Module: Enumerable

Overview

The Enumerable mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method each, which yields successive members of the collection. If Enumerable#max, #min, or #sort is used, the objects in the collection must also implement a meaningful <=> operator, as these methods rely on an ordering between members of the collection.

Instance Method Summary collapse

Instance Method Details

#all? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } which will cause #all? to return true when none of the collection members are false or nil.

%w[ant bear cat].all? { |word| word.length >= 3 } #=> true
%w[ant bear cat].all? { |word| word.length >= 4 } #=> false
[nil, true, 99].all?                              #=> false

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1049
1050
1051
1052
1053
1054
1055
# File 'enum.c', line 1049

static VALUE
enum_all(VALUE obj)
{
    NODE *memo = NEW_MEMO(Qtrue, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
    return memo->u1.value;
}

#any? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block ever returns a value other than false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } that will cause #any? to return true if at least one of the collection members is not false or nil.

%w[ant bear cat].any? { |word| word.length >= 3 } #=> true
%w[ant bear cat].any? { |word| word.length >= 4 } #=> true
[nil, true, 99].any?                              #=> true

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1083
1084
1085
1086
1087
1088
1089
# File 'enum.c', line 1083

static VALUE
enum_any(VALUE obj)
{
    NODE *memo = NEW_MEMO(Qfalse, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
    return memo->u1.value;
}

#chunk {|elt| ... } ⇒ Object #chunk(initial_state) {|elt, state| ... } ⇒ Object

Enumerates over the items, chunking them together based on the return value of the block.

Consecutive elements which return the same block value are chunked together.

For example, consecutive even numbers and odd numbers can be chunked as follows.

[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
  n.even?
}.each { |even, ary|
  p [even, ary]
}
#=> [false, [3, 1]]
#   [true, [4]]
#   [false, [1, 5, 9]]
#   [true, [2, 6]]
#   [false, [5, 3, 5]]

This method is especially useful for sorted series of elements. The following example counts words for each initial letter.

open("/usr/share/dict/words", "r:iso-8859-1") { |f|
  f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
}
#=> ["\n", 1]
#   ["A", 1327]
#   ["B", 1372]
#   ["C", 1507]
#   ["D", 791]
#   ...

The following key values have special meaning:

  • nil and :_separator specifies that the elements should be dropped.

  • :_alone specifies that the element should be chunked by itself.

Any other symbols that begin with an underscore will raise an error:

items.chunk { |item| :_underscore }
#=> RuntimeError: symbols beginning with an underscore are reserved

nil and :_separator can be used to ignore some elements.

For example, the sequence of hyphens in svn log can be eliminated as follows:

sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
  f.chunk { |line|
    line != sep || nil
  }.each { |_, lines|
    pp lines
  }
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Update the portability section.\n",
#    "\n"]
#   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Add a note about default C flags.\n",
#    "\n"]
#   ...

Paragraphs separated by empty lines can be parsed as follows:

File.foreach("README").chunk { |line|
  /\A\s*\z/ !~ line || nil
}.each { |_, lines|
  pp lines
}

:_alone can be used to force items into their own chunk. For example, you can put lines that contain a URL by themselves, and chunk the rest of the lines together, like this:

pattern = /http/
open(filename) { |f|
  f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
    pp lines
  }
}

Overloads:

  • #chunk {|elt| ... } ⇒ Object

    Yields:

    • (elt)
  • #chunk(initial_state) {|elt, state| ... } ⇒ Object

    Yields:

    • (elt, state)


2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
# File 'enum.c', line 2856

static VALUE
enum_chunk(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE initial_state;
    VALUE enumerator;
    int n;

    if (!rb_block_given_p())
	rb_raise(rb_eArgError, "no block given");
    n = rb_scan_args(argc, argv, "01", &initial_state);
    if (n != 0)
        rb_warn("initial_state given for chunk.  (Use local variables.)");

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
    rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
    rb_ivar_set(enumerator, rb_intern("chunk_initial_state"), initial_state);
    rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
    return enumerator;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



425
426
427
428
429
430
431
432
433
434
435
436
# File 'enum.c', line 425

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, collect_i, ary);

    return ary;
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



472
473
474
475
476
477
478
479
480
481
482
483
# File 'enum.c', line 472

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#countInteger #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer

Returns the number of items in enum through enumeration. If an argument is given, the number of items in enum that are equal to item are counted. If a block is given, it counts the number of elements yielding a true value.

ary = [1, 2, 4, 2]
ary.count               #=> 4
ary.count(2)            #=> 2
ary.count{ |x| x%2==0 } #=> 3

Overloads:



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# File 'enum.c', line 147

static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
    VALUE item = Qnil;
    NODE *memo;
    rb_block_call_func *func;

    if (argc == 0) {
	if (rb_block_given_p()) {
	    func = count_iter_i;
	}
	else {
	    func = count_all_i;
	}
    }
    else {
	rb_scan_args(argc, argv, "1", &item);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = count_i;
    }

    memo = NEW_MEMO(item, 0, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return INT2NUM(memo->u3.cnt);
}

#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object

Calls block for each element of enum repeatedly n times or forever if none or nil is given. If a non-positive number is given or the collection is empty, does nothing. Returns nil if the loop has finished without getting interrupted.

Enumerable#cycle saves elements in an internal array so changes to enum after the first pass have no effect.

If no block is given, an enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }  # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

Overloads:

  • #cycle(n = nil) {|obj| ... } ⇒ nil

    Yields:

    • (obj)

    Returns:

    • (nil)


2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
# File 'enum.c', line 2656

static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    VALUE nv = Qnil;
    long n, i, len;

    rb_scan_args(argc, argv, "01", &nv);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
    if (NIL_P(nv)) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }
    ary = rb_ary_new();
    RBASIC_CLEAR_CLASS(ary);
    rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
    len = RARRAY_LEN(ary);
    if (len == 0) return Qnil;
    while (n < 0 || 0 < --n) {
        for (i=0; i<len; i++) {
            rb_yield(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..10).detect	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
(1..100).find	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# File 'enum.c', line 208

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE if_none;

    rb_scan_args(argc, argv, "01", &if_none);
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = NEW_MEMO(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->u1.value;
    }
    if (!NIL_P(if_none)) {
	return rb_funcall(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#drop(n) ⇒ Array

Drops first n elements from enum, and returns rest elements in an array.

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

Returns:



2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
# File 'enum.c', line 2545

static VALUE
enum_drop(VALUE obj, VALUE n)
{
    VALUE result;
    NODE *memo;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_new();
    memo = NEW_MEMO(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
    return result;
}

#drop_while {|arr| ... } ⇒ Array #drop_whileObject

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.drop_while { |i| i < 3 }   #=> [3, 4, 5, 0]

Overloads:

  • #drop_while {|arr| ... } ⇒ Array

    Yields:

    • (arr)

    Returns:



2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
# File 'enum.c', line 2594

static VALUE
enum_drop_while(VALUE obj)
{
    VALUE result;
    NODE *memo;

    RETURN_ENUMERATOR(obj, 0, 0);
    result = rb_ary_new();
    memo = NEW_MEMO(result, 0, FALSE);
    rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
    return result;
}

#each_cons(n) { ... } ⇒ nil #each_cons(n) ⇒ Object

Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.

e.g.:

(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]

Overloads:

  • #each_cons(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
# File 'enum.c', line 2257

static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    NODE *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
    arity = rb_block_arity();
    memo = NEW_MEMO(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);

    return Qnil;
}

#each_entry {|obj| ... } ⇒ Enumerator #each_entryObject

Calls block once for each element in self, passing that element as a parameter, converting multiple values from yield to an array.

If no block is given, an enumerator is returned instead.

class Foo
  include Enumerable
  def each
    yield 1
    yield 1, 2
    yield
  end
end
Foo.new.each_entry{ |o| p o }

produces:

1
[1, 2]
nil

Overloads:



2114
2115
2116
2117
2118
2119
2120
# File 'enum.c', line 2114

static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
    rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
    return obj;
}

#each_slice(n) { ... } ⇒ nil #each_slice(n) ⇒ Object

Iterates the given block for each slice of <n> elements. If no block is given, returns an enumerator.

(1..10).each_slice(3) { |a| p a }
# outputs below
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]

Overloads:

  • #each_slice(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
# File 'enum.c', line 2180

static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    VALUE ary;
    NODE *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
    ary = rb_ary_new2(size);
    arity = rb_block_arity();
    memo = NEW_MEMO(ary, dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
    ary = memo->u1.value;
    if (RARRAY_LEN(ary) > 0) rb_yield(ary);

    return Qnil;
}

#each_with_index(*args) {|obj, i| ... } ⇒ Enumerator #each_with_index(*args) ⇒ Object

Calls block with two arguments, the item and its index, for each item in enum. Given arguments are passed through to #each().

If no block is given, an enumerator is returned instead.

hash = Hash.new
%w(cat dog wombat).each_with_index { |item, index|
  hash[item] = index
}
hash   #=> {"cat"=>0, "dog"=>1, "wombat"=>2}

Overloads:



2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
# File 'enum.c', line 2028

static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    memo = NEW_MEMO(0, 0, 0);
    rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
    return obj;
}

#each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object #each_with_object(obj) ⇒ Object

Iterates the given block for each element with an arbitrary object given, and returns the initially given object.

If no block is given, returns an enumerator.

evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
#=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Overloads:

  • #each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object

    Yields:

    • ((*args), memo_obj)

    Returns:



2294
2295
2296
2297
2298
2299
2300
2301
2302
# File 'enum.c', line 2294

static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
    RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);

    rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);

    return memo;
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



498
499
500
501
502
503
504
505
506
507
# File 'enum.c', line 498

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);
    OBJ_INFECT(ary, obj);

    return ary;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..10).detect	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> nil
(1..100).find	{ |i| i % 5 == 0 and i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# File 'enum.c', line 208

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE if_none;

    rb_scan_args(argc, argv, "01", &if_none);
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = NEW_MEMO(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->u1.value;
    }
    if (!NIL_P(if_none)) {
	return rb_funcall(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_allObject #selectObject

Returns an array containing all elements of enum for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

See also Enumerable#reject.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



337
338
339
340
341
342
343
344
345
346
347
348
# File 'enum.c', line 337

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#find_index(value) ⇒ Integer? #find_index {|obj| ... } ⇒ Integer? #find_indexObject

Compares each entry in enum with value or passes to block. Returns the index for the first for which the evaluated value is non-false. If no object matches, returns nil

If neither block nor argument is given, an enumerator is returned instead.

(1..10).find_index  { |i| i % 5 == 0 and i % 7 == 0 }  #=> nil
(1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 }  #=> 34
(1..100).find_index(50)                                #=> 49

Overloads:



274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# File 'enum.c', line 274

static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;	/* [return value, current index, ] */
    VALUE condition_value = Qnil;
    rb_block_call_func *func;

    if (argc == 0) {
        RETURN_ENUMERATOR(obj, 0, 0);
        func = find_index_iter_i;
    }
    else {
	rb_scan_args(argc, argv, "1", &condition_value);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = find_index_i;
    }

    memo = NEW_MEMO(Qnil, condition_value, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return memo->u1.value;
}

#firstObject? #first(n) ⇒ Array

Returns the first element, or the first n elements, of the enumerable. If the enumerable is empty, the first form returns nil, and the second form returns an empty array.

%w[foo bar baz].first     #=> "foo"
%w[foo bar baz].first(2)  #=> ["foo", "bar"]
%w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
[].first                  #=> nil

Overloads:



791
792
793
794
795
796
797
798
799
800
801
802
803
804
# File 'enum.c', line 791

static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    rb_check_arity(argc, 0, 1);
    if (argc > 0) {
	return enum_take(obj, argv[0]);
    }
    else {
	memo = NEW_MEMO(Qnil, 0, 0);
	rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
	return memo->u1.value;
    }
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



472
473
474
475
476
477
478
479
480
481
482
483
# File 'enum.c', line 472

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#grep(pattern) ⇒ Array #grep(pattern) {|obj| ... } ⇒ Array

Returns an array of every element in enum for which Pattern === element. If the optional block is supplied, each matching element is passed to it, and the block’s result is stored in the output array.

(1..100).grep 38..44   #=> [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/)         #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) { |v| IO.const_get(v) }
res                    #=> [0, 1, 2]

Overloads:

  • #grep(pattern) ⇒ Array

    Returns:

  • #grep(pattern) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



85
86
87
88
89
90
91
92
93
94
# File 'enum.c', line 85

static VALUE
enum_grep(VALUE obj, VALUE pat)
{
    VALUE ary = rb_ary_new();
    NODE *memo = NEW_MEMO(pat, ary, 0);

    rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);

    return ary;
}

#group_by {|obj| ... } ⇒ Hash #group_byObject

Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and the values are arrays of elements in the collection that correspond to the key.

If no block is given an enumerator is returned.

(1..6).group_by { |i| i%3 }   #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}

Overloads:

  • #group_by {|obj| ... } ⇒ Hash

    Yields:

    • (obj)

    Returns:



747
748
749
750
751
752
753
754
755
756
757
758
759
# File 'enum.c', line 747

static VALUE
enum_group_by(VALUE obj)
{
    VALUE hash;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    hash = rb_hash_new();
    rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
    OBJ_INFECT(hash, obj);

    return hash;
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? :SEEK_SET          #=> true
IO.constants.include? :SEEK_NO_FURTHER   #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1992
1993
1994
1995
1996
1997
1998
1999
# File 'enum.c', line 1992

static VALUE
enum_member(VALUE obj, VALUE val)
{
    NODE *memo = NEW_MEMO(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->u2.value;
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# File 'enum.c', line 631

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }
    memo = NEW_MEMO(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->u1.value == Qundef) return Qnil;
    return memo->u1.value;
}

#lazyObject

Returns a lazy enumerator, whose methods map/collect, flat_map/collect_concat, select/find_all, reject, grep, zip, take, take_while, drop, and drop_while enumerate values only on an as-needed basis. However, if a block is given to zip, values are enumerated immediately.

Example

The following program finds pythagorean triples:

def pythagorean_triples
  (1..Float::INFINITY).lazy.flat_map {|z|
    (1..z).flat_map {|x|
      (x..z).select {|y|
        x**2 + y**2 == z**2
      }.map {|y|
        [x, y, z]
      }
    }
  }
end
# show first ten pythagorean triples
p pythagorean_triples.take(10).force # take is lazy, so force is needed
p pythagorean_triples.first(10)      # first is eager
# show pythagorean triples less than 100
p pythagorean_triples.take_while { |*, z| z < 100 }.force


1453
1454
1455
1456
1457
1458
1459
1460
# File 'enumerator.c', line 1453

static VALUE
enumerable_lazy(VALUE obj)
{
    VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size);
    /* Qfalse indicates that the Enumerator::Lazy has no method name */
    rb_ivar_set(result, id_method, Qfalse);
    return result;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



425
426
427
428
429
430
431
432
433
434
435
436
# File 'enum.c', line 425

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, collect_i, ary);

    return ary;
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object

Returns the object in enum with the maximum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.max                                   #=> "horse"
a.max { |a, b| a.length <=> b.length }  #=> "albatross"

If the n argument is given, maximum n elements are returned as an array.

a = %w[albatross dog horse]
a.max(2)                                  #=> ["horse", "dog"]
a.max(2) {|a, b| a.length <=> b.length }  #=> ["albatross", "horse"]

Overloads:



1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
# File 'enum.c', line 1520

static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo = NEW_MEMO(Qundef, 0, 0);
    VALUE result;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    if (!NIL_P(num))
       return nmin_run(obj, num, 0, 1);

    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
    }
    result = memo->u1.value;
    if (result == Qundef) return Qnil;
    return result;
}

#max_by {|obj| ... } ⇒ Object #max_byObject #max_by(n) {|obj| ... } ⇒ Object #max_by(n) ⇒ Object

Returns the object in enum that gives the maximum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.max_by { |x| x.length }   #=> "albatross"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]

enum.max_by(n) can be used to implement weighted random sampling. Following example implements and use Enumerable#wsample.

module Enumerable
  # weighted random sampling.
  #
  # Pavlos S. Efraimidis, Paul G. Spirakis
  # Weighted random sampling with a reservoir
  # Information Processing Letters
  # Volume 97, Issue 5 (16 March 2006)
  def wsample(n)
    self.max_by(n) {|v| rand ** (1.0/yield(v)) }
  end
end
e = (-20..20).to_a*10000
a = e.wsample(20000) {|x|
  Math.exp(-(x/5.0)**2) # normal distribution
}
# a is 20000 samples from e.
p a.length #=> 20000
h = a.group_by {|x| x }
-10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
#=> *
#   ***
#   ******
#   ***********
#   ******************
#   *****************************
#   *****************************************
#   ****************************************************
#   ***************************************************************
#   ********************************************************************
#   ***********************************************************************
#   ***********************************************************************
#   **************************************************************
#   ****************************************************
#   ***************************************
#   ***************************
#   ******************
#   ***********
#   *******
#   ***
#   *

Overloads:

  • #max_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #max_by(n) {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:



1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
# File 'enum.c', line 1843

static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (!NIL_P(num))
        return nmin_run(obj, num, 1, 1);

    memo = NEW_MEMO(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
    return memo->u2.value;
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? :SEEK_SET          #=> true
IO.constants.include? :SEEK_NO_FURTHER   #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1992
1993
1994
1995
1996
1997
1998
1999
# File 'enum.c', line 1992

static VALUE
enum_member(VALUE obj, VALUE val)
{
    NODE *memo = NEW_MEMO(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->u2.value;
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array

Returns the object in enum with the minimum value. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.min                                   #=> "albatross"
a.min { |a, b| a.length <=> b.length }  #=> "dog"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
a.min(2)                                  #=> ["albatross", "dog"]
a.min(2) {|a, b| a.length <=> b.length }  #=> ["dog", "horse"]

Overloads:



1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
# File 'enum.c', line 1434

static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo = NEW_MEMO(Qundef, 0, 0);
    VALUE result;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    if (!NIL_P(num))
       return nmin_run(obj, num, 0, 0);

    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)memo);
    }
    result = memo->u1.value;
    if (result == Qundef) return Qnil;
    return result;
}

#min_by {|obj| ... } ⇒ Object #min_byObject #min_by(n) {|obj| ... } ⇒ Array #min_by(n) ⇒ Object

Returns the object in enum that gives the minimum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.min_by { |x| x.length }   #=> "dog"

If the n argument is given, minimum n elements are returned as an array.

a = %w[albatross dog horse]
p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]

Overloads:

  • #min_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #min_by(n) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
# File 'enum.c', line 1738

static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE num;

    rb_scan_args(argc, argv, "01", &num);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (!NIL_P(num))
        return nmin_run(obj, num, 1, 0);

    memo = NEW_MEMO(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
    return memo->u2.value;
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns two elements array which contains the minimum and the maximum value in the enumerable. The first form assumes all objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.minmax                                  #=> ["albatross", "horse"]
a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
# File 'enum.c', line 1670

static VALUE
enum_minmax(VALUE obj)
{
    NODE *memo = NEW_MEMO(Qundef, Qundef, Qundef);
    struct minmax_t *m = (struct minmax_t *)&memo->u1.value;
    VALUE ary = rb_ary_new3(2, Qnil, Qnil);

    m->min = Qundef;
    m->last = Qundef;
    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)memo);
	if (m->last != Qundef)
	    minmax_ii_update(m->last, m->last, m);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)memo);
	if (m->last != Qundef)
	    minmax_i_update(m->last, m->last, m);
    }
    if (m->min != Qundef) {
	rb_ary_store(ary, 0, m->min);
	rb_ary_store(ary, 1, m->max);
    }
    return ary;
}

#minmax_by {|obj| ... } ⇒ Array #minmax_byObject

Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.minmax_by { |x| x.length }   #=> ["dog", "albatross"]

Overloads:

  • #minmax_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
# File 'enum.c', line 1946

static VALUE
enum_minmax_by(VALUE obj)
{
    VALUE memo;
    struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    m->min_bv = Qundef;
    m->max_bv = Qundef;
    m->min = Qnil;
    m->max = Qnil;
    m->last_bv = Qundef;
    m->last = Qundef;
    rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
    if (m->last_bv != Qundef)
        minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
    m = MEMO_FOR(struct minmax_by_t, memo);
    return rb_assoc_new(m->min, m->max);
}

#none? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns true for all elements. If the block is not given, none? will return true only if none of the collection members is true.

%w{ant bear cat}.none? { |word| word.length == 5 } #=> true
%w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
[].none?                                           #=> true
[nil].none?                                        #=> true
[nil, false].none?                                 #=> true

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1362
1363
1364
1365
1366
1367
1368
# File 'enum.c', line 1362

static VALUE
enum_none(VALUE obj)
{
    NODE *memo = NEW_MEMO(Qtrue, 0, 0);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
    return memo->u1.value;
}

#one? {|obj| ... } ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block returns true exactly once. If the block is not given, one? will return true only if exactly one of the collection members is true.

%w{ant bear cat}.one? { |word| word.length == 4 }  #=> true
%w{ant bear cat}.one? { |word| word.length > 4 }   #=> false
%w{ant bear cat}.one? { |word| word.length < 4 }   #=> false
[ nil, true, 99 ].one?                             #=> false
[ nil, true, false ].one?                          #=> true

Yields:

  • (obj)

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
# File 'enum.c', line 1326

static VALUE
enum_one(VALUE obj)
{
    NODE *memo = NEW_MEMO(Qundef, 0, 0);
    VALUE result;

    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
    result = memo->u1.value;
    if (result == Qundef) return Qfalse;
    return result;
}

#partition {|obj| ... } ⇒ Array #partitionObject

Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.

If no block is given, an enumerator is returned instead.

(1..6).partition { |v| v.even? }  #=> [[2, 4, 6], [1, 3, 5]]

Overloads:

  • #partition {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



699
700
701
702
703
704
705
706
707
708
709
710
# File 'enum.c', line 699

static VALUE
enum_partition(VALUE obj)
{
    NODE *memo;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    memo = NEW_MEMO(rb_ary_new(), rb_ary_new(), 0);
    rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);

    return rb_assoc_new(memo->u1.value, memo->u2.value);
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# File 'enum.c', line 631

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    NODE *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }
    memo = NEW_MEMO(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->u1.value == Qundef) return Qnil;
    return memo->u1.value;
}

#reject {|obj| ... } ⇒ Array #rejectObject

Returns an array for all elements of enum for which the given block returns false.

If no block is given, an Enumerator is returned instead.

(1..10).reject { |i|  i % 3 == 0 }   #=> [1, 2, 4, 5, 7, 8, 10]

[1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]

See also Enumerable#find_all.

Overloads:

  • #reject {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



378
379
380
381
382
383
384
385
386
387
388
389
# File 'enum.c', line 378

static VALUE
enum_reject(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, reject_i, ary);

    return ary;
}

#reverse_each(*args) {|item| ... } ⇒ Enumerator #reverse_each(*args) ⇒ Object

Builds a temporary array and traverses that array in reverse order.

If no block is given, an enumerator is returned instead.

  (1..3).reverse_each { |v| p v }

produces:

  3
  2
  1

Overloads:



2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
# File 'enum.c', line 2059

static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    long i;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    ary = enum_to_a(argc, argv, obj);

    for (i = RARRAY_LEN(ary); --i >= 0; ) {
	rb_yield(RARRAY_AREF(ary, i));
    }

    return obj;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #find_allObject #selectObject

Returns an array containing all elements of enum for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

See also Enumerable#reject.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



337
338
339
340
341
342
343
344
345
346
347
348
# File 'enum.c', line 337

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#slice_after(pattern) ⇒ Object #slice_after {|elt| ... } ⇒ Object

Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is end of a chunk.

The === and block is called from the first element to the last element of enum.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, continuation lines (lines end with backslash) can be concatenated as follows:

lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]

Overloads:

  • #slice_after {|elt| ... } ⇒ Object

    Yields:

    • (elt)


3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
# File 'enum.c', line 3209

static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;
    VALUE pat = Qnil, pred = Qnil;

    if (rb_block_given_p()) {
        if (0 < argc)
            rb_raise(rb_eArgError, "both pattan and block are given");
        pred = rb_block_proc();
    }
    else {
        rb_scan_args(argc, argv, "1", &pat);
    }

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);

    rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
    return enumerator;
}

#slice_before(pattern) ⇒ Object #slice_before {|elt| ... } ⇒ Object #slice_before(initial_state) {|elt, state| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is beginning of a chunk.

The === and block is called from the first element to the last element of enum. The result for the first element is ignored.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_before(pattern).each { |ary| ... }
enum.slice_before { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, iteration over ChangeLog entries can be implemented as follows:

# iterate over ChangeLog entries.
open("ChangeLog") { |f|
  f.slice_before(/\A\S/).each { |e| pp e }
}

# same as above.  block is used instead of pattern argument.
open("ChangeLog") { |f|
  f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
}

“svn proplist -R” produces multiline output for each file. They can be chunked as follows:

IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
  f.lines.slice_before(/\AProp/).each { |lines| p lines }
}
#=> ["Properties on '.':\n", "  svn:ignore\n", "  svk:merge\n"]
#   ["Properties on 'goruby.c':\n", "  svn:eol-style\n"]
#   ["Properties on 'complex.c':\n", "  svn:mime-type\n", "  svn:eol-style\n"]
#   ["Properties on 'regparse.c':\n", "  svn:eol-style\n"]
#   ...

If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows:

a = [0, 2, 3, 4, 6, 7, 9]
prev = a[0]
p a.slice_before { |e|
  prev, prev2 = e, prev
  prev2 + 1 != e
}.map { |es|
  es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
}.join(",")
#=> "0,2-4,6,7,9"

However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new can be used to do it.

# Word wrapping.  This assumes all characters have same width.
def wordwrap(words, maxwidth)
  Enumerator.new {|y|
    # cols is initialized in Enumerator.new.
    cols = 0
    words.slice_before { |w|
      cols += 1 if cols != 0
      cols += w.length
      if maxwidth < cols
        cols = w.length
        true
      else
        false
      end
    }.each {|ws| y.yield ws }
  }
end
text = (1..20).to_a.join(" ")
enum = wordwrap(text.split(/\s+/), 10)
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # first enumeration.
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
puts "-"*10
#=> ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------

mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.

# parse mbox
open("mbox") { |f|
  f.slice_before { |line|
    line.start_with? "From "
  }.each { |mail|
    unix_from = mail.shift
    i = mail.index("\n")
    header = mail[0...i]
    body = mail[(i+1)..-1]
    body.pop if body.last == "\n"
    fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
    p unix_from
    pp fields
    pp body
  }
}

# split mails in mbox (slice before Unix From line after an empty line)
open("mbox") { |f|
  f.slice_before(emp: true) { |line, h|
    prevemp = h[:emp]
    h[:emp] = line == "\n"
    prevemp && line.start_with?("From ")
  }.each { |mail|
    mail.pop if mail.last == "\n"
    pp mail
  }
}

Overloads:

  • #slice_before {|elt| ... } ⇒ Object

    Yields:

    • (elt)
  • #slice_before(initial_state) {|elt, state| ... } ⇒ Object

    Yields:

    • (elt, state)


3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
# File 'enum.c', line 3083

static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;

    if (rb_block_given_p()) {
        VALUE initial_state;
        int n;
        n = rb_scan_args(argc, argv, "01", &initial_state);
        if (n != 0)
	    rb_warn("initial_state given for slice_before.  (Use local variables.)");
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
        rb_ivar_set(enumerator, rb_intern("slicebefore_initial_state"), initial_state);
    }
    else {
        VALUE sep_pat;
        rb_scan_args(argc, argv, "1", &sep_pat);
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
    }
    rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
    rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
    return enumerator;
}

#slice_when {|elt_before, elt_after| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.

This method split each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true.

The block is called the length of the receiver enumerator minus one.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, one-by-one increasing subsequence can be chunked as follows:

a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.slice_when {|i, j| i+1 != j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"

Near elements (threshold: 6) in sorted array can be chunked as follwos:

a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
p a.slice_when {|i, j| 6 < j - i }.to_a
#=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]

Increasing (non-decreasing) subsequence can be chunked as follows:

a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.slice_when {|i, j| i > j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]

Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)

a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.slice_when {|i, j| i.even? != j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]

Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk to ignore empty lines.)

lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
#=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]

Yields:

  • (elt_before, elt_after)


3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
# File 'enum.c', line 3355

static VALUE
enum_slice_when(VALUE enumerable)
{
    VALUE enumerator;
    VALUE pred;

    pred = rb_block_proc();

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);

    rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
    return enumerator;
}

#sortArray #sort {|a, b| ... } ⇒ Array

Returns an array containing the items in enum sorted, either according to their own <=> method, or by using the results of the supplied block. The block should return -1, 0, or +1 depending on the comparison between a and b. As of Ruby 1.8, the method Enumerable#sort_by implements a built-in Schwartzian Transform, useful when key computation or comparison is expensive.

%w(rhea kea flea).sort          #=> ["flea", "kea", "rhea"]
(1..10).sort { |a, b| b <=> a }  #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Overloads:



824
825
826
827
828
# File 'enum.c', line 824

static VALUE
enum_sort(VALUE obj)
{
    return rb_ary_sort(enum_to_a(0, 0, obj));
}

#sort_by {|obj| ... } ⇒ Array #sort_byObject

Sorts enum using a set of keys generated by mapping the values in enum through the given block.

If no block is given, an enumerator is returned instead.

%w{apple pear fig}.sort_by { |word| word.length}
              #=> ["fig", "pear", "apple"]

The current implementation of sort_by generates an array of tuples containing the original collection element and the mapped value. This makes sort_by fairly expensive when the keysets are simple.

require 'benchmark'

a = (1..100000).map { rand(100000) }

Benchmark.bm(10) do |b|
  b.report("Sort")    { a.sort }
  b.report("Sort by") { a.sort_by { |a| a } }
end

produces:

user     system      total        real
Sort        0.180000   0.000000   0.180000 (  0.175469)
Sort by     1.980000   0.040000   2.020000 (  2.013586)

However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic sort method.

files = Dir["*"]
sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A slightly better technique is to use the Kernel#test method to generate the modification times directly.

files = Dir["*"]
sorted = files.sort { |a, b|
  test(?M, a) <=> test(?M, b)
}
sorted   #=> ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian Transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.

sorted = Dir["*"].collect { |f|
   [test(?M, f), f]
}.sort.collect { |f| f[1] }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This is exactly what sort_by does internally.

sorted = Dir["*"].sort_by { |f| test(?M, f) }
sorted   #=> ["mon", "tues", "wed", "thurs"]

Overloads:

  • #sort_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
# File 'enum.c', line 953

static VALUE
enum_sort_by(VALUE obj)
{
    VALUE ary, buf;
    NODE *memo;
    long i;
    struct sort_by_data *data;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
	ary = rb_ary_new2(RARRAY_LEN(obj)*2);
    }
    else {
	ary = rb_ary_new();
    }
    RBASIC_CLEAR_CLASS(ary);
    buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
    rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
    memo = NEW_MEMO(0, 0, 0);
    OBJ_INFECT(memo, obj);
    data = (struct sort_by_data *)&memo->u1;
    data->ary = ary;
    data->buf = buf;
    data->n = 0;
    rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
    ary = data->ary;
    buf = data->buf;
    if (data->n) {
	rb_ary_resize(buf, data->n*2);
	rb_ary_concat(ary, buf);
    }
    if (RARRAY_LEN(ary) > 2) {
	RARRAY_PTR_USE(ary, ptr,
		      ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
				 sort_by_cmp, (void *)ary));
    }
    if (RBASIC(ary)->klass) {
	rb_raise(rb_eRuntimeError, "sort_by reentered");
    }
    for (i=1; i<RARRAY_LEN(ary); i+=2) {
	RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
    }
    rb_ary_resize(ary, RARRAY_LEN(ary)/2);
    RBASIC_SET_CLASS_RAW(ary, rb_cArray);
    OBJ_INFECT(ary, memo);

    return ary;
}

#take(n) ⇒ Array

Returns first n elements from enum.

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]
a.take(30)            #=> [1, 2, 3, 4, 5, 0]

Returns:



2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
# File 'enum.c', line 2467

static VALUE
enum_take(VALUE obj, VALUE n)
{
    NODE *memo;
    VALUE result;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to take negative size");
    }

    if (len == 0) return rb_ary_new2(0);
    result = rb_ary_new2(len);
    memo = NEW_MEMO(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
    return result;
}

#take_while {|arr| ... } ⇒ Array #take_whileObject

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }   #=> [1, 2]

Overloads:

  • #take_while {|arr| ... } ⇒ Array

    Yields:

    • (arr)

    Returns:



2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
# File 'enum.c', line 2509

static VALUE
enum_take_while(VALUE obj)
{
    VALUE ary;

    RETURN_ENUMERATOR(obj, 0, 0);
    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
    return ary;
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



498
499
500
501
502
503
504
505
506
507
# File 'enum.c', line 498

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);
    OBJ_INFECT(ary, obj);

    return ary;
}

#to_h(*args) ⇒ Hash

Returns the result of interpreting enum as a list of [key, value] pairs.

%i[hello world].each_with_index.to_h
  # => {:hello => 0, :world => 1}

Returns:



539
540
541
542
543
544
545
546
# File 'enum.c', line 539

static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
    VALUE hash = rb_hash_new();
    rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash);
    OBJ_INFECT(hash, obj);
    return hash;
}

#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil

Takes one element from enum and merges corresponding elements from each args. This generates a sequence of n-element arrays, where n is one more than the count of arguments. The length of the resulting sequence will be enum#size. If the size of any argument is less than enum#size, nil values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]

a.zip(b)                 #=> [[4, 7], [5, 8], [6, 9]]
[1, 2, 3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)         #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])       #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

Overloads:

  • #zip(arg, ...) {|arr| ... } ⇒ nil

    Yields:

    • (arr)

    Returns:

    • (nil)


2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
# File 'enum.c', line 2407

static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
    int i;
    ID conv;
    NODE *memo;
    VALUE result = Qnil;
    VALUE args = rb_ary_new4(argc, argv);
    int allary = TRUE;

    argv = RARRAY_PTR(args);
    for (i=0; i<argc; i++) {
	VALUE ary = rb_check_array_type(argv[i]);
	if (NIL_P(ary)) {
	    allary = FALSE;
	    break;
	}
	argv[i] = ary;
    }
    if (!allary) {
	CONST_ID(conv, "to_enum");
	for (i=0; i<argc; i++) {
	    if (!rb_respond_to(argv[i], id_each)) {
                rb_raise(rb_eTypeError, "wrong argument type %s (must respond to :each)",
                    rb_obj_classname(argv[i]));
            }
	    argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
	}
    }
    if (!rb_block_given_p()) {
	result = rb_ary_new();
    }
    /* use NODE_DOT2 as memo(v, v, -) */
    memo = rb_node_newnode(NODE_DOT2, result, args, 0);
    rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);

    return result;
}