant's previous value.
-
#remove_method(symbol) ⇒ self
private
Removes the method identified by symbol from the current class.
-
#to_s ⇒ String
(also: #inspect)
Return a string representing this module or class.
-
#undef_method(symbol) ⇒ self
private
Prevents the current class from responding to calls to the named method.
-
#used ⇒ Object
private
Not documented.
Constructor Details
#new ⇒ Object #new {|mod| ... } ⇒ Object
Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module using module_eval
.
fred = Module.new do
def meth1
"hello"
end
def meth2
"bye"
end
end
a = "my string"
a.extend(fred) #=> "my string"
a.meth1 #=> "hello"
a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
1600 1601 1602 1603 1604 1605 1606 1607 |
# File 'object.c', line 1600
static VALUE
rb_mod_initialize(VALUE module)
{
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
return Qnil;
}
|
Class Method Details
.constants ⇒ Array .constants(inherited) ⇒ Array
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4)
# => [:ARGF, :ARGV, :ArgumentError, :Array]
Module.constants.include?(:SEEK_SET) # => false
class IO
Module.constants.include?(:SEEK_SET) # => true
end
The second form calls the instance method constants
.
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# File 'eval.c', line 372
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const NODE *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0) {
return rb_mod_constants(argc, argv, rb_cModule);
}
while (cref) {
klass = cref->nd_clss;
if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
!NIL_P(klass)) {
data = rb_mod_const_at(cref->nd_clss, data);
if (!cbase) {
cbase = klass;
}
}
cref = cref->nd_next;
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
|
.nesting ⇒ Array
Returns the list of Modules
nested at the point of call.
module M1
module M2
$a = Module.nesting
end
end
$a #=> [M1::M2, M1]
$a[0].name #=> "M1::M2"
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# File 'eval.c', line 333
static VALUE
rb_mod_nesting(void)
{
VALUE ary = rb_ary_new();
const NODE *cref = rb_vm_cref();
while (cref && cref->nd_next) {
VALUE klass = cref->nd_clss;
if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = cref->nd_next;
}
return ary;
}
|
Instance Method Details
#<(other) ⇒ true, ...
Returns true if mod is a subclass of other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "A<B").
1482 1483 1484 1485 1486 1487 |
# File 'object.c', line 1482
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
|
#<=(other) ⇒ true, ...
Returns true if mod is a subclass of other or is the same as other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "A<B").
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
# File 'object.c', line 1448
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
VALUE start = mod;
if (mod == arg) return Qtrue;
if (!CLASS_OR_MODULE_P(arg)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
while (mod) {
if (RCLASS_M_TBL(mod) == RCLASS_M_TBL(arg))
return Qtrue;
mod = RCLASS_SUPER(mod);
}
/* not mod < arg; check if mod > arg */
while (arg) {
if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start))
return Qfalse;
arg = RCLASS_SUPER(arg);
}
return Qnil;
}
|
#<=>(other_mod) ⇒ -1, ...
Comparison---Returns -1 if mod includes other_mod, 0 if mod is the same as other_mod, and +1 if mod is included by other_mod. Returns nil
if mod has no relationship with other_mod or if other_mod is not a module.
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 |
# File 'object.c', line 1541
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
if (!CLASS_OR_MODULE_P(arg)) {
return Qnil;
}
cmp = rb_class_inherited_p(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality --- At the Object
level, ==
returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike ==
, the equal?
method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
a == other #=> true
a.equal? other #=> false
a.equal? a #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object
, eql?
is synonymous with ==
. Subclasses normally continue this tradition by aliasing eql?
to their overridden ==
method, but there are exceptions. Numeric
types, for example, perform type conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
108 109 110 111 112 113 |
# File 'object.c', line 108
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
|
#===(obj) ⇒ Boolean
Case Equality---Returns true
if anObject is an instance of mod or one of mod's descendants. Of limited use for modules, but can be used in case
statements to classify objects by class.
1430 1431 1432 1433 1434 |
# File 'object.c', line 1430
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
|
#>(other) ⇒ true, ...
Returns true if mod is an ancestor of other. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "B>A").
1523 1524 1525 1526 1527 1528 |
# File 'object.c', line 1523
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
|
#>=(other) ⇒ true, ...
Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil
if there's no relationship between the two. (Think of the relationship in terms of the class definition: "class A<B" implies "B>A").
1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# File 'object.c', line 1502
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
if (!CLASS_OR_MODULE_P(arg)) {
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_class_inherited_p(arg, mod);
}
|
#alias_method(new_name, old_name) ⇒ self (private)
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod
alias_method :orig_exit, :exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)
end
end
include Mod
exit(99)
produces:
Exiting with code 99
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 |
# File 'vm_method.c', line 1231
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
ID oldid = rb_check_id(&oldname);
if (!oldid) {
rb_print_undef_str(mod, oldname);
}
rb_alias(mod, rb_to_id(newname), oldid);
return mod;
}
|
#ancestors ⇒ Array
Returns a list of modules included in mod (including mod itself).
module Mod
include Math
include Comparable
end
Mod.ancestors #=> [Mod, Comparable, Math]
Math.ancestors #=> [Math]
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# File 'class.c', line 901
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (FL_TEST(p, FL_SINGLETON))
continue;
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
else if (p == RCLASS_ORIGIN(p)) {
rb_ary_push(ary, p);
}
}
return ary;
}
|
#append_features(mod) ⇒ Object (private)
When this module is included in another, Ruby calls append_features
in this module, passing it the receiving module in mod. Ruby's default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include
.
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 |
# File 'eval.c', line 953
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
switch (TYPE(include)) {
case T_CLASS:
case T_MODULE:
break;
default:
Check_Type(include, T_CLASS);
break;
}
rb_include_module(include, module);
return module;
}
|
#attr ⇒ Object (private)
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 |
# File 'object.c', line 1816
VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
rb_warning("optional boolean argument is obsoleted");
rb_attr(klass, rb_to_id(argv[0]), 1, RTEST(argv[1]), TRUE);
return Qnil;
}
return rb_mod_attr_reader(argc, argv, klass);
}
|
#attr_accessor(symbol, ...) ⇒ nil (private)
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute.
module Mod
attr_accessor(:one, :two)
end
Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 |
# File 'object.c', line 1861
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), TRUE, TRUE, TRUE);
}
return Qnil;
}
|
#attr_reader(symbol, ...) ⇒ nil (private) #attr(symbol, ...) ⇒ nil (private)
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling "attr
:name" on each name in turn.
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 |
# File 'object.c', line 1805
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), TRUE, FALSE, TRUE);
}
return Qnil;
}
|
#attr_writer(symbol, ...) ⇒ nil (private)
Creates an accessor method to allow assignment to the attribute symbol.id2name
.
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 |
# File 'object.c', line 1835
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), FALSE, TRUE, TRUE);
}
return Qnil;
}
|
#autoload ⇒ nil
Registers filename to be loaded (using Kernel::require
) the first time that module (which may be a String
or a symbol) is accessed in the namespace of mod.
module A
end
A.autoload(:B, "b")
A::B.doit # autoloads "b"
996 997 998 999 1000 1001 1002 1003 1004 |
# File 'load.c', line 996
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
ID id = rb_to_id(sym);
FilePathValue(file);
rb_autoload(mod, id, RSTRING_PTR(file));
return Qnil;
}
|
#autoload?(name) ⇒ String?
Returns filename to be loaded if name is registered as autoload
in the namespace of mod.
module A
end
A.autoload(:B, "b")
A.autoload?(:B) #=> "b"
1019 1020 1021 1022 1023 1024 1025 1026 1027 |
# File 'load.c', line 1019
static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
ID id = rb_check_id(&sym);
if (!id) {
return Qnil;
}
return rb_autoload_p(mod, id);
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
1643 1644 1645 1646 1647 |
# File 'vm_eval.c', line 1643
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
1669 1670 1671 1672 1673 |
# File 'vm_eval.c', line 1669
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#class_variable_defined?(symbol) ⇒ Boolean
Returns true
if the given class variable is defined in obj.
class Fred
@@foo = 99
end
Fred.class_variable_defined?(:@@foo) #=> true
Fred.class_variable_defined?(:@@bar) #=> false
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 |
# File 'object.c', line 2264
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_class_name(iv)) {
return Qfalse;
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE(iv));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE_ID(id));
}
return rb_cvar_defined(obj, id);
}
|
#class_variable_get(symbol) ⇒ Object
Returns the value of the given class variable (or throws a NameError
exception). The @@
part of the variable name should be included for regular class variables
class Fred
@@foo = 99
end
Fred.class_variable_get(:@@foo) #=> 99
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 |
# File 'object.c', line 2198
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = rb_check_id(&iv);
if (!id) {
if (rb_is_class_name(iv)) {
rb_name_error_str(iv, "uninitialized class variable %"PRIsVALUE" in %"PRIsVALUE"",
iv, rb_class_name(obj));
}
else {
rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE(iv));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE_ID(id));
}
return rb_cvar_get(obj, id);
}
|
#class_variable_set(symbol, obj) ⇒ Object
Sets the class variable names by symbol to object.
class Fred
@@foo = 99
def foo
@@foo
end
end
Fred.class_variable_set(:@@foo, 101) #=> 101
Fred.new.foo #=> 101
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 |
# File 'object.c', line 2237
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
QUOTE_ID(id));
}
rb_cvar_set(obj, id, val);
return val;
}
|
#class_variables(inherit = true) ⇒ Array
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One
@@var1 = 1
end
class Two < One
@@var2 = 2
end
One.class_variables #=> [:@@var1]
Two.class_variables #=> [:@@var2, :@@var1]
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 |
# File 'variable.c', line 2502
VALUE
rb_mod_class_variables(int argc, VALUE *argv, VALUE mod)
{
VALUE inherit;
st_table *tbl;
if (argc == 0) {
inherit = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &inherit);
}
if (RTEST(inherit)) {
tbl = mod_cvar_of(mod, 0);
}
else {
tbl = mod_cvar_at(mod, 0);
}
return cvar_list(tbl);
}
|
#const_defined?(sym, inherit = true) ⇒ Boolean
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 |
# File 'object.c', line 2043
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
if (!(id = rb_check_id(&name))) {
if (rb_is_const_name(name)) {
return Qfalse;
}
else {
rb_name_error_str(name, "wrong constant name %"PRIsVALUE,
QUOTE(name));
}
}
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %"PRIsVALUE,
QUOTE_ID(id));
}
return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
}
|
#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object
Checks for a constant with the given name in mod If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
.)
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end
Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo
class Bar
VAL = 10
end
class Baz < Bar; end
end
Object.const_get 'Foo::Baz::VAL' # => 10
Object.const_get 'Foo::Baz::VAL', false # => NameError
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 |
# File 'object.c', line 1906
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
rb_encoding *enc;
const char *pbeg, *p, *path, *pend;
ID id;
int nestable = 1;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
if (SYMBOL_P(name)) {
name = rb_sym_to_s(name);
nestable = 0;
}
name = rb_check_string_type(name);
Check_Type(name, T_STRING);
enc = rb_enc_get(name);
path = RSTRING_PTR(name);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(name);
if (p >= pend || !*p) {
wrong_name:
rb_raise(rb_eNameError, "wrong constant name %"PRIsVALUE,
QUOTE(name));
}
if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
if (!nestable) goto wrong_name;
mod = rb_cObject;
p += 2;
pbeg = p;
}
while (p < pend) {
VALUE part;
long len, beglen;
while (p < pend && *p != ':') p++;
if (pbeg == p) goto wrong_name;
id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
beglen = pbeg-path;
if (p < pend && p[0] == ':') {
if (!nestable) goto wrong_name;
if (p + 2 >= pend || p[1] != ':') goto wrong_name;
p += 2;
pbeg = p;
}
if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
QUOTE(name));
}
if (!id) {
if (!ISUPPER(*pbeg) || !rb_enc_symname2_p(pbeg, len, enc)) {
part = rb_str_subseq(name, beglen, len);
rb_name_error_str(part, "wrong constant name %"PRIsVALUE,
QUOTE(part));
}
else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
id = rb_intern3(pbeg, len, enc);
}
else {
part = rb_str_subseq(name, beglen, len);
rb_name_error_str(part, "uninitialized constant %"PRIsVALUE"%"PRIsVALUE,
rb_str_subseq(name, 0, beglen),
QUOTE(part));
}
}
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %"PRIsVALUE,
QUOTE_ID(id));
}
mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
return mod;
}
|
#const_missing(sym) ⇒ Object
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name)
name # return the constant name as Symbol
end
Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.
def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"
end
1512 1513 1514 1515 1516 1517 1518 1519 |
# File 'variable.c', line 1512
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
rb_frame_pop(); /* pop frame for "const_missing" */
uninitialized_constant(klass, rb_to_id(name));
UNREACHABLE;
}
|
#const_set(sym, obj) ⇒ Object
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 |
# File 'object.c', line 2015
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %"PRIsVALUE,
QUOTE_ID(id));
}
rb_const_set(mod, id, value);
return value;
}
|
#constants(inherit = true) ⇒ Array
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false
.
IO.constants.include?(:SYNC) #=> true
IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 |
# File 'variable.c', line 2040
VALUE
rb_mod_constants(int argc, VALUE *argv, VALUE mod)
{
VALUE inherit;
st_table *tbl;
if (argc == 0) {
inherit = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &inherit);
}
if (RTEST(inherit)) {
tbl = rb_mod_const_of(mod, 0);
}
else {
tbl = rb_mod_const_at(mod, 0);
}
return rb_const_list(tbl);
}
|
#define_method(symbol, method) ⇒ Object (private) #define_method(symbol) { ... } ⇒ Proc (private)
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. This block is evaluated using instance_eval
, a point that is tricky to demonstrate because define_method
is private. (This is why we resort to the send
hack in this example.)
class A
def fred
puts "In Fred"
end
def create_method(name, &block)
self.class.send(:define_method, name, &block)
end
define_method(:wilma) { puts "Charge it!" }
end
class B < A
define_method(:barney, instance_method(:fred))
end
a = B.new
a.
a.wilma
a.create_method(:betty) { p self }
a.betty
produces:
In Fred
Charge it!
#<B:0x401b39e8>
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 |
# File 'proc.c', line 1358
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
int noex = NOEX_PUBLIC;
if (argc == 1) {
id = rb_to_id(argv[0]);
body = rb_block_lambda();
}
else {
rb_check_arity(argc, 1, 2);
id = rb_to_id(argv[0]);
body = argv[1];
if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method)",
rb_obj_classname(body));
}
}
if (rb_obj_is_method(body)) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
VALUE rclass = method->rclass;
if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, rclass))) {
if (FL_TEST(rclass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of %s",
rb_class2name(rclass));
}
}
rb_method_entry_set(mod, id, method->me, noex);
}
else if (rb_obj_is_proc(body)) {
rb_proc_t *proc;
body = proc_dup(body);
GetProcPtr(body, proc);
if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
proc->block.iseq->defined_method_id = id;
proc->block.iseq->klass = mod;
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
proc->block.klass = mod;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
}
else {
/* type error */
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
}
return body;
}
|
#extend_object(obj) ⇒ Object (private)
Extends the specified object by adding this module's constants and methods (which are added as singleton methods). This is the callback method used by Object#extend
.
module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"
else
puts "Picky added to #{o.class}"
super
end
end
end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky
produces:
Picky added to Array
Can't add Picky to a String
1266 1267 1268 1269 1270 1271 |
# File 'eval.c', line 1266
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
|
#extended ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#freeze ⇒ Object
Prevents further modifications to mod.
This method returns self.
1413 1414 1415 1416 1417 1418 |
# File 'object.c', line 1413
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
|
#include ⇒ self (private)
Invokes Module.append_features
on each parameter in reverse order.
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
# File 'eval.c', line 976
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
|
#include? ⇒ Boolean
Returns true
if module is included in mod or one of mod's ancestors.
module A
end
class B
include A
end
class C < B
end
B.include?(A) #=> true
C.include?(A) #=> true
A.include?(A) #=> false
871 872 873 874 875 876 877 878 879 880 881 882 883 |
# File 'class.c', line 871
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
}
return Qfalse;
}
|
#included ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#included_modules ⇒ Array
Returns the list of modules included in mod.
module Mixin
end
module Outer
include Mixin
end
Mixin.included_modules #=> []
Outer.included_modules #=> [Mixin]
838 839 840 841 842 843 844 845 846 847 848 849 850 |
# File 'class.c', line 838
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
}
return ary;
}
|
#initialize_copy ⇒ Object
:nodoc:
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# File 'class.c', line 195
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
if (RB_TYPE_P(clone, T_CLASS)) {
class_init_copy_check(clone, orig);
}
rb_obj_init_copy(clone, orig);
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC(clone)->klass = rb_singleton_class_clone(orig);
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
}
RCLASS_SUPER(clone) = RCLASS_SUPER(orig);
RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
if (RCLASS_IV_TBL(orig)) {
st_data_t id;
if (RCLASS_IV_TBL(clone)) {
st_free_table(RCLASS_IV_TBL(clone));
}
RCLASS_IV_TBL(clone) = st_copy(RCLASS_IV_TBL(orig));
CONST_ID(id, "__tmp_classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classid__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
}
if (RCLASS_CONST_TBL(orig)) {
if (RCLASS_CONST_TBL(clone)) {
rb_free_const_table(RCLASS_CONST_TBL(clone));
}
RCLASS_CONST_TBL(clone) = st_init_numtable();
st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)RCLASS_CONST_TBL(clone));
}
if (RCLASS_M_TBL(orig)) {
if (RCLASS_M_TBL(clone)) {
rb_free_m_table(RCLASS_M_TBL(clone));
}
RCLASS_M_TBL(clone) = st_init_numtable();
st_foreach(RCLASS_M_TBL(orig), clone_method_i, (st_data_t)clone);
}
return clone;
}
|
#instance_method(symbol) ⇒ Object
Returns an UnboundMethod
representing the given instance method in mod.
class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end
Dispatcher = {
"a" => instance_method(:do_a),
"d" => instance_method(:do_d),
"e" => instance_method(:do_e),
"v" => instance_method(:do_v)
}
def interpret(string)
string.each_char {|b| Dispatcher[b].bind(self).call }
end
end
interpreter = Interpreter.new
interpreter.interpret('dave')
produces:
Hello there, Dave!
1294 1295 1296 1297 1298 1299 1300 1301 1302 |
# File 'proc.c', line 1294
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
|
#instance_methods(include_super = true) ⇒ Array
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. With no argument, or with an argument that is false
, the instance methods in mod are returned, otherwise the methods in mod and mod's superclasses are returned.
module A
def method1() end
end
class B
def method2() end
end
class C < B
def method3() end
end
A.instance_methods #=> [:method1]
B.instance_methods(false) #=> [:method2]
C.instance_methods(false) #=> [:method3]
C.instance_methods(true).length #=> 43
1048 1049 1050 1051 1052 |
# File 'class.c', line 1048
VALUE
rb_class_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
|
#method_added ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_defined?(symbol) ⇒ Boolean
Returns true
if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched.
module A
def method1() end
end
class B
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.method_defined? "method1" #=> true
C.method_defined? "method2" #=> true
C.method_defined? "method3" #=> true
C.method_defined? "method4" #=> false
961 962 963 964 965 966 967 968 969 970 |
# File 'vm_method.c', line 961
static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
ID id = rb_check_id(&mid);
if (!id || !rb_method_boundp(mod, id, 1)) {
return Qfalse;
}
return Qtrue;
}
|
#method_removed ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#method_undefined ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object
Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval
returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.
class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there!
dummy:123:in `module_eval': undefined local variable
or method `code' for Thing:Class
1643 1644 1645 1646 1647 |
# File 'vm_eval.c', line 1643
VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
return specific_eval(argc, argv, mod, mod);
}
|
#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver.
class Thing
end
Thing.class_exec{
def hello() "Hello there!" end
}
puts Thing.new.hello()
produces:
Hello there!
1669 1670 1671 1672 1673 |
# File 'vm_eval.c', line 1669
VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
return yield_under(mod, mod, rb_ary_new4(argc, argv));
}
|
#module_function(symbol, ...) ⇒ self (private)
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions.
module Mod
def one
"This is one"
end
module_function :one
end
class Cls
include Mod
def call_one
one
end
end
Mod.one #=> "This is one"
c = Cls.new
c.call_one #=> "This is one"
module Mod
def one
"This is the new one"
end
end
Mod.one #=> "This is one"
c.call_one #=> "This is the new one"
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 |
# File 'vm_method.c', line 1445
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
int i;
ID id;
const rb_method_entry_t *me;
if (!RB_TYPE_P(module, T_MODULE)) {
rb_raise(rb_eTypeError, "module_function must be called for modules");
}
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_MODFUNC);
return module;
}
set_method_visibility(module, argc, argv, NOEX_PRIVATE);
for (i = 0; i < argc; i++) {
VALUE m = module;
id = rb_to_id(argv[i]);
for (;;) {
me = search_method(m, id, 0);
if (me == 0) {
me = search_method(rb_cObject, id, 0);
}
if (UNDEFINED_METHOD_ENTRY_P(me)) {
rb_print_undef(module, id, 0);
}
if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
break; /* normal case: need not to follow 'super' link */
}
m = RCLASS_SUPER(m);
if (!m)
break;
}
rb_method_entry_set(rb_singleton_class(module), id, me, NOEX_PUBLIC);
}
return module;
}
|
#name ⇒ String
Returns the name of the module mod. Returns nil for anonymous modules.
204 205 206 207 208 209 210 211 212 |
# File 'variable.c', line 204
VALUE
rb_mod_name(VALUE mod)
{
int permanent;
VALUE path = classname(mod, &permanent);
if (!NIL_P(path)) return rb_str_dup(path);
return path;
}
|
#prepend ⇒ self (private)
Invokes Module.prepend_features
on each parameter in reverse order.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 |
# File 'eval.c', line 1029
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
|
#prepend_features(mod) ⇒ Object (private)
When this module is prepended in another, Ruby calls prepend_features
in this module, passing it the receiving module in mod. Ruby's default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend
.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
# File 'eval.c', line 1006
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
switch (TYPE(prepend)) {
case T_CLASS:
case T_MODULE:
break;
default:
Check_Type(prepend, T_CLASS);
break;
}
rb_prepend_module(prepend, module);
return module;
}
|
#prepended ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|
#private ⇒ self (private) #private(symbol, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility.
module Mod
def a() end
def b() end
private
def c() end
private :a
end
Mod.private_instance_methods #=> [:a, :c]
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 |
# File 'vm_method.c', line 1337
static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PRIVATE);
}
else {
set_method_visibility(module, argc, argv, NOEX_PRIVATE);
}
return module;
}
|
#private_class_method(symbol, ...) ⇒ Object
Makes existing class methods private. Often used to hide the default constructor new
.
class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me
end
end
1380 1381 1382 1383 1384 1385 |
# File 'vm_method.c', line 1380
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PRIVATE);
return obj;
}
|
#private_constant(symbol, ...) ⇒ Object
Makes a list of existing constants private.
2263 2264 2265 2266 2267 2268 |
# File 'variable.c', line 2263
VALUE
rb_mod_private_constant(int argc, VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PRIVATE);
return obj;
}
|
#private_instance_methods(include_super = true) ⇒ Array
Returns a list of the private instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
module Mod
def method1() end
private :method1
def method2() end
end
Mod.instance_methods #=> [:method2]
Mod.private_instance_methods #=> [:method1]
1086 1087 1088 1089 1090 |
# File 'class.c', line 1086
VALUE
rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
|
#private_method_defined?(symbol) ⇒ Boolean
Returns true
if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
private
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.private_method_defined? "method1" #=> false
C.private_method_defined? "method2" #=> true
C.method_defined? "method2" #=> false
1046 1047 1048 1049 1050 |
# File 'vm_method.c', line 1046
static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PRIVATE);
}
|
#protected ⇒ self (private) #protected(symbol, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility.
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 |
# File 'vm_method.c', line 1305
static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PROTECTED);
}
else {
set_method_visibility(module, argc, argv, NOEX_PROTECTED);
}
return module;
}
|
#protected_instance_methods(include_super = true) ⇒ Array
Returns a list of the protected instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
1063 1064 1065 1066 1067 |
# File 'class.c', line 1063
VALUE
rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
|
#protected_method_defined?(symbol) ⇒ Boolean
Returns true
if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.protected_method_defined? "method1" #=> false
C.protected_method_defined? "method2" #=> true
C.method_defined? "method2" #=> true
1078 1079 1080 1081 1082 |
# File 'vm_method.c', line 1078
static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PROTECTED);
}
|
#public ⇒ self (private) #public(symbol, ...) ⇒ self (private)
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility.
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
# File 'vm_method.c', line 1282
static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
secure_visibility(module);
if (argc == 0) {
SCOPE_SET(NOEX_PUBLIC);
}
else {
set_method_visibility(module, argc, argv, NOEX_PUBLIC);
}
return module;
}
|
#public_class_method(symbol, ...) ⇒ Object
Makes a list of existing class methods public.
1357 1358 1359 1360 1361 1362 |
# File 'vm_method.c', line 1357
static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
set_method_visibility(CLASS_OF(obj), argc, argv, NOEX_PUBLIC);
return obj;
}
|
#public_constant(symbol, ...) ⇒ Object
Makes a list of existing constants public.
2277 2278 2279 2280 2281 2282 |
# File 'variable.c', line 2277
VALUE
rb_mod_public_constant(int argc, VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PUBLIC);
return obj;
}
|
#public_instance_method(symbol) ⇒ Object
Similar to instance_method, searches public method only.
1311 1312 1313 1314 1315 1316 1317 1318 1319 |
# File 'proc.c', line 1311
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
|
#public_instance_methods(include_super = true) ⇒ Array
Returns a list of the public instance methods defined in mod. If the optional parameter is not false
, the methods of any ancestors are included.
1101 1102 1103 1104 1105 |
# File 'class.c', line 1101
VALUE
rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
|
#public_method_defined?(symbol) ⇒ Boolean
Returns true
if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors).
module A
def method1() end
end
class B
protected
def method2() end
end
class C < B
include A
def method3() end
end
A.method_defined? :method1 #=> true
C.public_method_defined? "method1" #=> true
C.public_method_defined? "method2" #=> false
C.method_defined? "method2" #=> true
1014 1015 1016 1017 1018 |
# File 'vm_method.c', line 1014
static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
return check_definition(mod, mid, NOEX_PUBLIC);
}
|
#refine(klass) { ... } ⇒ Object (private)
Refine klass in the receiver.
Returns an overlaid module.
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 |
# File 'eval.c', line 1178
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);
warn_refinements_once();
if (!block) {
rb_raise(rb_eArgError, "no block given");
}
if (block->proc) {
rb_raise(rb_eArgError,
"can't pass a Proc as a block to Module#refine");
}
Check_Type(klass, T_CLASS);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
refinement = rb_module_new();
RCLASS_SUPER(refinement) = klass;
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
|
#remove_class_variable(sym) ⇒ Object
Removes the definition of the sym, returning that constant's value.
class Dummy
@@var = 99
puts @@var
remove_class_variable(:@@var)
p(defined? @@var)
end
produces:
99
nil
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 |
# File 'variable.c', line 2543
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
const ID id = rb_check_id(&name);
st_data_t val, n = id;
if (!id) {
if (rb_is_class_name(name)) {
rb_name_error_str(name, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
name, rb_class_name(mod));
}
else {
rb_name_error_str(name, "wrong class variable name %"PRIsVALUE"", QUOTE(name));
}
}
if (!rb_is_class_id(id)) {
rb_name_error(id, "wrong class variable name %"PRIsVALUE"", QUOTE_ID(id));
}
if (!OBJ_UNTRUSTED(mod) && rb_safe_level() >= 4)
rb_raise(rb_eSecurityError, "Insecure: can't remove class variable");
rb_check_frozen(mod);
if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
return (VALUE)val;
}
if (rb_cvar_defined(mod, id)) {
rb_name_error(id, "cannot remove %"PRIsVALUE" for %"PRIsVALUE"",
QUOTE_ID(id), rb_class_name(mod));
}
rb_name_error(id, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
QUOTE_ID(id), rb_class_name(mod));
UNREACHABLE;
}
|
#remove_const(sym) ⇒ Object (private)
Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 |
# File 'variable.c', line 1910
VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
const ID id = rb_check_id(&name);
if (!id) {
if (rb_is_const_name(name)) {
rb_name_error_str(name, "constant %"PRIsVALUE"::%"PRIsVALUE" not defined",
rb_class_name(mod), name);
}
else {
rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as a constant name",
QUOTE(name));
}
}
if (!rb_is_const_id(id)) {
rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a constant name",
QUOTE_ID(id));
}
return rb_const_remove(mod, id);
}
|
#remove_method(symbol) ⇒ self (private)
Removes the method identified by symbol from the current class. For an example, see Module.undef_method
.
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# File 'vm_method.c', line 700
static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_name_error_str(v, "method `%s' not defined in %s",
RSTRING_PTR(v), rb_class2name(mod));
}
remove_method(mod, id);
}
return mod;
}
|
#to_s ⇒ String Also known as: inspect
Return a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 |
# File 'object.c', line 1369
static VALUE
rb_mod_to_s(VALUE klass)
{
ID id_defined_at;
VALUE refined_class, defined_at;
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<Class:");
VALUE v = rb_iv_get(klass, "__attached__");
if (CLASS_OR_MODULE_P(v)) {
rb_str_append(s, rb_inspect(v));
}
else {
rb_str_append(s, rb_any_to_s(v));
}
rb_str_cat2(s, ">");
return s;
}
refined_class = rb_refinement_module_get_refined_class(klass);
if (!NIL_P(refined_class)) {
VALUE s = rb_usascii_str_new2("#<refinement:");
rb_str_concat(s, rb_inspect(refined_class));
rb_str_cat2(s, "@");
CONST_ID(id_defined_at, "__defined_at__");
defined_at = rb_attr_get(klass, id_defined_at);
rb_str_concat(s, rb_inspect(defined_at));
rb_str_cat2(s, ">");
return s;
}
return rb_str_dup(rb_class_name(klass));
}
|
#undef_method(symbol) ⇒ self (private)
Prevents the current class from responding to calls to the named method. Contrast this with remove_method
, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver.
class Parent
def hello
puts "In parent"
end
end
class Child < Parent
def hello
puts "In child"
end
end
c = Child.new
c.hello
class Child
remove_method :hello # remove from child, still in parent
end
c.hello
class Child
undef_method :hello # prevent any calls to 'hello'
end
c.hello
produces:
In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# File 'vm_method.c', line 920
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
int i;
for (i = 0; i < argc; i++) {
VALUE v = argv[i];
ID id = rb_check_id(&v);
if (!id) {
rb_method_name_error(mod, v);
}
rb_undef(mod, id);
}
return mod;
}
|
#used ⇒ Object (private)
Not documented
828 829 830 831 832 |
# File 'object.c', line 828
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
|