Module: Enumerable

Overview

The Enumerable mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method #each, which yields successive members of the collection. If Enumerable#max, #min, or #sort is used, the objects in the collection must also implement a meaningful <=> operator, as these methods rely on an ordering between members of the collection.

Instance Method Summary collapse

Instance Method Details

#all? {|obj| ... } ⇒ Boolean #all?(pattern) ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } which will cause #all? to return true when none of the collection members are false or nil.

If instead a pattern is supplied, the method returns whether pattern === element for every collection member.

%w[ant bear cat].all? { |word| word.length >= 3 } #=> true
%w[ant bear cat].all? { |word| word.length >= 4 } #=> false
%w[ant bear cat].all?(/t/)                        #=> false
[1, 2i, 3.14].all?(Numeric)                       #=> true
[nil, true, 99].all?                              #=> false
[].all?                                           #=> true

Overloads:

  • #all? {|obj| ... } ⇒ Boolean

    Yields:

    • (obj)

    Returns:

    • (Boolean)
  • #all?(pattern) ⇒ Boolean

    Returns:

    • (Boolean)


1377
1378
1379
1380
1381
1382
1383
1384
# File 'enum.c', line 1377

static VALUE
enum_all(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
    WARN_UNUSED_BLOCK(argc);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
    return memo->v1;
}

#any? {|obj| ... } ⇒ Boolean #any?(pattern) ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block ever returns a value other than false or nil. If the block is not given, Ruby adds an implicit block of { |obj| obj } that will cause #any? to return true if at least one of the collection members is not false or nil.

If instead a pattern is supplied, the method returns whether pattern === element for any collection member.

%w[ant bear cat].any? { |word| word.length >= 3 } #=> true
%w[ant bear cat].any? { |word| word.length >= 4 } #=> true
%w[ant bear cat].any?(/d/)                        #=> false
[nil, true, 99].any?(Integer)                     #=> true
[nil, true, 99].any?                              #=> true
[].any?                                           #=> false

Overloads:

  • #any? {|obj| ... } ⇒ Boolean

    Yields:

    • (obj)

    Returns:

    • (Boolean)
  • #any?(pattern) ⇒ Boolean

    Returns:

    • (Boolean)


1419
1420
1421
1422
1423
1424
1425
1426
# File 'enum.c', line 1419

static VALUE
enum_any(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
    WARN_UNUSED_BLOCK(argc);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
    return memo->v1;
}

#chain(*enums) ⇒ Object

Returns an enumerator object generated from this enumerator and given enumerables.

e = (1..3).chain([4, 5])
e.to_a #=> [1, 2, 3, 4, 5]


3287
3288
3289
3290
3291
3292
3293
3294
# File 'enumerator.c', line 3287

static VALUE
enum_chain(int argc, VALUE *argv, VALUE obj)
{
    VALUE enums = rb_ary_new_from_values(1, &obj);
    rb_ary_cat(enums, argv, argc);

    return enum_chain_initialize(enum_chain_allocate(rb_cEnumChain), enums);
}

#chunk {|elt| ... } ⇒ Object

Enumerates over the items, chunking them together based on the return value of the block.

Consecutive elements which return the same block value are chunked together.

For example, consecutive even numbers and odd numbers can be chunked as follows.

[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
  n.even?
}.each { |even, ary|
  p [even, ary]
}
#=> [false, [3, 1]]
#   [true, [4]]
#   [false, [1, 5, 9]]
#   [true, [2, 6]]
#   [false, [5, 3, 5]]

This method is especially useful for sorted series of elements. The following example counts words for each initial letter.

open("/usr/share/dict/words", "r:iso-8859-1") { |f|
  f.chunk { |line| line.upcase.ord }.each { |ch, lines| p [ch.chr, lines.length] }
}
#=> ["\n", 1]
#   ["A", 1327]
#   ["B", 1372]
#   ["C", 1507]
#   ["D", 791]
#   ...

The following key values have special meaning:

  • nil and :_separator specifies that the elements should be dropped.

  • :_alone specifies that the element should be chunked by itself.

Any other symbols that begin with an underscore will raise an error:

items.chunk { |item| :_underscore }
#=> RuntimeError: symbols beginning with an underscore are reserved

nil and :_separator can be used to ignore some elements.

For example, the sequence of hyphens in svn log can be eliminated as follows:

sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
  f.chunk { |line|
    line != sep || nil
  }.each { |_, lines|
    pp lines
  }
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Update the portability section.\n",
#    "\n"]
#   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Add a note about default C flags.\n",
#    "\n"]
#   ...

Paragraphs separated by empty lines can be parsed as follows:

File.foreach("README").chunk { |line|
  /\A\s*\z/ !~ line || nil
}.each { |_, lines|
  pp lines
}

:_alone can be used to force items into their own chunk. For example, you can put lines that contain a URL by themselves, and chunk the rest of the lines together, like this:

pattern = /http/
open(filename) { |f|
  f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
    pp lines
  }
}

If no block is given, an enumerator to ‘chunk` is returned instead.

Yields:

  • (elt)


3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
# File 'enum.c', line 3295

static VALUE
enum_chunk(VALUE enumerable)
{
    VALUE enumerator;

    RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
    rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
    rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
    return enumerator;
}

#chunk_while {|elt_before, elt_after| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.

This method splits each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns false.

The block is called the length of the receiver enumerator minus one.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, one-by-one increasing subsequence can be chunked as follows:

a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.chunk_while {|i, j| i+1 == j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"

Increasing (non-decreasing) subsequence can be chunked as follows:

a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.chunk_while {|i, j| i <= j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]

Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)

a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.chunk_while {|i, j| i.even? == j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]

Enumerable#slice_when does the same, except splitting when the block returns true instead of false.

Yields:

  • (elt_before, elt_after)


3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
# File 'enum.c', line 3853

static VALUE
enum_chunk_while(VALUE enumerable)
{
    VALUE enumerator;
    VALUE pred;

    pred = rb_block_proc();

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
    rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue);

    rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
    return enumerator;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



605
606
607
608
609
610
611
612
613
614
615
616
617
618
# File 'enum.c', line 605

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;
    int min_argc, max_argc;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    min_argc = rb_block_min_max_arity(&max_argc);
    rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);

    return ary;
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



654
655
656
657
658
659
660
661
662
663
664
665
# File 'enum.c', line 654

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#countInteger #count(item) ⇒ Integer #count {|obj| ... } ⇒ Integer

Returns the number of items in enum through enumeration. If an argument is given, the number of items in enum that are equal to item are counted. If a block is given, it counts the number of elements yielding a true value.

ary = [1, 2, 4, 2]
ary.count               #=> 4
ary.count(2)            #=> 2
ary.count{ |x| x%2==0 } #=> 3

Overloads:



258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# File 'enum.c', line 258

static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
    VALUE item = Qnil;
    struct MEMO *memo;
    rb_block_call_func *func;

    if (argc == 0) {
	if (rb_block_given_p()) {
	    func = count_iter_i;
	}
	else {
	    func = count_all_i;
	}
    }
    else {
	rb_scan_args(argc, argv, "1", &item);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = count_i;
    }

    memo = MEMO_NEW(item, 0, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return imemo_count_value(memo);
}

#cycle(n = nil) {|obj| ... } ⇒ nil #cycle(n = nil) ⇒ Object

Calls block for each element of enum repeatedly n times or forever if none or nil is given. If a non-positive number is given or the collection is empty, does nothing. Returns nil if the loop has finished without getting interrupted.

Enumerable#cycle saves elements in an internal array so changes to enum after the first pass have no effect.

If no block is given, an enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }  # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

Overloads:

  • #cycle(n = nil) {|obj| ... } ⇒ nil

    Yields:

    • (obj)

    Returns:

    • (nil)


3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
# File 'enum.c', line 3097

static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    VALUE nv = Qnil;
    long n, i, len;

    rb_check_arity(argc, 0, 1);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
    if (!argc || NIL_P(nv = argv[0])) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }
    ary = rb_ary_new();
    RBASIC_CLEAR_CLASS(ary);
    rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
    len = RARRAY_LEN(ary);
    if (len == 0) return Qnil;
    while (n < 0 || 0 < --n) {
        for (i=0; i<len; i++) {
	    enum_yield_array(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..100).detect  #=> #<Enumerator: 1..100:detect>
(1..100).find    #=> #<Enumerator: 1..100:find>

(1..10).detect         { |i| i % 5 == 0 && i % 7 == 0 }   #=> nil
(1..10).find           { |i| i % 5 == 0 && i % 7 == 0 }   #=> nil
(1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 }   #=> 0
(1..10).find(-> {0})   { |i| i % 5 == 0 && i % 7 == 0 }   #=> 0
(1..100).detect        { |i| i % 5 == 0 && i % 7 == 0 }   #=> 35
(1..100).find          { |i| i % 5 == 0 && i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# File 'enum.c', line 326

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE if_none;

    if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = MEMO_NEW(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->v1;
    }
    if (!NIL_P(if_none)) {
	return rb_funcallv(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#drop(n) ⇒ Array

Drops first n elements from enum, and returns rest elements in an array.

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

Returns:



2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
# File 'enum.c', line 2983

static VALUE
enum_drop(VALUE obj, VALUE n)
{
    VALUE result;
    struct MEMO *memo;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_new();
    memo = MEMO_NEW(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
    return result;
}

#drop_while {|obj| ... } ⇒ Array #drop_whileObject

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.drop_while { |i| i < 3 }   #=> [3, 4, 5, 0]

Overloads:

  • #drop_while {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
# File 'enum.c', line 3032

static VALUE
enum_drop_while(VALUE obj)
{
    VALUE result;
    struct MEMO *memo;

    RETURN_ENUMERATOR(obj, 0, 0);
    result = rb_ary_new();
    memo = MEMO_NEW(result, 0, FALSE);
    rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
    return result;
}

#each_cons(n) { ... } ⇒ nil #each_cons(n) ⇒ Object

Iterates the given block for each array of consecutive <n> elements. If no block is given, returns an enumerator.

e.g.:

(1..10).each_cons(3) { |a| p a }
# outputs below
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]

Overloads:

  • #each_cons(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
# File 'enum.c', line 2680

static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    struct MEMO *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
    arity = rb_block_arity();
    if (enum_size_over_p(obj, size)) return Qnil;
    memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);

    return Qnil;
}

#each_entry {|obj| ... } ⇒ Enumerator #each_entryObject

Calls block once for each element in self, passing that element as a parameter, converting multiple values from yield to an array.

If no block is given, an enumerator is returned instead.

class Foo
  include Enumerable
  def each
    yield 1
    yield 1, 2
    yield
  end
end
Foo.new.each_entry{ |o| p o }

produces:

1
[1, 2]
nil

Overloads:



2514
2515
2516
2517
2518
2519
2520
# File 'enum.c', line 2514

static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
    rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
    return obj;
}

#each_slice(n) { ... } ⇒ nil #each_slice(n) ⇒ Object

Iterates the given block for each slice of <n> elements. If no block is given, returns an enumerator.

(1..10).each_slice(3) { |a| p a }
# outputs below
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]

Overloads:

  • #each_slice(n) { ... } ⇒ nil

    Yields:

    Returns:

    • (nil)


2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
# File 'enum.c', line 2600

static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
    long size = NUM2LONG(n);
    VALUE ary;
    struct MEMO *memo;
    int arity;

    if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
    RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
    size = limit_by_enum_size(obj, size);
    ary = rb_ary_new2(size);
    arity = rb_block_arity();
    memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
    rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
    ary = memo->v1;
    if (RARRAY_LEN(ary) > 0) rb_yield(ary);

    return Qnil;
}

#each_with_index(*args) {|obj, i| ... } ⇒ Enumerator #each_with_index(*args) ⇒ Object

Calls block with two arguments, the item and its index, for each item in enum. Given arguments are passed through to #each().

If no block is given, an enumerator is returned instead.

hash = Hash.new
%w(cat dog wombat).each_with_index { |item, index|
  hash[item] = index
}
hash   #=> {"cat"=>0, "dog"=>1, "wombat"=>2}

Overloads:



2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
# File 'enum.c', line 2422

static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    memo = MEMO_NEW(0, 0, 0);
    rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
    return obj;
}

#each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object #each_with_object(obj) ⇒ Object

Iterates the given block for each element with an arbitrary object given, and returns the initially given object.

If no block is given, returns an enumerator.

evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
#=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Overloads:

  • #each_with_object(obj) {|(*args), memo_obj| ... } ⇒ Object

    Yields:

    • ((*args), memo_obj)

    Returns:



2718
2719
2720
2721
2722
2723
2724
2725
2726
# File 'enum.c', line 2718

static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
    RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);

    rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);

    return memo;
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



680
681
682
683
684
685
686
687
688
# File 'enum.c', line 680

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);

    return ary;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_allObject #selectObject #filterObject

Returns an array containing all elements of enum for which the given block returns a true value.

The find_all and select methods are aliases. There is no performance benefit to either.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

[:foo, :bar].filter { |x| x == :foo }   #=> [:foo]

See also Enumerable#reject, Enumerable#grep.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #filter {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



478
479
480
481
482
483
484
485
486
487
488
489
# File 'enum.c', line 478

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#filter_map {|obj| ... } ⇒ Array #filter_mapObject

Returns a new array containing the truthy results (everything except false or nil) of running the block for every element in enum.

If no block is given, an Enumerator is returned instead.

(1..10).filter_map { |i| i * 2 if i.even? } #=> [4, 8, 12, 16, 20]

Overloads:

  • #filter_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



517
518
519
520
521
522
523
524
525
526
527
528
# File 'enum.c', line 517

static VALUE
enum_filter_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);

    return ary;
}

#detect(ifnone = nil) {|obj| ... } ⇒ Object? #find(ifnone = nil) {|obj| ... } ⇒ Object? #detect(ifnone = nil) ⇒ Object #find(ifnone = nil) ⇒ Object

Passes each entry in enum to block. Returns the first for which block is not false. If no object matches, calls ifnone and returns its result when it is specified, or returns nil otherwise.

If no block is given, an enumerator is returned instead.

(1..100).detect  #=> #<Enumerator: 1..100:detect>
(1..100).find    #=> #<Enumerator: 1..100:find>

(1..10).detect         { |i| i % 5 == 0 && i % 7 == 0 }   #=> nil
(1..10).find           { |i| i % 5 == 0 && i % 7 == 0 }   #=> nil
(1..10).detect(-> {0}) { |i| i % 5 == 0 && i % 7 == 0 }   #=> 0
(1..10).find(-> {0})   { |i| i % 5 == 0 && i % 7 == 0 }   #=> 0
(1..100).detect        { |i| i % 5 == 0 && i % 7 == 0 }   #=> 35
(1..100).find          { |i| i % 5 == 0 && i % 7 == 0 }   #=> 35

Overloads:

  • #detect(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:

  • #find(ifnone = nil) {|obj| ... } ⇒ Object?

    Yields:

    • (obj)

    Returns:



326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# File 'enum.c', line 326

static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE if_none;

    if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
    RETURN_ENUMERATOR(obj, argc, argv);
    memo = MEMO_NEW(Qundef, 0, 0);
    rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
    if (memo->u3.cnt) {
	return memo->v1;
    }
    if (!NIL_P(if_none)) {
	return rb_funcallv(if_none, id_call, 0, 0);
    }
    return Qnil;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_allObject #selectObject #filterObject

Returns an array containing all elements of enum for which the given block returns a true value.

The find_all and select methods are aliases. There is no performance benefit to either.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

[:foo, :bar].filter { |x| x == :foo }   #=> [:foo]

See also Enumerable#reject, Enumerable#grep.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #filter {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



478
479
480
481
482
483
484
485
486
487
488
489
# File 'enum.c', line 478

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#find_index(value) ⇒ Integer? #find_index {|obj| ... } ⇒ Integer? #find_indexObject

Compares each entry in enum with value or passes to block. Returns the index for the first for which the evaluated value is non-false. If no object matches, returns nil

If neither block nor argument is given, an enumerator is returned instead.

(1..10).find_index  { |i| i % 5 == 0 && i % 7 == 0 }  #=> nil
(1..100).find_index { |i| i % 5 == 0 && i % 7 == 0 }  #=> 34
(1..100).find_index(50)                               #=> 49

Overloads:



392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# File 'enum.c', line 392

static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;	/* [return value, current index, ] */
    VALUE condition_value = Qnil;
    rb_block_call_func *func;

    if (argc == 0) {
        RETURN_ENUMERATOR(obj, 0, 0);
        func = find_index_iter_i;
    }
    else {
	rb_scan_args(argc, argv, "1", &condition_value);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
        func = find_index_i;
    }

    memo = MEMO_NEW(Qnil, condition_value, 0);
    rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
    return memo->v1;
}

#firstObject? #first(n) ⇒ Array

Returns the first element, or the first n elements, of the enumerable. If the enumerable is empty, the first form returns nil, and the second form returns an empty array.

%w[foo bar baz].first     #=> "foo"
%w[foo bar baz].first(2)  #=> ["foo", "bar"]
%w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
[].first                  #=> nil
[].first(10)              #=> []

Overloads:



1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
# File 'enum.c', line 1084

static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    rb_check_arity(argc, 0, 1);
    if (argc > 0) {
	return enum_take(obj, argv[0]);
    }
    else {
	memo = MEMO_NEW(Qnil, 0, 0);
	rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
	return memo->v1;
    }
}

#flat_map {|obj| ... } ⇒ Array #collect_concat {|obj| ... } ⇒ Array #flat_mapObject #collect_concatObject

Returns a new array with the concatenated results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

[1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
[[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]

Overloads:

  • #flat_map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #collect_concat {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



654
655
656
657
658
659
660
661
662
663
664
665
# File 'enum.c', line 654

static VALUE
enum_flat_map(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);

    return ary;
}

#grep(pattern) ⇒ Array #grep(pattern) {|obj| ... } ⇒ Array

Returns an array of every element in enum for which Pattern === element. If the optional block is supplied, each matching element is passed to it, and the block’s result is stored in the output array.

(1..100).grep 38..44   #=> [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/)         #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) { |v| IO.const_get(v) }
res                    #=> [0, 1, 2]

Overloads:

  • #grep(pattern) ⇒ Array

    Returns:

  • #grep(pattern) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



152
153
154
155
156
# File 'enum.c', line 152

static VALUE
enum_grep(VALUE obj, VALUE pat)
{
    return enum_grep0(obj, pat, Qtrue);
}

#grep_v(pattern) ⇒ Array #grep_v(pattern) {|obj| ... } ⇒ Array

Inverted version of Enumerable#grep. Returns an array of every element in enum for which not Pattern === element.

(1..10).grep_v 2..5   #=> [1, 6, 7, 8, 9, 10]
res =(1..10).grep_v(2..5) { |v| v * 2 }
res                    #=> [2, 12, 14, 16, 18, 20]

Overloads:

  • #grep_v(pattern) ⇒ Array

    Returns:

  • #grep_v(pattern) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



173
174
175
176
177
# File 'enum.c', line 173

static VALUE
enum_grep_v(VALUE obj, VALUE pat)
{
    return enum_grep0(obj, pat, Qfalse);
}

#group_by {|obj| ... } ⇒ Hash #group_byObject

Groups the collection by result of the block. Returns a hash where the keys are the evaluated result from the block and the values are arrays of elements in the collection that correspond to the key.

If no block is given an enumerator is returned.

(1..6).group_by { |i| i%3 }   #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}

Overloads:

  • #group_by {|obj| ... } ⇒ Hash

    Yields:

    • (obj)

    Returns:



1003
1004
1005
1006
1007
1008
1009
# File 'enum.c', line 1003

static VALUE
enum_group_by(VALUE obj)
{
    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    return enum_hashify(obj, 0, 0, group_by_i);
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

(1..10).include? 5  #=> true
(1..10).include? 15 #=> false
(1..10).member? 5   #=> true
(1..10).member? 15  #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


2384
2385
2386
2387
2388
2389
2390
2391
# File 'enum.c', line 2384

static VALUE
enum_member(VALUE obj, VALUE val)
{
    struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->v2;
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

The inject and reduce methods are aliases. There is no performance benefit to either.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
# File 'enum.c', line 879

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }

    if (iter == inject_op_i &&
        SYMBOL_P(op) &&
        RB_TYPE_P(obj, T_ARRAY) &&
        rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
        return ary_inject_op(obj, init, op);
    }

    memo = MEMO_NEW(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->v1 == Qundef) return Qnil;
    return memo->v1;
}

#lazyObject

Returns an Enumerator::Lazy, which redefines most Enumerable methods to postpone enumeration and enumerate values only on an as-needed basis.

Example

The following program finds pythagorean triples:

def pythagorean_triples
  (1..Float::INFINITY).lazy.flat_map {|z|
    (1..z).flat_map {|x|
      (x..z).select {|y|
        x**2 + y**2 == z**2
      }.map {|y|
        [x, y, z]
      }
    }
  }
end
# show first ten pythagorean triples
p pythagorean_triples.take(10).force # take is lazy, so force is needed
p pythagorean_triples.first(10)      # first is eager
# show pythagorean triples less than 100
p pythagorean_triples.take_while { |*, z| z < 100 }.force


1894
1895
1896
1897
1898
1899
1900
1901
# File 'enumerator.c', line 1894

static VALUE
enumerable_lazy(VALUE obj)
{
    VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size, rb_keyword_given_p());
    /* Qfalse indicates that the Enumerator::Lazy has no method name */
    rb_ivar_set(result, id_method, Qfalse);
    return result;
}

#collect {|obj| ... } ⇒ Array #map {|obj| ... } ⇒ Array #collectObject #mapObject

Returns a new array with the results of running block once for every element in enum.

If no block is given, an enumerator is returned instead.

(1..4).map { |i| i*i }      #=> [1, 4, 9, 16]
(1..4).collect { "cat"  }   #=> ["cat", "cat", "cat", "cat"]

Overloads:

  • #collect {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #map {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



605
606
607
608
609
610
611
612
613
614
615
616
617
618
# File 'enum.c', line 605

static VALUE
enum_collect(VALUE obj)
{
    VALUE ary;
    int min_argc, max_argc;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    min_argc = rb_block_min_max_arity(&max_argc);
    rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);

    return ary;
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Array #max(n) {|a, b| ... } ⇒ Array

Returns the object in enum with the maximum value. The first form assumes all objects implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.max                                   #=> "horse"
a.max { |a, b| a.length <=> b.length }  #=> "albatross"

If the n argument is given, maximum n elements are returned as an array, sorted in descending order.

a = %w[albatross dog horse]
a.max(2)                                  #=> ["horse", "dog"]
a.max(2) {|a, b| a.length <=> b.length }  #=> ["albatross", "horse"]
[5, 1, 3, 4, 2].max(3)                    #=> [5, 4, 3]

Overloads:



1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
# File 'enum.c', line 1902

static VALUE
enum_max(int argc, VALUE *argv, VALUE obj)
{
    VALUE memo;
    struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo);
    VALUE result;
    VALUE num;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(obj, num, 0, 1, 0);

    m->max = Qundef;
    m->cmp_opt.opt_methods = 0;
    m->cmp_opt.opt_inited = 0;
    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
    }
    result = m->max;
    if (result == Qundef) return Qnil;
    return result;
}

#max_by {|obj| ... } ⇒ Object #max_byObject #max_by(n) {|obj| ... } ⇒ Object #max_by(n) ⇒ Object

Returns the object in enum that gives the maximum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.max_by { |x| x.length }   #=> "albatross"

If the n argument is given, maximum n elements are returned as an array. These n elements are sorted by the value from the given block, in descending order.

a = %w[albatross dog horse]
a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]

enum.max_by(n) can be used to implement weighted random sampling. Following example implements and use Enumerable#wsample.

module Enumerable
  # weighted random sampling.
  #
  # Pavlos S. Efraimidis, Paul G. Spirakis
  # Weighted random sampling with a reservoir
  # Information Processing Letters
  # Volume 97, Issue 5 (16 March 2006)
  def wsample(n)
    self.max_by(n) {|v| rand ** (1.0/yield(v)) }
  end
end
e = (-20..20).to_a*10000
a = e.wsample(20000) {|x|
  Math.exp(-(x/5.0)**2) # normal distribution
}
# a is 20000 samples from e.
p a.length #=> 20000
h = a.group_by {|x| x }
-10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
#=> *
#   ***
#   ******
#   ***********
#   ******************
#   *****************************
#   *****************************************
#   ****************************************************
#   ***************************************************************
#   ********************************************************************
#   ***********************************************************************
#   ***********************************************************************
#   **************************************************************
#   ****************************************************
#   ***************************************
#   ***************************
#   ******************
#   ***********
#   *******
#   ***
#   *

Overloads:

  • #max_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #max_by(n) {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:



2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
# File 'enum.c', line 2230

static VALUE
enum_max_by(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE num;

    rb_check_arity(argc, 0, 1);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (argc && !NIL_P(num = argv[0]))
        return rb_nmin_run(obj, num, 1, 1, 0);

    memo = MEMO_NEW(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
    return memo->v2;
}

#include?(obj) ⇒ Boolean #member?(obj) ⇒ Boolean

Returns true if any member of enum equals obj. Equality is tested using ==.

(1..10).include? 5  #=> true
(1..10).include? 15 #=> false
(1..10).member? 5   #=> true
(1..10).member? 15  #=> false

Overloads:

  • #include?(obj) ⇒ Boolean

    Returns:

    • (Boolean)
  • #member?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


2384
2385
2386
2387
2388
2389
2390
2391
# File 'enum.c', line 2384

static VALUE
enum_member(VALUE obj, VALUE val)
{
    struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);

    rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
    return memo->v2;
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Array #min(n) {|a, b| ... } ⇒ Array

Returns the object in enum with the minimum value. The first form assumes all objects implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.min                                   #=> "albatross"
a.min { |a, b| a.length <=> b.length }  #=> "dog"

If the n argument is given, minimum n elements are returned as a sorted array.

a = %w[albatross dog horse]
a.min(2)                                  #=> ["albatross", "dog"]
a.min(2) {|a, b| a.length <=> b.length }  #=> ["dog", "horse"]
[5, 1, 3, 4, 2].min(3)                    #=> [1, 2, 3]

Overloads:



1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
# File 'enum.c', line 1810

static VALUE
enum_min(int argc, VALUE *argv, VALUE obj)
{
    VALUE memo;
    struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo);
    VALUE result;
    VALUE num;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(obj, num, 0, 0, 0);

    m->min = Qundef;
    m->cmp_opt.opt_methods = 0;
    m->cmp_opt.opt_inited = 0;
    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, min_ii, memo);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, min_i, memo);
    }
    result = m->min;
    if (result == Qundef) return Qnil;
    return result;
}

#min_by {|obj| ... } ⇒ Object #min_byObject #min_by(n) {|obj| ... } ⇒ Array #min_by(n) ⇒ Object

Returns the object in enum that gives the minimum value from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.min_by { |x| x.length }   #=> "dog"

If the n argument is given, minimum n elements are returned as an array. These n elements are sorted by the value from the given block.

a = %w[albatross dog horse]
p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]

Overloads:

  • #min_by {|obj| ... } ⇒ Object

    Yields:

    • (obj)

    Returns:

  • #min_by(n) {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
# File 'enum.c', line 2123

static VALUE
enum_min_by(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE num;

    rb_check_arity(argc, 0, 1);

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    if (argc && !NIL_P(num = argv[0]))
        return rb_nmin_run(obj, num, 1, 0, 0);

    memo = MEMO_NEW(Qundef, Qnil, 0);
    rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
    return memo->v2;
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a two element array which contains the minimum and the maximum value in the enumerable. The first form assumes all objects implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.minmax                                  #=> ["albatross", "horse"]
a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
# File 'enum.c', line 2053

static VALUE
enum_minmax(VALUE obj)
{
    VALUE memo;
    struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo);

    m->min = Qundef;
    m->last = Qundef;
    m->cmp_opt.opt_methods = 0;
    m->cmp_opt.opt_inited = 0;
    if (rb_block_given_p()) {
	rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
	if (m->last != Qundef)
	    minmax_ii_update(m->last, m->last, m);
    }
    else {
	rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
	if (m->last != Qundef)
	    minmax_i_update(m->last, m->last, m);
    }
    if (m->min != Qundef) {
	return rb_assoc_new(m->min, m->max);
    }
    return rb_assoc_new(Qnil, Qnil);
}

#minmax_by {|obj| ... } ⇒ Array #minmax_byObject

Returns a two element array containing the objects in enum that correspond to the minimum and maximum values respectively from the given block.

If no block is given, an enumerator is returned instead.

a = %w(albatross dog horse)
a.minmax_by { |x| x.length }   #=> ["dog", "albatross"]

Overloads:

  • #minmax_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
# File 'enum.c', line 2336

static VALUE
enum_minmax_by(VALUE obj)
{
    VALUE memo;
    struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    m->min_bv = Qundef;
    m->max_bv = Qundef;
    m->min = Qnil;
    m->max = Qnil;
    m->last_bv = Qundef;
    m->last = Qundef;
    rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
    if (m->last_bv != Qundef)
        minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
    m = MEMO_FOR(struct minmax_by_t, memo);
    return rb_assoc_new(m->min, m->max);
}

#none? {|obj| ... } ⇒ Boolean #none?(pattern) ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block never returns true for all elements. If the block is not given, none? will return true only if none of the collection members is true.

If instead a pattern is supplied, the method returns whether pattern === element for none of the collection members.

%w{ant bear cat}.none? { |word| word.length == 5 } #=> true
%w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
%w{ant bear cat}.none?(/d/)                        #=> true
[1, 3.14, 42].none?(Float)                         #=> false
[].none?                                           #=> true
[nil].none?                                        #=> true
[nil, false].none?                                 #=> true
[nil, false, true].none?                           #=> false

Overloads:

  • #none? {|obj| ... } ⇒ Boolean

    Yields:

    • (obj)

    Returns:

    • (Boolean)
  • #none?(pattern) ⇒ Boolean

    Returns:

    • (Boolean)


1732
1733
1734
1735
1736
1737
1738
1739
1740
# File 'enum.c', line 1732

static VALUE
enum_none(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);

    WARN_UNUSED_BLOCK(argc);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
    return memo->v1;
}

#one? {|obj| ... } ⇒ Boolean #one?(pattern) ⇒ Boolean

Passes each element of the collection to the given block. The method returns true if the block returns true exactly once. If the block is not given, one? will return true only if exactly one of the collection members is true.

If instead a pattern is supplied, the method returns whether pattern === element for exactly one collection member.

%w{ant bear cat}.one? { |word| word.length == 4 }  #=> true
%w{ant bear cat}.one? { |word| word.length > 4 }   #=> false
%w{ant bear cat}.one? { |word| word.length < 4 }   #=> false
%w{ant bear cat}.one?(/t/)                         #=> false
[ nil, true, 99 ].one?                             #=> false
[ nil, true, false ].one?                          #=> true
[ nil, true, 99 ].one?(Integer)                    #=> true
[].one?                                            #=> false

Overloads:

  • #one? {|obj| ... } ⇒ Boolean

    Yields:

    • (obj)

    Returns:

    • (Boolean)
  • #one?(pattern) ⇒ Boolean

    Returns:

    • (Boolean)


1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
# File 'enum.c', line 1688

static VALUE
enum_one(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
    VALUE result;

    WARN_UNUSED_BLOCK(argc);
    rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
    result = memo->v1;
    if (result == Qundef) return Qfalse;
    return result;
}

#partition {|obj| ... } ⇒ Array #partitionObject

Returns two arrays, the first containing the elements of enum for which the block evaluates to true, the second containing the rest.

If no block is given, an enumerator is returned instead.

(1..6).partition { |v| v.even? }  #=> [[2, 4, 6], [1, 3, 5]]

Overloads:

  • #partition {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



955
956
957
958
959
960
961
962
963
964
965
966
# File 'enum.c', line 955

static VALUE
enum_partition(VALUE obj)
{
    struct MEMO *memo;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
    rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);

    return rb_assoc_new(memo->v1, memo->v2);
}

#inject(initial, sym) ⇒ Object #inject(sym) ⇒ Object #inject(initial) {|memo, obj| ... } ⇒ Object #inject {|memo, obj| ... } ⇒ Object #reduce(initial, sym) ⇒ Object #reduce(sym) ⇒ Object #reduce(initial) {|memo, obj| ... } ⇒ Object #reduce {|memo, obj| ... } ⇒ Object

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

The inject and reduce methods are aliases. There is no performance benefit to either.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Overloads:

  • #inject(initial, sym) ⇒ Object

    Returns:

  • #inject(sym) ⇒ Object

    Returns:

  • #inject(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #inject {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce(initial, sym) ⇒ Object

    Returns:

  • #reduce(sym) ⇒ Object

    Returns:

  • #reduce(initial) {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:

  • #reduce {|memo, obj| ... } ⇒ Object

    Yields:

    • (memo, obj)

    Returns:



879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
# File 'enum.c', line 879

static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
    struct MEMO *memo;
    VALUE init, op;
    rb_block_call_func *iter = inject_i;
    ID id;

    switch (rb_scan_args(argc, argv, "02", &init, &op)) {
      case 0:
	init = Qundef;
	break;
      case 1:
	if (rb_block_given_p()) {
	    break;
	}
	id = rb_check_id(&init);
	op = id ? ID2SYM(id) : init;
	init = Qundef;
	iter = inject_op_i;
	break;
      case 2:
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	id = rb_check_id(&op);
	if (id) op = ID2SYM(id);
	iter = inject_op_i;
	break;
    }

    if (iter == inject_op_i &&
        SYMBOL_P(op) &&
        RB_TYPE_P(obj, T_ARRAY) &&
        rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
        return ary_inject_op(obj, init, op);
    }

    memo = MEMO_NEW(init, Qnil, op);
    rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
    if (memo->v1 == Qundef) return Qnil;
    return memo->v1;
}

#reject {|obj| ... } ⇒ Array #rejectObject

Returns an array for all elements of enum for which the given block returns false.

If no block is given, an Enumerator is returned instead.

(1..10).reject { |i|  i % 3 == 0 }   #=> [1, 2, 4, 5, 7, 8, 10]

[1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]

See also Enumerable#find_all.

Overloads:

  • #reject {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



559
560
561
562
563
564
565
566
567
568
569
570
# File 'enum.c', line 559

static VALUE
enum_reject(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, reject_i, ary);

    return ary;
}

#reverse_each(*args) {|item| ... } ⇒ Enumerator #reverse_each(*args) ⇒ Object

Builds a temporary array and traverses that array in reverse order.

If no block is given, an enumerator is returned instead.

(1..3).reverse_each { |v| p v }

produces:

3
2
1

Overloads:



2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
# File 'enum.c', line 2453

static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary;
    long len;

    RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);

    ary = enum_to_a(argc, argv, obj);

    len = RARRAY_LEN(ary);
    while (len--) {
        long nlen;
        rb_yield(RARRAY_AREF(ary, len));
        nlen = RARRAY_LEN(ary);
        if (nlen < len) {
            len = nlen;
        }
    }

    return obj;
}

#find_all {|obj| ... } ⇒ Array #select {|obj| ... } ⇒ Array #filter {|obj| ... } ⇒ Array #find_allObject #selectObject #filterObject

Returns an array containing all elements of enum for which the given block returns a true value.

The find_all and select methods are aliases. There is no performance benefit to either.

If no block is given, an Enumerator is returned instead.

(1..10).find_all { |i|  i % 3 == 0 }   #=> [3, 6, 9]

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

[:foo, :bar].filter { |x| x == :foo }   #=> [:foo]

See also Enumerable#reject, Enumerable#grep.

Overloads:

  • #find_all {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #select {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:

  • #filter {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



478
479
480
481
482
483
484
485
486
487
488
489
# File 'enum.c', line 478

static VALUE
enum_find_all(VALUE obj)
{
    VALUE ary;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, find_all_i, ary);

    return ary;
}

#slice_after(pattern) ⇒ Object #slice_after {|elt| ... } ⇒ Object

Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is end of a chunk.

The === and block is called from the first element to the last element of enum.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, continuation lines (lines end with backslash) can be concatenated as follows:

lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]

Overloads:

  • #slice_after {|elt| ... } ⇒ Object

    Yields:

    • (elt)


3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
# File 'enum.c', line 3630

static VALUE
enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;
    VALUE pat = Qnil, pred = Qnil;

    if (rb_block_given_p()) {
        if (0 < argc)
            rb_raise(rb_eArgError, "both pattern and block are given");
        pred = rb_block_proc();
    }
    else {
        rb_scan_args(argc, argv, "1", &pat);
    }

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
    rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);

    rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
    return enumerator;
}

#slice_before(pattern) ⇒ Object #slice_before {|elt| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is beginning of a chunk.

The === and block is called from the first element to the last element of enum. The result for the first element is ignored.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_before(pattern).each { |ary| ... }
enum.slice_before { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, iteration over ChangeLog entries can be implemented as follows:

# iterate over ChangeLog entries.
open("ChangeLog") { |f|
  f.slice_before(/\A\S/).each { |e| pp e }
}

# same as above.  block is used instead of pattern argument.
open("ChangeLog") { |f|
  f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
}

“svn proplist -R” produces multiline output for each file. They can be chunked as follows:

IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
  f.lines.slice_before(/\AProp/).each { |lines| p lines }
}
#=> ["Properties on '.':\n", "  svn:ignore\n", "  svk:merge\n"]
#   ["Properties on 'goruby.c':\n", "  svn:eol-style\n"]
#   ["Properties on 'complex.c':\n", "  svn:mime-type\n", "  svn:eol-style\n"]
#   ["Properties on 'regparse.c':\n", "  svn:eol-style\n"]
#   ...

If the block needs to maintain state over multiple elements, local variables can be used. For example, three or more consecutive increasing numbers can be squashed as follows (see chunk_while for a better way):

a = [0, 2, 3, 4, 6, 7, 9]
prev = a[0]
p a.slice_before { |e|
  prev, prev2 = e, prev
  prev2 + 1 != e
}.map { |es|
  es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
}.join(",")
#=> "0,2-4,6,7,9"

However local variables should be used carefully if the result enumerator is enumerated twice or more. The local variables should be initialized for each enumeration. Enumerator.new can be used to do it.

# Word wrapping.  This assumes all characters have same width.
def wordwrap(words, maxwidth)
  Enumerator.new {|y|
    # cols is initialized in Enumerator.new.
    cols = 0
    words.slice_before { |w|
      cols += 1 if cols != 0
      cols += w.length
      if maxwidth < cols
        cols = w.length
        true
      else
        false
      end
    }.each {|ws| y.yield ws }
  }
end
text = (1..20).to_a.join(" ")
enum = wordwrap(text.split(/\s+/), 10)
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # first enumeration.
puts "-"*10
enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
puts "-"*10
#=> ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------
#   1 2 3 4 5
#   6 7 8 9 10
#   11 12 13
#   14 15 16
#   17 18 19
#   20
#   ----------

mbox contains series of mails which start with Unix From line. So each mail can be extracted by slice before Unix From line.

# parse mbox
open("mbox") { |f|
  f.slice_before { |line|
    line.start_with? "From "
  }.each { |mail|
    unix_from = mail.shift
    i = mail.index("\n")
    header = mail[0...i]
    body = mail[(i+1)..-1]
    body.pop if body.last == "\n"
    fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
    p unix_from
    pp fields
    pp body
  }
}

# split mails in mbox (slice before Unix From line after an empty line)
open("mbox") { |f|
  emp = true
  f.slice_before { |line|
    prevemp = emp
    emp = line == "\n"
    prevemp && line.start_with?("From ")
  }.each { |mail|
    mail.pop if mail.last == "\n"
    pp mail
  }
}

Overloads:

  • #slice_before {|elt| ... } ⇒ Object

    Yields:

    • (elt)


3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
# File 'enum.c', line 3508

static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
    VALUE enumerator;

    if (rb_block_given_p()) {
        if (argc != 0)
            rb_error_arity(argc, 0, 0);
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
    }
    else {
        VALUE sep_pat;
        rb_scan_args(argc, argv, "1", &sep_pat);
        enumerator = rb_obj_alloc(rb_cEnumerator);
        rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
    }
    rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
    rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
    return enumerator;
}

#slice_when {|elt_before, elt_after| ... } ⇒ Object

Creates an enumerator for each chunked elements. The beginnings of chunks are defined by the block.

This method splits each chunk using adjacent elements, elt_before and elt_after, in the receiver enumerator. This method split chunks between elt_before and elt_after where the block returns true.

The block is called the length of the receiver enumerator minus one.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as to_a, map, etc., are also usable.

For example, one-by-one increasing subsequence can be chunked as follows:

a = [1,2,4,9,10,11,12,15,16,19,20,21]
b = a.slice_when {|i, j| i+1 != j }
p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
d = c.join(",")
p d #=> "1,2,4,9-12,15,16,19-21"

Near elements (threshold: 6) in sorted array can be chunked as follows:

a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
p a.slice_when {|i, j| 6 < j - i }.to_a
#=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]

Increasing (non-decreasing) subsequence can be chunked as follows:

a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
p a.slice_when {|i, j| i > j }.to_a
#=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]

Adjacent evens and odds can be chunked as follows: (Enumerable#chunk is another way to do it.)

a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
p a.slice_when {|i, j| i.even? != j.even? }.to_a
#=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]

Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: (See Enumerable#chunk to ignore empty lines.)

lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
#=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]

Enumerable#chunk_while does the same, except splitting when the block returns false instead of true.

Yields:

  • (elt_before, elt_after)


3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
# File 'enum.c', line 3787

static VALUE
enum_slice_when(VALUE enumerable)
{
    VALUE enumerator;
    VALUE pred;

    pred = rb_block_proc();

    enumerator = rb_obj_alloc(rb_cEnumerator);
    rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
    rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
    rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse);

    rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
    return enumerator;
}

#sortArray #sort {|a, b| ... } ⇒ Array

Returns an array containing the items in enum sorted.

Comparisons for the sort will be done using the items’ own <=> operator or using an optional code block.

The block must implement a comparison between a and b and return an integer less than 0 when b follows a, 0 when a and b are equivalent, or an integer greater than 0 when a follows b.

The result is not guaranteed to be stable. When the comparison of two elements returns 0, the order of the elements is unpredictable.

%w(rhea kea flea).sort           #=> ["flea", "kea", "rhea"]
(1..10).sort { |a, b| b <=> a }  #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

See also Enumerable#sort_by. It implements a Schwartzian transform which is useful when key computation or comparison is expensive.

Overloads:



1124
1125
1126
1127
1128
# File 'enum.c', line 1124

static VALUE
enum_sort(VALUE obj)
{
    return rb_ary_sort_bang(enum_to_a(0, 0, obj));
}

#sort_by {|obj| ... } ⇒ Array #sort_byObject

Sorts enum using a set of keys generated by mapping the values in enum through the given block.

The result is not guaranteed to be stable. When two keys are equal, the order of the corresponding elements is unpredictable.

If no block is given, an enumerator is returned instead.

%w{apple pear fig}.sort_by { |word| word.length }
              #=> ["fig", "pear", "apple"]

The current implementation of #sort_by generates an array of tuples containing the original collection element and the mapped value. This makes #sort_by fairly expensive when the keysets are simple.

require 'benchmark'

a = (1..100000).map { rand(100000) }

Benchmark.bm(10) do |b|
  b.report("Sort")    { a.sort }
  b.report("Sort by") { a.sort_by { |a| a } }
end

produces:

user     system      total        real
Sort        0.180000   0.000000   0.180000 (  0.175469)
Sort by     1.980000   0.040000   2.020000 (  2.013586)

However, consider the case where comparing the keys is a non-trivial operation. The following code sorts some files on modification time using the basic #sort method.

files = Dir["*"]
sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A slightly better technique is to use the Kernel#test method to generate the modification times directly.

files = Dir["*"]
sorted = files.sort { |a, b|
  test(?M, a) <=> test(?M, b)
}
sorted   #=> ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to cache the sort keys (modification times in this case) before the sort. Perl users often call this approach a Schwartzian transform, after Randal Schwartz. We construct a temporary array, where each element is an array containing our sort key along with the filename. We sort this array, and then extract the filename from the result.

sorted = Dir["*"].collect { |f|
   [test(?M, f), f]
}.sort.collect { |f| f[1] }
sorted   #=> ["mon", "tues", "wed", "thurs"]

This is exactly what #sort_by does internally.

sorted = Dir["*"].sort_by { |f| test(?M, f) }
sorted   #=> ["mon", "tues", "wed", "thurs"]

To produce the reverse of a specific order, the following can be used:

ary.sort_by { ... }.reverse!

Overloads:

  • #sort_by {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
# File 'enum.c', line 1261

static VALUE
enum_sort_by(VALUE obj)
{
    VALUE ary, buf;
    struct MEMO *memo;
    long i;
    struct sort_by_data *data;

    RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);

    if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
	ary = rb_ary_new2(RARRAY_LEN(obj)*2);
    }
    else {
	ary = rb_ary_new();
    }
    RBASIC_CLEAR_CLASS(ary);
    buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
    rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
    memo = MEMO_NEW(0, 0, 0);
    data = (struct sort_by_data *)&memo->v1;
    RB_OBJ_WRITE(memo, &data->ary, ary);
    RB_OBJ_WRITE(memo, &data->buf, buf);
    data->n = 0;
    rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
    ary = data->ary;
    buf = data->buf;
    if (data->n) {
	rb_ary_resize(buf, data->n*2);
	rb_ary_concat(ary, buf);
    }
    if (RARRAY_LEN(ary) > 2) {
        RARRAY_PTR_USE(ary, ptr,
                       ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
                                  sort_by_cmp, (void *)ary));
    }
    if (RBASIC(ary)->klass) {
	rb_raise(rb_eRuntimeError, "sort_by reentered");
    }
    for (i=1; i<RARRAY_LEN(ary); i+=2) {
	RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
    }
    rb_ary_resize(ary, RARRAY_LEN(ary)/2);
    RBASIC_SET_CLASS_RAW(ary, rb_cArray);

    return ary;
}

#sum(init = 0) ⇒ Numeric #sum(init = 0) {|e| ... } ⇒ Numeric

Returns the sum of elements in an Enumerable.

If a block is given, the block is applied to each element before addition.

If enum is empty, it returns init.

For example:

{ 1 => 10, 2 => 20 }.sum {|k, v| k * v }  #=> 50
(1..10).sum                               #=> 55
(1..10).sum {|v| v * 2 }                  #=> 110
('a'..'z').sum                            #=> TypeError

This method can be used for non-numeric objects by explicit init argument.

{ 1 => 10, 2 => 20 }.sum([])                   #=> [1, 10, 2, 20]
"a\nb\nc".each_line.lazy.map(&:chomp).sum("")  #=> "abc"

If the method is applied to an Integer range without a block, the sum is not done by iteration, but instead using Gauss’s summation formula.

Enumerable#sum method may not respect method redefinition of “+” methods such as Integer#+, or “each” methods such as Range#each.

Overloads:



4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
# File 'enum.c', line 4093

static VALUE
enum_sum(int argc, VALUE* argv, VALUE obj)
{
    struct enum_sum_memo memo;
    VALUE beg, end;
    int excl;

    memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
    memo.block_given = rb_block_given_p();
    memo.n = 0;
    memo.r = Qundef;

    if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
        memo.f = RFLOAT_VALUE(memo.v);
        memo.c = 0.0;
    }
    else {
        memo.f = 0.0;
        memo.c = 0.0;
    }

    if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
        if (!memo.block_given && !memo.float_value &&
                (FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) &&
                (FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) {
            return int_range_sum(beg, end, excl, memo.v);
        }
    }

    if (RB_TYPE_P(obj, T_HASH) &&
            rb_method_basic_definition_p(CLASS_OF(obj), id_each))
        hash_sum(obj, &memo);
    else
        rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);

    if (memo.float_value) {
        return DBL2NUM(memo.f + memo.c);
    }
    else {
        if (memo.n != 0)
            memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
        if (memo.r != Qundef) {
            memo.v = rb_rational_plus(memo.r, memo.v);
        }
        return memo.v;
    }
}

#take(n) ⇒ Array

Returns first n elements from enum.

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]
a.take(30)            #=> [1, 2, 3, 4, 5, 0]

Returns:



2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
# File 'enum.c', line 2905

static VALUE
enum_take(VALUE obj, VALUE n)
{
    struct MEMO *memo;
    VALUE result;
    long len = NUM2LONG(n);

    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to take negative size");
    }

    if (len == 0) return rb_ary_new2(0);
    result = rb_ary_new2(len);
    memo = MEMO_NEW(result, 0, len);
    rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
    return result;
}

#take_while {|obj| ... } ⇒ Array #take_whileObject

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an enumerator is returned instead.

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }   #=> [1, 2]

Overloads:

  • #take_while {|obj| ... } ⇒ Array

    Yields:

    • (obj)

    Returns:



2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
# File 'enum.c', line 2947

static VALUE
enum_take_while(VALUE obj)
{
    VALUE ary;

    RETURN_ENUMERATOR(obj, 0, 0);
    ary = rb_ary_new();
    rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
    return ary;
}

#tallyHash

Tallies the collection, i.e., counts the occurrences of each element. Returns a hash with the elements of the collection as keys and the corresponding counts as values.

["a", "b", "c", "b"].tally  #=> {"a"=>1, "b"=>2, "c"=>1}

Returns:



1046
1047
1048
1049
1050
# File 'enum.c', line 1046

static VALUE
enum_tally(VALUE obj)
{
    return enum_hashify(obj, 0, 0, tally_i);
}

#to_a(*args) ⇒ Array #entries(*args) ⇒ Array

Returns an array containing the items in enum.

(1..7).to_a                       #=> [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a   #=> [["a", 1], ["b", 2], ["c", 3]]

require 'prime'
Prime.entries 10                  #=> [2, 3, 5, 7]

Overloads:



680
681
682
683
684
685
686
687
688
# File 'enum.c', line 680

static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
    VALUE ary = rb_ary_new();

    rb_block_call(obj, id_each, argc, argv, collect_all, ary);

    return ary;
}

#to_h(*args) ⇒ Hash #to_h(*args) { ... } ⇒ Hash

Returns the result of interpreting enum as a list of [key, value] pairs.

%i[hello world].each_with_index.to_h
  # => {:hello => 0, :world => 1}

If a block is given, the results of the block on each element of the enum will be used as pairs.

(1..5).to_h {|x| [x, x ** 2]}
  #=> {1=>1, 2=>4, 3=>9, 4=>16, 5=>25}

Overloads:

  • #to_h(*args) ⇒ Hash

    Returns:

  • #to_h(*args) { ... } ⇒ Hash

    Yields:

    Returns:



729
730
731
732
733
734
# File 'enum.c', line 729

static VALUE
enum_to_h(int argc, VALUE *argv, VALUE obj)
{
    rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
    return enum_hashify(obj, argc, argv, iter);
}

#uniqArray #uniq {|item| ... } ⇒ Array

Returns a new array by removing duplicate values in self.

See also Array#uniq.

Overloads:



4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
# File 'enum.c', line 4167

static VALUE
enum_uniq(VALUE obj)
{
    VALUE hash, ret;
    rb_block_call_func *const func =
	rb_block_given_p() ? uniq_iter : uniq_func;

    hash = rb_obj_hide(rb_hash_new());
    rb_block_call(obj, id_each, 0, 0, func, hash);
    ret = rb_hash_values(hash);
    rb_hash_clear(hash);
    return ret;
}

#zip(arg, ...) ⇒ Object #zip(arg, ...) {|arr| ... } ⇒ nil

Takes one element from enum and merges corresponding elements from each args. This generates a sequence of n-element arrays, where n is one more than the count of arguments. The length of the resulting sequence will be enum#size. If the size of any argument is less than enum#size, nil values are supplied. If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]

a.zip(b)                 #=> [[4, 7], [5, 8], [6, 9]]
[1, 2, 3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)         #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])       #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

c = []
a.zip(b) { |x, y| c << x + y }  #=> nil
c                               #=> [11, 13, 15]

Overloads:

  • #zip(arg, ...) {|arr| ... } ⇒ nil

    Yields:

    • (arr)

    Returns:

    • (nil)


2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
# File 'enum.c', line 2843

static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
    int i;
    ID conv;
    struct MEMO *memo;
    VALUE result = Qnil;
    VALUE args = rb_ary_new4(argc, argv);
    int allary = TRUE;

    argv = RARRAY_PTR(args);
    for (i=0; i<argc; i++) {
	VALUE ary = rb_check_array_type(argv[i]);
	if (NIL_P(ary)) {
	    allary = FALSE;
	    break;
	}
	argv[i] = ary;
    }
    if (!allary) {
	static const VALUE sym_each = STATIC_ID2SYM(id_each);
	CONST_ID(conv, "to_enum");
	for (i=0; i<argc; i++) {
	    if (!rb_respond_to(argv[i], id_each)) {
		rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
			 rb_obj_class(argv[i]));
            }
	    argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
	}
    }
    if (!rb_block_given_p()) {
	result = rb_ary_new();
    }

    /* TODO: use NODE_DOT2 as memo(v, v, -) */
    memo = MEMO_NEW(result, args, 0);
    rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);

    return result;
}