Class: String

Inherits:
Object show all
Includes:
Comparable
Defined in:
string.c

Overview

A String object holds and manipulates an arbitrary sequence of bytes, typically representing characters. String objects may be created using String::new or as literals.

Because of aliasing issues, users of strings should be aware of the methods that modify the contents of a String object. Typically, methods with names ending in “!” modify their receiver, while those without a “!” return a new String. However, there are exceptions, such as String#[]=.

Direct Known Subclasses

Warning::buffer

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Comparable

#<, #<=, #>, #>=, #between?, #clamp

Constructor Details

#new(string = '') ⇒ Object #new(string = '', encoding: encoding) ⇒ Object #new(string = '', capacity: size) ⇒ Object

Returns a new String that is a copy of string.

With no arguments, returns the empty string with the Encoding ASCII-8BIT:

s = String.new
s # => ""
s.encoding # => #<Encoding:ASCII-8BIT>

With the single String argument string, returns a copy of string with the same encoding as string:

s = String.new("Que veut dire \u{e7}a?")
s # => "Que veut dire \u{e7}a?"
s.encoding # => #<Encoding:UTF-8>

Literal strings like "" or here-documents always use script encoding, unlike String.new.

With keyword encoding, returns a copy of str with the specified encoding:

s = String.new(encoding: 'ASCII')
s.encoding # => #<Encoding:US-ASCII>
s = String.new('foo', encoding: 'ASCII')
s.encoding # => #<Encoding:US-ASCII>

Note that these are equivalent:

s0 = String.new('foo', encoding: 'ASCII')
s1 = 'foo'.force_encoding('ASCII')
s0.encoding == s1.encoding # => true

With keyword capacity, returns a copy of str; the given capacity may set the size of the internal buffer, which may affect performance:

String.new(capacity: 1) # => ""
String.new(capacity: 4096) # => ""

The string, encoding, and capacity arguments may all be used together:

String.new('hello', encoding: 'UTF-8', capacity: 25)


1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
# File 'string.c', line 1669

static VALUE
rb_str_init(int argc, VALUE *argv, VALUE str)
{
    static ID keyword_ids[2];
    VALUE orig, opt, venc, vcapa;
    VALUE kwargs[2];
    rb_encoding *enc = 0;
    int n;

    if (!keyword_ids[0]) {
	keyword_ids[0] = rb_id_encoding();
	CONST_ID(keyword_ids[1], "capacity");
    }

    n = rb_scan_args(argc, argv, "01:", &orig, &opt);
    if (!NIL_P(opt)) {
	rb_get_kwargs(opt, keyword_ids, 0, 2, kwargs);
	venc = kwargs[0];
	vcapa = kwargs[1];
	if (venc != Qundef && !NIL_P(venc)) {
	    enc = rb_to_encoding(venc);
	}
	if (vcapa != Qundef && !NIL_P(vcapa)) {
	    long capa = NUM2LONG(vcapa);
	    long len = 0;
	    int termlen = enc ? rb_enc_mbminlen(enc) : 1;

	    if (capa < STR_BUF_MIN_SIZE) {
		capa = STR_BUF_MIN_SIZE;
	    }
	    if (n == 1) {
		StringValue(orig);
		len = RSTRING_LEN(orig);
		if (capa < len) {
		    capa = len;
		}
		if (orig == str) n = 0;
	    }
	    str_modifiable(str);
	    if (STR_EMBED_P(str)) { /* make noembed always */
                char *new_ptr = ALLOC_N(char, (size_t)capa + termlen);
                memcpy(new_ptr, RSTRING(str)->as.ary, RSTRING_EMBED_LEN_MAX + 1);
                RSTRING(str)->as.heap.ptr = new_ptr;
            }
            else if (FL_TEST(str, STR_SHARED|STR_NOFREE)) {
                const size_t size = (size_t)capa + termlen;
                const char *const old_ptr = RSTRING_PTR(str);
                const size_t osize = RSTRING(str)->as.heap.len + TERM_LEN(str);
                char *new_ptr = ALLOC_N(char, (size_t)capa + termlen);
                memcpy(new_ptr, old_ptr, osize < size ? osize : size);
                FL_UNSET_RAW(str, STR_SHARED);
                RSTRING(str)->as.heap.ptr = new_ptr;
	    }
	    else if (STR_HEAP_SIZE(str) != (size_t)capa + termlen) {
		SIZED_REALLOC_N(RSTRING(str)->as.heap.ptr, char,
			(size_t)capa + termlen, STR_HEAP_SIZE(str));
	    }
	    RSTRING(str)->as.heap.len = len;
	    TERM_FILL(&RSTRING(str)->as.heap.ptr[len], termlen);
	    if (n == 1) {
		memcpy(RSTRING(str)->as.heap.ptr, RSTRING_PTR(orig), len);
		rb_enc_cr_str_exact_copy(str, orig);
	    }
	    FL_SET(str, STR_NOEMBED);
	    RSTRING(str)->as.heap.aux.capa = capa;
	}
	else if (n == 1) {
	    rb_str_replace(str, orig);
	}
	if (enc) {
	    rb_enc_associate(str, enc);
	    ENC_CODERANGE_CLEAR(str);
	}
    }
    else if (n == 1) {
	rb_str_replace(str, orig);
    }
    return str;
}

Class Method Details

.try_convert(object) ⇒ Object?

If object is a String object, returns object.

Otherwise if object responds to :to_str, calls object.to_str and returns the result.

Returns nil if object does not respond to :to_str

Raises an exception unless object.to_str returns a String object.

Returns:



2456
2457
2458
2459
2460
# File 'string.c', line 2456

static VALUE
rb_str_s_try_convert(VALUE dummy, VALUE str)
{
    return rb_check_string_type(str);
}

Instance Method Details

#%(object) ⇒ Object

Returns the result of formatting object into the format specification self (see Kernel#sprintf for formatting details):

"%05d" % 123 # => "00123"

If self contains multiple substitutions, object must be an Array or Hash containing the values to be substituted:

"%-5s: %016x" % [ "ID", self.object_id ] # => "ID   : 00002b054ec93168"
"foo = %{foo}" % {foo: 'bar'} # => "foo = bar"
"foo = %{foo}, baz = %{baz}" % {foo: 'bar', baz: 'bat'} # => "foo = bar, baz = bat"


2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
# File 'string.c', line 2158

static VALUE
rb_str_format_m(VALUE str, VALUE arg)
{
    VALUE tmp = rb_check_array_type(arg);

    if (!NIL_P(tmp)) {
        return rb_str_format(RARRAY_LENINT(tmp), RARRAY_CONST_PTR(tmp), str);
    }
    return rb_str_format(1, &arg, str);
}

#*(integer) ⇒ Object

Returns a new String containing integer copies of self:

"Ho! " * 3 # => "Ho! Ho! Ho! "
"Ho! " * 0 # => ""


2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
# File 'string.c', line 2088

VALUE
rb_str_times(VALUE str, VALUE times)
{
    VALUE str2;
    long n, len;
    char *ptr2;
    int termlen;

    if (times == INT2FIX(1)) {
        return str_duplicate(rb_cString, str);
    }
    if (times == INT2FIX(0)) {
        str2 = str_alloc(rb_cString);
	rb_enc_copy(str2, str);
	return str2;
    }
    len = NUM2LONG(times);
    if (len < 0) {
	rb_raise(rb_eArgError, "negative argument");
    }
    if (RSTRING_LEN(str) == 1 && RSTRING_PTR(str)[0] == 0) {
       str2 = str_alloc(rb_cString);
       if (!STR_EMBEDDABLE_P(len, 1)) {
           RSTRING(str2)->as.heap.aux.capa = len;
           RSTRING(str2)->as.heap.ptr = ZALLOC_N(char, (size_t)len + 1);
           STR_SET_NOEMBED(str2);
       }
       STR_SET_LEN(str2, len);
       rb_enc_copy(str2, str);
       return str2;
    }
    if (len && LONG_MAX/len <  RSTRING_LEN(str)) {
	rb_raise(rb_eArgError, "argument too big");
    }

    len *= RSTRING_LEN(str);
    termlen = TERM_LEN(str);
    str2 = str_new0(rb_cString, 0, len, termlen);
    ptr2 = RSTRING_PTR(str2);
    if (len) {
        n = RSTRING_LEN(str);
        memcpy(ptr2, RSTRING_PTR(str), n);
        while (n <= len/2) {
            memcpy(ptr2 + n, ptr2, n);
            n *= 2;
        }
        memcpy(ptr2 + n, ptr2, len-n);
    }
    STR_SET_LEN(str2, len);
    TERM_FILL(&ptr2[len], termlen);
    rb_enc_cr_str_copy_for_substr(str2, str);

    return str2;
}

#+(other_string) ⇒ Object

Returns a new String containing other_string concatenated to self:

"Hello from " + self.to_s # => "Hello from main"


2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
# File 'string.c', line 2018

VALUE
rb_str_plus(VALUE str1, VALUE str2)
{
    VALUE str3;
    rb_encoding *enc;
    char *ptr1, *ptr2, *ptr3;
    long len1, len2;
    int termlen;

    StringValue(str2);
    enc = rb_enc_check_str(str1, str2);
    RSTRING_GETMEM(str1, ptr1, len1);
    RSTRING_GETMEM(str2, ptr2, len2);
    termlen = rb_enc_mbminlen(enc);
    if (len1 > LONG_MAX - len2) {
	rb_raise(rb_eArgError, "string size too big");
    }
    str3 = str_new0(rb_cString, 0, len1+len2, termlen);
    ptr3 = RSTRING_PTR(str3);
    memcpy(ptr3, ptr1, len1);
    memcpy(ptr3+len1, ptr2, len2);
    TERM_FILL(&ptr3[len1+len2], termlen);

    ENCODING_CODERANGE_SET(str3, rb_enc_to_index(enc),
			   ENC_CODERANGE_AND(ENC_CODERANGE(str1), ENC_CODERANGE(str2)));
    RB_GC_GUARD(str1);
    RB_GC_GUARD(str2);
    return str3;
}

#+self

Returns self if self is not frozen.

Otherwise. returns self.dup, which is not frozen.

Returns:

  • (self)


2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
# File 'string.c', line 2757

static VALUE
str_uplus(VALUE str)
{
    if (OBJ_FROZEN(str)) {
	return rb_str_dup(str);
    }
    else {
	return str;
    }
}

#-Object

Returns a frozen, possibly pre-existing copy of the string.

The returned String will be deduplicated as long as it does not have any instance variables set on it.



2777
2778
2779
2780
2781
2782
2783
2784
# File 'string.c', line 2777

static VALUE
str_uminus(VALUE str)
{
    if (!BARE_STRING_P(str) && !rb_obj_frozen_p(str)) {
        str = rb_str_dup(str);
    }
    return rb_fstring(str);
}

#<<(object) ⇒ String

Returns a new String containing the concatenation of self and object:

s = 'foo'
s << 'bar' # => "foobar"

If object is an Integer, the value is considered a codepoint and converted to a character before concatenation:

s = 'foo'
s << 33 # => "foo!"

Related: String#concat, which takes multiple arguments.

Returns:



3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
# File 'string.c', line 3190

VALUE
rb_str_concat(VALUE str1, VALUE str2)
{
    unsigned int code;
    rb_encoding *enc = STR_ENC_GET(str1);
    int encidx;

    if (RB_INTEGER_TYPE_P(str2)) {
	if (rb_num_to_uint(str2, &code) == 0) {
	}
	else if (FIXNUM_P(str2)) {
	    rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(str2));
	}
	else {
	    rb_raise(rb_eRangeError, "bignum out of char range");
	}
    }
    else {
	return rb_str_append(str1, str2);
    }

    encidx = rb_enc_to_index(enc);
    if (encidx == ENCINDEX_ASCII || encidx == ENCINDEX_US_ASCII) {
	/* US-ASCII automatically extended to ASCII-8BIT */
	char buf[1];
	buf[0] = (char)code;
	if (code > 0xFF) {
	    rb_raise(rb_eRangeError, "%u out of char range", code);
	}
	rb_str_cat(str1, buf, 1);
	if (encidx == ENCINDEX_US_ASCII && code > 127) {
	    rb_enc_associate_index(str1, ENCINDEX_ASCII);
	    ENC_CODERANGE_SET(str1, ENC_CODERANGE_VALID);
	}
    }
    else {
	long pos = RSTRING_LEN(str1);
	int cr = ENC_CODERANGE(str1);
	int len;
	char *buf;

	switch (len = rb_enc_codelen(code, enc)) {
	  case ONIGERR_INVALID_CODE_POINT_VALUE:
	    rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
	    break;
	  case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
	  case 0:
	    rb_raise(rb_eRangeError, "%u out of char range", code);
	    break;
	}
	buf = ALLOCA_N(char, len + 1);
	rb_enc_mbcput(code, buf, enc);
	if (rb_enc_precise_mbclen(buf, buf + len + 1, enc) != len) {
	    rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
	}
	rb_str_resize(str1, pos+len);
	memcpy(RSTRING_PTR(str1) + pos, buf, len);
	if (cr == ENC_CODERANGE_7BIT && code > 127)
	    cr = ENC_CODERANGE_VALID;
	ENC_CODERANGE_SET(str1, cr);
    }
    return str1;
}

#<=>(other_string) ⇒ -1, ...

Compares self and other_string, returning:

  • -1 if other_string is smaller.

  • 0 if the two are equal.

  • 1 if other_string is larger.

  • nil if the two are incomparable.

Examples:

'foo' <=> 'foo' # => 0
'foo' <=> 'food' # => -1
'food' <=> 'foo' # => 1
'FOO' <=> 'foo' # => -1
'foo' <=> 'FOO' # => 1
'foo' <=> 1 # => nil

Returns:

  • (-1, 0, 1, nil)


3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
# File 'string.c', line 3451

static VALUE
rb_str_cmp_m(VALUE str1, VALUE str2)
{
    int result;
    VALUE s = rb_check_string_type(str2);
    if (NIL_P(s)) {
	return rb_invcmp(str1, str2);
    }
    result = rb_str_cmp(str1, s);
    return INT2FIX(result);
}

#==(object) ⇒ Boolean #===(object) ⇒ Boolean

Returns true if object has the same length and content; as self; false otherwise:

s = 'foo'
s == 'foo' # => true
s == 'food' # => false
s == 'FOO' # => false

Returns false if the two strings’ encodings are not compatible:

"\u{e4 f6 fc}".encode("ISO-8859-1") == ("\u{c4 d6 dc}") # => false

If object is not an instance of String but responds to to_str, then the two strings are compared using object.==.

Overloads:

  • #==(object) ⇒ Boolean

    Returns:

    • (Boolean)
  • #===(object) ⇒ Boolean

    Returns:

    • (Boolean)


3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
# File 'string.c', line 3396

VALUE
rb_str_equal(VALUE str1, VALUE str2)
{
    if (str1 == str2) return Qtrue;
    if (!RB_TYPE_P(str2, T_STRING)) {
	if (!rb_respond_to(str2, idTo_str)) {
	    return Qfalse;
	}
	return rb_equal(str2, str1);
    }
    return rb_str_eql_internal(str1, str2);
}

#==(object) ⇒ Boolean #===(object) ⇒ Boolean

Returns true if object has the same length and content; as self; false otherwise:

s = 'foo'
s == 'foo' # => true
s == 'food' # => false
s == 'FOO' # => false

Returns false if the two strings’ encodings are not compatible:

"\u{e4 f6 fc}".encode("ISO-8859-1") == ("\u{c4 d6 dc}") # => false

If object is not an instance of String but responds to to_str, then the two strings are compared using object.==.

Overloads:

  • #==(object) ⇒ Boolean

    Returns:

    • (Boolean)
  • #===(object) ⇒ Boolean

    Returns:

    • (Boolean)


3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
# File 'string.c', line 3396

VALUE
rb_str_equal(VALUE str1, VALUE str2)
{
    if (str1 == str2) return Qtrue;
    if (!RB_TYPE_P(str2, T_STRING)) {
	if (!rb_respond_to(str2, idTo_str)) {
	    return Qfalse;
	}
	return rb_equal(str2, str1);
    }
    return rb_str_eql_internal(str1, str2);
}

#=~(regexp) ⇒ Integer? #=~(object) ⇒ Integer?

Returns the Integer index of the first substring that matches the given regexp, or nil if no match found:

'foo' =~ /f/ # => 0
'foo' =~ /o/ # => 1
'foo' =~ /x/ # => nil

Note: also updates Regexp-related global variables.

If the given object is not a Regexp, returns the value returned by object =~ self.

Note that string =~ regexp is different from regexp =~ string (see Regexp#=~):

number= nil
"no. 9" =~ /(?<number>\d+)/
number # => nil (not assigned)
/(?<number>\d+)/ =~ "no. 9"
number #=> "9"

Overloads:



3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
# File 'string.c', line 3936

static VALUE
rb_str_match(VALUE x, VALUE y)
{
    switch (OBJ_BUILTIN_TYPE(y)) {
      case T_STRING:
	rb_raise(rb_eTypeError, "type mismatch: String given");

      case T_REGEXP:
	return rb_reg_match(y, x);

      default:
	return rb_funcall(y, idEqTilde, 1, x);
    }
}

#[](index) ⇒ nil #[](start, length) ⇒ nil #[](range) ⇒ nil #[](regexp, capture = 0) ⇒ nil #[](substring) ⇒ nil

Returns the substring of self specified by the arguments.

When the single Integer argument index is given, returns the 1-character substring found in self at offset index:

'bar'[2] # => "r"

Counts backward from the end of self if index is negative:

'foo'[-3] # => "f"

Returns nil if index is out of range:

'foo'[3] # => nil
'foo'[-4] # => nil

When the two Integer arguments start and length are given, returns the substring of the given length found in self at offset start:

'foo'[0, 2] # => "fo"
'foo'[0, 0] # => ""

Counts backward from the end of self if start is negative:

'foo'[-2, 2] # => "oo"

Special case: returns a new empty String if start is equal to the length of self:

'foo'[3, 2] # => ""

Returns nil if start is out of range:

'foo'[4, 2] # => nil
'foo'[-4, 2] # => nil

Returns the trailing substring of self if length is large:

'foo'[1, 50] # => "oo"

Returns nil if length is negative:

'foo'[0, -1] # => nil

When the single Range argument range is given, derives start and length values from the given range, and returns values as above:

  • 'foo'[0..1] is equivalent to 'foo'[0, 2].

  • 'foo'[0...1] is equivalent to 'foo'[0, 1].

When the Regexp argument regexp is given, and the capture argument is 0, returns the first matching substring found in self, or nil if none found:

'foo'[/o/] # => "o"
'foo'[/x/] # => nil
s = 'hello there'
s[/[aeiou](.)\1/] # => "ell"
s[/[aeiou](.)\1/, 0] # => "ell"

If argument capture is given and not 0, it should be either an Integer capture group index or a String or Symbol capture group name; the method call returns only the specified capture (see Regexp Capturing):

s = 'hello there'
s[/[aeiou](.)\1/, 1] # => "l"
s[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "non_vowel"] # => "l"
s[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, :vowel] # => "e"

If an invalid capture group index is given, nil is returned. If an invalid capture group name is given, IndexError is raised.

When the single String argument substring is given, returns the substring from self if found, otherwise nil:

'foo'['oo'] # => "oo"
'foo'['xx'] # => nil

String#slice is an alias for String#[].

Overloads:

  • #[](index) ⇒ nil

    Returns:

    • (nil)
  • #[](start, length) ⇒ nil

    Returns:

    • (nil)
  • #[](range) ⇒ nil

    Returns:

    • (nil)
  • #[](regexp, capture = 0) ⇒ nil

    Returns:

    • (nil)
  • #[](substring) ⇒ nil

    Returns:

    • (nil)


4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
# File 'string.c', line 4735

static VALUE
rb_str_aref_m(int argc, VALUE *argv, VALUE str)
{
    if (argc == 2) {
	if (RB_TYPE_P(argv[0], T_REGEXP)) {
	    return rb_str_subpat(str, argv[0], argv[1]);
	}
	else {
	    long beg = NUM2LONG(argv[0]);
	    long len = NUM2LONG(argv[1]);
	    return rb_str_substr(str, beg, len);
	}
    }
    rb_check_arity(argc, 1, 2);
    return rb_str_aref(str, argv[0]);
}

#[]=(integer) ⇒ Object #[]=(integer, integer) ⇒ Object #[]=(range) ⇒ Object #[]=(regexp) ⇒ Object #[]=(regexp, integer) ⇒ Object #[]=(regexp, name) ⇒ Object #[]=(other_str) ⇒ Object

Element Assignment—Replaces some or all of the content of str. The portion of the string affected is determined using the same criteria as String#[]. If the replacement string is not the same length as the text it is replacing, the string will be adjusted accordingly. If the regular expression or string is used as the index doesn’t match a position in the string, IndexError is raised. If the regular expression form is used, the optional second Integer allows you to specify which portion of the match to replace (effectively using the MatchData indexing rules. The forms that take an Integer will raise an IndexError if the value is out of range; the Range form will raise a RangeError, and the Regexp and String will raise an IndexError on negative match.



4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
# File 'string.c', line 4960

static VALUE
rb_str_aset_m(int argc, VALUE *argv, VALUE str)
{
    if (argc == 3) {
	if (RB_TYPE_P(argv[0], T_REGEXP)) {
	    rb_str_subpat_set(str, argv[0], argv[1], argv[2]);
	}
	else {
	    rb_str_splice(str, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
	}
	return argv[2];
    }
    rb_check_arity(argc, 2, 3);
    return rb_str_aset(str, argv[0], argv[1]);
}

#ascii_only?Boolean

Returns true for a string which has only ASCII characters.

"abc".force_encoding("UTF-8").ascii_only?          #=> true
"abc\u{6666}".force_encoding("UTF-8").ascii_only?  #=> false

Returns:

  • (Boolean)


10438
10439
10440
10441
10442
10443
10444
# File 'string.c', line 10438

static VALUE
rb_str_is_ascii_only_p(VALUE str)
{
    int cr = rb_enc_str_coderange(str);

    return cr == ENC_CODERANGE_7BIT ? Qtrue : Qfalse;
}

#bString

Returns a copied string whose encoding is ASCII-8BIT.

Returns:



10400
10401
10402
10403
10404
10405
10406
10407
# File 'string.c', line 10400

static VALUE
rb_str_b(VALUE str)
{
    VALUE str2 = str_alloc(rb_cString);
    str_replace_shared_without_enc(str2, str);
    ENC_CODERANGE_CLEAR(str2);
    return str2;
}

#bytesArray

Returns an array of bytes in str. This is a shorthand for str.each_byte.to_a.

If a block is given, which is a deprecated form, works the same as each_byte.

Returns:



8692
8693
8694
8695
8696
8697
# File 'string.c', line 8692

static VALUE
rb_str_bytes(VALUE str)
{
    VALUE ary = WANTARRAY("bytes", RSTRING_LEN(str));
    return rb_str_enumerate_bytes(str, ary);
}

#bytesizeInteger

Returns the count of bytes in self:

"\x80\u3042".bytesize # => 4
"hello".bytesize # => 5

Related: String#length.

Returns:



1986
1987
1988
1989
1990
# File 'string.c', line 1986

static VALUE
rb_str_bytesize(VALUE str)
{
    return LONG2NUM(RSTRING_LEN(str));
}

#byteslice(integer) ⇒ String? #byteslice(integer, integer) ⇒ String? #byteslice(range) ⇒ String?

Byte Reference—If passed a single Integer, returns a substring of one byte at that position. If passed two Integer objects, returns a substring starting at the offset given by the first, and a length given by the second. If given a Range, a substring containing bytes at offsets given by the range is returned. In all three cases, if an offset is negative, it is counted from the end of str. Returns nil if the initial offset falls outside the string, the length is negative, or the beginning of the range is greater than the end. The encoding of the resulted string keeps original encoding.

"hello".byteslice(1)     #=> "e"
"hello".byteslice(-1)    #=> "o"
"hello".byteslice(1, 2)  #=> "el"
"\x80\u3042".byteslice(1, 3) #=> "\u3042"
"\x03\u3042\xff".byteslice(1..3) #=> "\u3042"

Overloads:



5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
# File 'string.c', line 5823

static VALUE
rb_str_byteslice(int argc, VALUE *argv, VALUE str)
{
    if (argc == 2) {
	long beg = NUM2LONG(argv[0]);
	long end = NUM2LONG(argv[1]);
	return str_byte_substr(str, beg, end, TRUE);
    }
    rb_check_arity(argc, 1, 2);
    return str_byte_aref(str, argv[0]);
}

#capitalizeString #capitalize([options]) ⇒ String

Returns a copy of str with the first character converted to uppercase and the remainder to lowercase.

See String#downcase for meaning of options and use with different encodings.

"hello".capitalize    #=> "Hello"
"HELLO".capitalize    #=> "Hello"
"123ABC".capitalize   #=> "123abc"

Overloads:



7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
# File 'string.c', line 7127

static VALUE
rb_str_capitalize(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE | ONIGENC_CASE_TITLECASE;
    VALUE ret;

    flags = check_case_options(argc, argv, flags);
    enc = str_true_enc(str);
    if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return str;
    if (flags&ONIGENC_CASE_ASCII_ONLY) {
        ret = rb_str_new(0, RSTRING_LEN(str));
        rb_str_ascii_casemap(str, ret, &flags, enc);
    }
    else {
        ret = rb_str_casemap(str, &flags, enc);
    }
    return ret;
}

#capitalize!String? #capitalize!([options]) ⇒ String?

Modifies str by converting the first character to uppercase and the remainder to lowercase. Returns nil if no changes are made. There is an exception for modern Georgian (mkhedruli/MTAVRULI), where the result is the same as for String#downcase, to avoid mixed case.

See String#downcase for meaning of options and use with different encodings.

a = "hello"
a.capitalize!   #=> "Hello"
a               #=> "Hello"
a.capitalize!   #=> nil

Overloads:



7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
# File 'string.c', line 7092

static VALUE
rb_str_capitalize_bang(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE | ONIGENC_CASE_TITLECASE;

    flags = check_case_options(argc, argv, flags);
    str_modify_keep_cr(str);
    enc = str_true_enc(str);
    if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return Qnil;
    if (flags&ONIGENC_CASE_ASCII_ONLY)
        rb_str_ascii_casemap(str, str, &flags, enc);
    else
	str_shared_replace(str, rb_str_casemap(str, &flags, enc));

    if (ONIGENC_CASE_MODIFIED&flags) return str;
    return Qnil;
}

#casecmp(other_str) ⇒ -1, ...

Compares self and other_string, ignoring case, and returning:

  • -1 if other_string is smaller.

  • 0 if the two are equal.

  • 1 if other_string is larger.

  • nil if the two are incomparable.

Examples:

'foo'.casecmp('foo') # => 0
'foo'.casecmp('food') # => -1
'food'.casecmp('foo') # => 1
'FOO'.casecmp('foo') # => 0
'foo'.casecmp('FOO') # => 0
'foo'.casecmp(1) # => nil

Returns:

  • (-1, 0, 1, nil)


3485
3486
3487
3488
3489
3490
3491
3492
3493
# File 'string.c', line 3485

static VALUE
rb_str_casecmp(VALUE str1, VALUE str2)
{
    VALUE s = rb_check_string_type(str2);
    if (NIL_P(s)) {
	return Qnil;
    }
    return str_casecmp(str1, s);
}

#casecmp?(other_string) ⇒ true, ...

Returns true if self and other_string are equal after Unicode case folding, otherwise false:

'foo'.casecmp?('foo') # => true
'foo'.casecmp?('food') # => false
'food'.casecmp?('foo') # => true
'FOO'.casecmp?('foo') # => true
'foo'.casecmp?('FOO') # => true

Returns nil if the two values are incomparable:

'foo'.casecmp?(1) # => nil

Returns:

  • (true, false, nil)


3568
3569
3570
3571
3572
3573
3574
3575
3576
# File 'string.c', line 3568

static VALUE
rb_str_casecmp_p(VALUE str1, VALUE str2)
{
    VALUE s = rb_check_string_type(str2);
    if (NIL_P(s)) {
	return Qnil;
    }
    return str_casecmp_p(str1, s);
}

#center(width, padstr = ' ') ⇒ String

Centers str in width. If width is greater than the length of str, returns a new String of length width with str centered and padded with padstr; otherwise, returns str.

"hello".center(4)         #=> "hello"
"hello".center(20)        #=> "       hello        "
"hello".center(20, '123') #=> "1231231hello12312312"

Returns:



10020
10021
10022
10023
10024
# File 'string.c', line 10020

static VALUE
rb_str_center(int argc, VALUE *argv, VALUE str)
{
    return rb_str_justify(argc, argv, str, 'c');
}

#charsArray

Returns an array of characters in str. This is a shorthand for str.each_char.to_a.

If a block is given, which is a deprecated form, works the same as each_char.

Returns:



8770
8771
8772
8773
8774
8775
# File 'string.c', line 8770

static VALUE
rb_str_chars(VALUE str)
{
    VALUE ary = WANTARRAY("chars", rb_str_strlen(str));
    return rb_str_enumerate_chars(str, ary);
}

#chomp(separator = $/) ⇒ String

Returns a new String with the given record separator removed from the end of str (if present). If $/ has not been changed from the default Ruby record separator, then chomp also removes carriage return characters (that is it will remove \n, \r, and \r\n). If $/ is an empty string, it will remove all trailing newlines from the string.

"hello".chomp                #=> "hello"
"hello\n".chomp              #=> "hello"
"hello\r\n".chomp            #=> "hello"
"hello\n\r".chomp            #=> "hello\n"
"hello\r".chomp              #=> "hello"
"hello \n there".chomp       #=> "hello \n there"
"hello".chomp("llo")         #=> "he"
"hello\r\n\r\n".chomp('')    #=> "hello"
"hello\r\n\r\r\n".chomp('')  #=> "hello\r\n\r"

Returns:



9251
9252
9253
9254
9255
9256
9257
# File 'string.c', line 9251

static VALUE
rb_str_chomp(int argc, VALUE *argv, VALUE str)
{
    VALUE rs = chomp_rs(argc, argv);
    if (NIL_P(rs)) return str_duplicate(rb_cString, str);
    return rb_str_subseq(str, 0, chompped_length(str, rs));
}

#chomp!(separator = $/) ⇒ String?

Modifies str in place as described for String#chomp, returning str, or nil if no modifications were made.

Returns:



9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
# File 'string.c', line 9217

static VALUE
rb_str_chomp_bang(int argc, VALUE *argv, VALUE str)
{
    VALUE rs;
    str_modifiable(str);
    if (RSTRING_LEN(str) == 0) return Qnil;
    rs = chomp_rs(argc, argv);
    if (NIL_P(rs)) return Qnil;
    return rb_str_chomp_string(str, rs);
}

#chopString

Returns a new String with the last character removed. If the string ends with \r\n, both characters are removed. Applying chop to an empty string returns an empty string. String#chomp is often a safer alternative, as it leaves the string unchanged if it doesn’t end in a record separator.

"string\r\n".chop   #=> "string"
"string\n\r".chop   #=> "string\n"
"string\n".chop     #=> "string"
"string".chop       #=> "strin"
"x".chop.chop       #=> ""

Returns:



9064
9065
9066
9067
9068
# File 'string.c', line 9064

static VALUE
rb_str_chop(VALUE str)
{
    return rb_str_subseq(str, 0, chopped_length(str));
}

#chop!String?

Processes str as for String#chop, returning str, or nil if str is the empty string. See also String#chomp!.

Returns:



9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
# File 'string.c', line 9028

static VALUE
rb_str_chop_bang(VALUE str)
{
    str_modify_keep_cr(str);
    if (RSTRING_LEN(str) > 0) {
	long len;
	len = chopped_length(str);
	STR_SET_LEN(str, len);
	TERM_FILL(&RSTRING_PTR(str)[len], TERM_LEN(str));
	if (ENC_CODERANGE(str) != ENC_CODERANGE_7BIT) {
	    ENC_CODERANGE_CLEAR(str);
	}
	return str;
    }
    return Qnil;
}

#chrString

Returns a one-character string at the beginning of the string.

a = "abcde"
a.chr    #=> "a"

Returns:



5634
5635
5636
5637
5638
# File 'string.c', line 5634

static VALUE
rb_str_chr(VALUE str)
{
    return rb_str_substr(str, 0, 1);
}

#clearString

Makes string empty.

a = "abcde"
a.clear    #=> ""

Returns:



5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
# File 'string.c', line 5610

static VALUE
rb_str_clear(VALUE str)
{
    str_discard(str);
    STR_SET_EMBED(str);
    STR_SET_EMBED_LEN(str, 0);
    RSTRING_PTR(str)[0] = 0;
    if (rb_enc_asciicompat(STR_ENC_GET(str)))
	ENC_CODERANGE_SET(str, ENC_CODERANGE_7BIT);
    else
	ENC_CODERANGE_SET(str, ENC_CODERANGE_VALID);
    return str;
}

#codepointsArray

Returns an array of the Integer ordinals of the characters in str. This is a shorthand for str.each_codepoint.to_a.

If a block is given, which is a deprecated form, works the same as each_codepoint.

Returns:



8845
8846
8847
8848
8849
8850
# File 'string.c', line 8845

static VALUE
rb_str_codepoints(VALUE str)
{
    VALUE ary = WANTARRAY("codepoints", rb_str_strlen(str));
    return rb_str_enumerate_codepoints(str, ary);
}

#concat(*objects) ⇒ Object

Returns a new String containing the concatenation of self and all objects in objects:

s = 'foo'
s.concat('bar', 'baz') # => "foobarbaz"

For each given object object that is an Integer, the value is considered a codepoint and converted to a character before concatenation:

s = 'foo'
s.concat(32, 'bar', 32, 'baz') # => "foo bar baz"

Related: String#<<, which takes a single argument.



3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
# File 'string.c', line 3153

static VALUE
rb_str_concat_multi(int argc, VALUE *argv, VALUE str)
{
    str_modifiable(str);

    if (argc == 1) {
	return rb_str_concat(str, argv[0]);
    }
    else if (argc > 1) {
	int i;
	VALUE arg_str = rb_str_tmp_new(0);
	rb_enc_copy(arg_str, str);
	for (i = 0; i < argc; i++) {
	    rb_str_concat(arg_str, argv[i]);
	}
	rb_str_buf_append(str, arg_str);
    }

    return str;
}

#count([other_str]) ⇒ Integer

Each other_str parameter defines a set of characters to count. The intersection of these sets defines the characters to count in str. Any other_str that starts with a caret ^ is negated. The sequence c1-c2 means all characters between c1 and c2. The backslash character \ can be used to escape ^ or - and is otherwise ignored unless it appears at the end of a sequence or the end of a other_str.

a = "hello world"
a.count "lo"                   #=> 5
a.count "lo", "o"              #=> 2
a.count "hello", "^l"          #=> 4
a.count "ej-m"                 #=> 4

"hello^world".count "\\^aeiou" #=> 4
"hello-world".count "a\\-eo"   #=> 4

c = "hello world\\r\\n"
c.count "\\"                   #=> 2
c.count "\\A"                  #=> 0
c.count "X-\\w"                #=> 3

Returns:



7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
# File 'string.c', line 7936

static VALUE
rb_str_count(int argc, VALUE *argv, VALUE str)
{
    char table[TR_TABLE_SIZE];
    rb_encoding *enc = 0;
    VALUE del = 0, nodel = 0, tstr;
    char *s, *send;
    int i;
    int ascompat;

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);

    tstr = argv[0];
    StringValue(tstr);
    enc = rb_enc_check(str, tstr);
    if (argc == 1) {
	const char *ptstr;
	if (RSTRING_LEN(tstr) == 1 && rb_enc_asciicompat(enc) &&
	    (ptstr = RSTRING_PTR(tstr),
	     ONIGENC_IS_ALLOWED_REVERSE_MATCH(enc, (const unsigned char *)ptstr, (const unsigned char *)ptstr+1)) &&
	    !is_broken_string(str)) {
	    int n = 0;
	    int clen;
	    unsigned char c = rb_enc_codepoint_len(ptstr, ptstr+1, &clen, enc);

	    s = RSTRING_PTR(str);
	    if (!s || RSTRING_LEN(str) == 0) return INT2FIX(0);
	    send = RSTRING_END(str);
	    while (s < send) {
		if (*(unsigned char*)s++ == c) n++;
	    }
	    return INT2NUM(n);
	}
    }

    tr_setup_table(tstr, table, TRUE, &del, &nodel, enc);
    for (i=1; i<argc; i++) {
	tstr = argv[i];
	StringValue(tstr);
	enc = rb_enc_check(str, tstr);
	tr_setup_table(tstr, table, FALSE, &del, &nodel, enc);
    }

    s = RSTRING_PTR(str);
    if (!s || RSTRING_LEN(str) == 0) return INT2FIX(0);
    send = RSTRING_END(str);
    ascompat = rb_enc_asciicompat(enc);
    i = 0;
    while (s < send) {
	unsigned int c;

	if (ascompat && (c = *(unsigned char*)s) < 0x80) {
	    if (table[c]) {
		i++;
	    }
	    s++;
	}
	else {
	    int clen;
	    c = rb_enc_codepoint_len(s, send, &clen, enc);
	    if (tr_find(c, table, del, nodel)) {
		i++;
	    }
	    s += clen;
	}
    }

    return INT2NUM(i);
}

#crypt(salt_str) ⇒ String

Returns the string generated by calling crypt(3) standard library function with str and salt_str, in this order, as its arguments. Please do not use this method any longer. It is legacy; provided only for backward compatibility with ruby scripts in earlier days. It is bad to use in contemporary programs for several reasons:

  • Behaviour of C’s crypt(3) depends on the OS it is run. The generated string lacks data portability.

  • On some OSes such as Mac OS, crypt(3) never fails (i.e. silently ends up in unexpected results).

  • On some OSes such as Mac OS, crypt(3) is not thread safe.

  • So-called “traditional” usage of crypt(3) is very very very weak. According to its manpage, Linux’s traditional crypt(3) output has only 2**56 variations; too easy to brute force today. And this is the default behaviour.

  • In order to make things robust some OSes implement so-called “modular” usage. To go through, you have to do a complex build-up of the salt_str parameter, by hand. Failure in generation of a proper salt string tends not to yield any errors; typos in parameters are normally not detectable.

    • For instance, in the following example, the second invocation of String#crypt is wrong; it has a typo in “round=” (lacks “s”). However the call does not fail and something unexpected is generated.

      "foo".crypt("$5$rounds=1000$salt$") # OK, proper usage
      "foo".crypt("$5$round=1000$salt$")  # Typo not detected
      
  • Even in the “modular” mode, some hash functions are considered archaic and no longer recommended at all; for instance module $1$ is officially abandoned by its author: see phk.freebsd.dk/sagas/md5crypt_eol.html . For another instance module $3$ is considered completely broken: see the manpage of FreeBSD.

  • On some OS such as Mac OS, there is no modular mode. Yet, as written above, crypt(3) on Mac OS never fails. This means even if you build up a proper salt string it generates a traditional DES hash anyways, and there is no way for you to be aware of.

    "foo".crypt("$5$rounds=1000$salt$") # => "$5fNPQMxC5j6."
    

If for some reason you cannot migrate to other secure contemporary password hashing algorithms, install the string-crypt gem and require 'string/crypt' to continue using it.

Returns:



9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
# File 'string.c', line 9733

static VALUE
rb_str_crypt(VALUE str, VALUE salt)
{
#ifdef HAVE_CRYPT_R
    VALUE databuf;
    struct crypt_data *data;
#   define CRYPT_END() ALLOCV_END(databuf)
#else
    extern char *crypt(const char *, const char *);
#   define CRYPT_END() (void)0
#endif
    VALUE result;
    const char *s, *saltp;
    char *res;
#ifdef BROKEN_CRYPT
    char salt_8bit_clean[3];
#endif

    StringValue(salt);
    mustnot_wchar(str);
    mustnot_wchar(salt);
    if (RSTRING_LEN(salt) < 2) {
        goto short_salt;
    }

    s = StringValueCStr(str);
    saltp = RSTRING_PTR(salt);
    if (!saltp[0] || !saltp[1]) goto short_salt;
#ifdef BROKEN_CRYPT
    if (!ISASCII((unsigned char)saltp[0]) || !ISASCII((unsigned char)saltp[1])) {
	salt_8bit_clean[0] = saltp[0] & 0x7f;
	salt_8bit_clean[1] = saltp[1] & 0x7f;
	salt_8bit_clean[2] = '\0';
	saltp = salt_8bit_clean;
    }
#endif
#ifdef HAVE_CRYPT_R
    data = ALLOCV(databuf, sizeof(struct crypt_data));
# ifdef HAVE_STRUCT_CRYPT_DATA_INITIALIZED
    data->initialized = 0;
# endif
    res = crypt_r(s, saltp, data);
#else
    res = crypt(s, saltp);
#endif
    if (!res) {
	int err = errno;
	CRYPT_END();
	rb_syserr_fail(err, "crypt");
    }
    result = rb_str_new_cstr(res);
    CRYPT_END();
    return result;

  short_salt:
    rb_raise(rb_eArgError, "salt too short (need >=2 bytes)");
    UNREACHABLE_RETURN(Qundef);
}

#delete([other_str]) ⇒ String

Returns a copy of str with all characters in the intersection of its arguments deleted. Uses the same rules for building the set of characters as String#count.

"hello".delete "l","lo"        #=> "heo"
"hello".delete "lo"            #=> "he"
"hello".delete "aeiou", "^e"   #=> "hell"
"hello".delete "ej-m"          #=> "ho"

Returns:



7755
7756
7757
7758
7759
7760
7761
# File 'string.c', line 7755

static VALUE
rb_str_delete(int argc, VALUE *argv, VALUE str)
{
    str = str_duplicate(rb_cString, str);
    rb_str_delete_bang(argc, argv, str);
    return str;
}

#delete!([other_str]) ⇒ String?

Performs a delete operation in place, returning str, or nil if str was not modified.

Returns:



7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
# File 'string.c', line 7679

static VALUE
rb_str_delete_bang(int argc, VALUE *argv, VALUE str)
{
    char squeez[TR_TABLE_SIZE];
    rb_encoding *enc = 0;
    char *s, *send, *t;
    VALUE del = 0, nodel = 0;
    int modify = 0;
    int i, ascompat, cr;

    if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return Qnil;
    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i=0; i<argc; i++) {
	VALUE s = argv[i];

	StringValue(s);
	enc = rb_enc_check(str, s);
	tr_setup_table(s, squeez, i==0, &del, &nodel, enc);
    }

    str_modify_keep_cr(str);
    ascompat = rb_enc_asciicompat(enc);
    s = t = RSTRING_PTR(str);
    send = RSTRING_END(str);
    cr = ascompat ? ENC_CODERANGE_7BIT : ENC_CODERANGE_VALID;
    while (s < send) {
	unsigned int c;
	int clen;

	if (ascompat && (c = *(unsigned char*)s) < 0x80) {
	    if (squeez[c]) {
		modify = 1;
	    }
	    else {
		if (t != s) *t = c;
		t++;
	    }
	    s++;
	}
	else {
	    c = rb_enc_codepoint_len(s, send, &clen, enc);

	    if (tr_find(c, squeez, del, nodel)) {
		modify = 1;
	    }
	    else {
		if (t != s) rb_enc_mbcput(c, t, enc);
		t += clen;
		if (cr == ENC_CODERANGE_7BIT) cr = ENC_CODERANGE_VALID;
	    }
	    s += clen;
	}
    }
    TERM_FILL(t, TERM_LEN(str));
    STR_SET_LEN(str, t - RSTRING_PTR(str));
    ENC_CODERANGE_SET(str, cr);

    if (modify) return str;
    return Qnil;
}

#delete_prefix(prefix) ⇒ String

Returns a copy of str with leading prefix deleted.

"hello".delete_prefix("hel") #=> "lo"
"hello".delete_prefix("llo") #=> "hello"

Returns:



10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
# File 'string.c', line 10255

static VALUE
rb_str_delete_prefix(VALUE str, VALUE prefix)
{
    long prefixlen;

    prefixlen = deleted_prefix_length(str, prefix);
    if (prefixlen <= 0) return str_duplicate(rb_cString, str);

    return rb_str_subseq(str, prefixlen, RSTRING_LEN(str) - prefixlen);
}

#delete_prefix!(prefix) ⇒ self?

Deletes leading prefix from str, returning nil if no change was made.

"hello".delete_prefix!("hel") #=> "lo"
"hello".delete_prefix!("llo") #=> nil

Returns:

  • (self, nil)


10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
# File 'string.c', line 10233

static VALUE
rb_str_delete_prefix_bang(VALUE str, VALUE prefix)
{
    long prefixlen;
    str_modify_keep_cr(str);

    prefixlen = deleted_prefix_length(str, prefix);
    if (prefixlen <= 0) return Qnil;

    return rb_str_drop_bytes(str, prefixlen);
}

#delete_suffix(suffix) ⇒ String

Returns a copy of str with trailing suffix deleted.

"hello".delete_suffix("llo") #=> "he"
"hello".delete_suffix("hel") #=> "hello"

Returns:



10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
# File 'string.c', line 10341

static VALUE
rb_str_delete_suffix(VALUE str, VALUE suffix)
{
    long suffixlen;

    suffixlen = deleted_suffix_length(str, suffix);
    if (suffixlen <= 0) return str_duplicate(rb_cString, str);

    return rb_str_subseq(str, 0, RSTRING_LEN(str) - suffixlen);
}

#delete_suffix!(suffix) ⇒ self?

Deletes trailing suffix from str, returning nil if no change was made.

"hello".delete_suffix!("llo") #=> "he"
"hello".delete_suffix!("hel") #=> nil

Returns:

  • (self, nil)


10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
# File 'string.c', line 10311

static VALUE
rb_str_delete_suffix_bang(VALUE str, VALUE suffix)
{
    long olen, suffixlen, len;
    str_modifiable(str);

    suffixlen = deleted_suffix_length(str, suffix);
    if (suffixlen <= 0) return Qnil;

    olen = RSTRING_LEN(str);
    str_modify_keep_cr(str);
    len = olen - suffixlen;
    STR_SET_LEN(str, len);
    TERM_FILL(&RSTRING_PTR(str)[len], TERM_LEN(str));
    if (ENC_CODERANGE(str) != ENC_CODERANGE_7BIT) {
	ENC_CODERANGE_CLEAR(str);
    }
    return str;
}

#downcaseString #downcase([options]) ⇒ String

Returns a copy of str with all uppercase letters replaced with their lowercase counterparts. Which letters exactly are replaced, and by which other letters, depends on the presence or absence of options, and on the encoding of the string.

The meaning of the options is as follows:

No option

Full Unicode case mapping, suitable for most languages (see :turkic and :lithuanian options below for exceptions). Context-dependent case mapping as described in Table 3-14 of the Unicode standard is currently not supported.

:ascii

Only the ASCII region, i.e. the characters “A” to “Z” and “a” to “z”, are affected. This option cannot be combined with any other option.

:turkic

Full Unicode case mapping, adapted for Turkic languages (Turkish, Azerbaijani, …). This means that upper case I is mapped to lower case dotless i, and so on.

:lithuanian

Currently, just full Unicode case mapping. In the future, full Unicode case mapping adapted for Lithuanian (keeping the dot on the lower case i even if there is an accent on top).

:fold

Only available on downcase and downcase!. Unicode case folding, which is more far-reaching than Unicode case mapping. This option currently cannot be combined with any other option (i.e. there is currently no variant for turkic languages).

Please note that several assumptions that are valid for ASCII-only case conversions do not hold for more general case conversions. For example, the length of the result may not be the same as the length of the input (neither in characters nor in bytes), some roundtrip assumptions (e.g. str.downcase == str.upcase.downcase) may not apply, and Unicode normalization (i.e. String#unicode_normalize) is not necessarily maintained by case mapping operations.

Non-ASCII case mapping/folding is currently supported for UTF-8, UTF-16BE/LE, UTF-32BE/LE, and ISO-8859-1~16 Strings/Symbols. This support will be extended to other encodings.

"hEllO".downcase   #=> "hello"

Overloads:



7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
# File 'string.c', line 7048

static VALUE
rb_str_downcase(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_DOWNCASE;
    VALUE ret;

    flags = check_case_options(argc, argv, flags);
    enc = str_true_enc(str);
    if (case_option_single_p(flags, enc, str)) {
        ret = rb_str_new(RSTRING_PTR(str), RSTRING_LEN(str));
        str_enc_copy(ret, str);
        downcase_single(ret);
    }
    else if (flags&ONIGENC_CASE_ASCII_ONLY) {
        ret = rb_str_new(0, RSTRING_LEN(str));
        rb_str_ascii_casemap(str, ret, &flags, enc);
    }
    else {
        ret = rb_str_casemap(str, &flags, enc);
    }

    return ret;
}

#downcase!String? #downcase!([options]) ⇒ String?

Downcases the contents of str, returning nil if no changes were made.

See String#downcase for meaning of options and use with different encodings.

Overloads:



6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
# File 'string.c', line 6975

static VALUE
rb_str_downcase_bang(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_DOWNCASE;

    flags = check_case_options(argc, argv, flags);
    str_modify_keep_cr(str);
    enc = str_true_enc(str);
    if (case_option_single_p(flags, enc, str)) {
        if (downcase_single(str))
            flags |= ONIGENC_CASE_MODIFIED;
    }
    else if (flags&ONIGENC_CASE_ASCII_ONLY)
        rb_str_ascii_casemap(str, str, &flags, enc);
    else
	str_shared_replace(str, rb_str_casemap(str, &flags, enc));

    if (ONIGENC_CASE_MODIFIED&flags) return str;
    return Qnil;
}

#dumpString

Returns a quoted version of the string with all non-printing characters replaced by \xHH notation and all special characters escaped.

This method can be used for round-trip: if the resulting new_str is eval’ed, it will produce the original string.

"hello \n ''".dump     #=> "\"hello \\n ''\""
"\f\x00\xff\\\"".dump  #=> "\"\\f\\x00\\xFF\\\\\\\"\""

See also String#undump.

Returns:



6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
# File 'string.c', line 6268

VALUE
rb_str_dump(VALUE str)
{
    int encidx = rb_enc_get_index(str);
    rb_encoding *enc = rb_enc_from_index(encidx);
    long len;
    const char *p, *pend;
    char *q, *qend;
    VALUE result;
    int u8 = (encidx == rb_utf8_encindex());
    static const char nonascii_suffix[] = ".dup.force_encoding(\"%s\")";

    len = 2;			/* "" */
    if (!rb_enc_asciicompat(enc)) {
	len += strlen(nonascii_suffix) - rb_strlen_lit("%s");
	len += strlen(enc->name);
    }

    p = RSTRING_PTR(str); pend = p + RSTRING_LEN(str);
    while (p < pend) {
	int clen;
	unsigned char c = *p++;

	switch (c) {
	  case '"':  case '\\':
	  case '\n': case '\r':
	  case '\t': case '\f':
	  case '\013': case '\010': case '\007': case '\033':
	    clen = 2;
	    break;

	  case '#':
	    clen = IS_EVSTR(p, pend) ? 2 : 1;
	    break;

	  default:
	    if (ISPRINT(c)) {
		clen = 1;
	    }
	    else {
		if (u8 && c > 0x7F) {	/* \u notation */
		    int n = rb_enc_precise_mbclen(p-1, pend, enc);
		    if (MBCLEN_CHARFOUND_P(n)) {
			unsigned int cc = rb_enc_mbc_to_codepoint(p-1, pend, enc);
			if (cc <= 0xFFFF)
			    clen = 6;  /* \uXXXX */
			else if (cc <= 0xFFFFF)
			    clen = 9;  /* \u{XXXXX} */
			else
			    clen = 10; /* \u{XXXXXX} */
			p += MBCLEN_CHARFOUND_LEN(n)-1;
			break;
		    }
		}
		clen = 4;	/* \xNN */
	    }
	    break;
	}

	if (clen > LONG_MAX - len) {
	    rb_raise(rb_eRuntimeError, "string size too big");
	}
	len += clen;
    }

    result = rb_str_new(0, len);
    p = RSTRING_PTR(str); pend = p + RSTRING_LEN(str);
    q = RSTRING_PTR(result); qend = q + len + 1;

    *q++ = '"';
    while (p < pend) {
	unsigned char c = *p++;

	if (c == '"' || c == '\\') {
	    *q++ = '\\';
	    *q++ = c;
	}
	else if (c == '#') {
	    if (IS_EVSTR(p, pend)) *q++ = '\\';
	    *q++ = '#';
	}
	else if (c == '\n') {
	    *q++ = '\\';
	    *q++ = 'n';
	}
	else if (c == '\r') {
	    *q++ = '\\';
	    *q++ = 'r';
	}
	else if (c == '\t') {
	    *q++ = '\\';
	    *q++ = 't';
	}
	else if (c == '\f') {
	    *q++ = '\\';
	    *q++ = 'f';
	}
	else if (c == '\013') {
	    *q++ = '\\';
	    *q++ = 'v';
	}
	else if (c == '\010') {
	    *q++ = '\\';
	    *q++ = 'b';
	}
	else if (c == '\007') {
	    *q++ = '\\';
	    *q++ = 'a';
	}
	else if (c == '\033') {
	    *q++ = '\\';
	    *q++ = 'e';
	}
	else if (ISPRINT(c)) {
	    *q++ = c;
	}
	else {
	    *q++ = '\\';
	    if (u8) {
		int n = rb_enc_precise_mbclen(p-1, pend, enc) - 1;
		if (MBCLEN_CHARFOUND_P(n)) {
		    int cc = rb_enc_mbc_to_codepoint(p-1, pend, enc);
		    p += n;
		    if (cc <= 0xFFFF)
			snprintf(q, qend-q, "u%04X", cc);    /* \uXXXX */
		    else
			snprintf(q, qend-q, "u{%X}", cc);  /* \u{XXXXX} or \u{XXXXXX} */
		    q += strlen(q);
		    continue;
		}
	    }
	    snprintf(q, qend-q, "x%02X", c);
	    q += 3;
	}
    }
    *q++ = '"';
    *q = '\0';
    if (!rb_enc_asciicompat(enc)) {
	snprintf(q, qend-q, nonascii_suffix, enc->name);
	encidx = rb_ascii8bit_encindex();
    }
    /* result from dump is ASCII */
    rb_enc_associate_index(result, encidx);
    ENC_CODERANGE_SET(result, ENC_CODERANGE_7BIT);
    return result;
}

#each_byte {|integer| ... } ⇒ String #each_byteObject

Passes each byte in str to the given block, or returns an enumerator if no block is given.

"hello".each_byte {|c| print c, ' ' }

produces:

104 101 108 108 111

Overloads:

  • #each_byte {|integer| ... } ⇒ String

    Yields:

    • (integer)

    Returns:



8674
8675
8676
8677
8678
8679
# File 'string.c', line 8674

static VALUE
rb_str_each_byte(VALUE str)
{
    RETURN_SIZED_ENUMERATOR(str, 0, 0, rb_str_each_byte_size);
    return rb_str_enumerate_bytes(str, 0);
}

#each_char {|cstr| ... } ⇒ String #each_charObject

Passes each character in str to the given block, or returns an enumerator if no block is given.

"hello".each_char {|c| print c, ' ' }

produces:

h e l l o

Overloads:

  • #each_char {|cstr| ... } ⇒ String

    Yields:

    • (cstr)

    Returns:



8752
8753
8754
8755
8756
8757
# File 'string.c', line 8752

static VALUE
rb_str_each_char(VALUE str)
{
    RETURN_SIZED_ENUMERATOR(str, 0, 0, rb_str_each_char_size);
    return rb_str_enumerate_chars(str, 0);
}

#each_codepoint {|integer| ... } ⇒ String #each_codepointObject

Passes the Integer ordinal of each character in str, also known as a codepoint when applied to Unicode strings to the given block. For encodings other than UTF-8/UTF-16(BE|LE)/UTF-32(BE|LE), values are directly derived from the binary representation of each character.

If no block is given, an enumerator is returned instead.

"hello\u0639".each_codepoint {|c| print c, ' ' }

produces:

104 101 108 108 111 1593

Overloads:

  • #each_codepoint {|integer| ... } ⇒ String

    Yields:

    • (integer)

    Returns:



8826
8827
8828
8829
8830
8831
# File 'string.c', line 8826

static VALUE
rb_str_each_codepoint(VALUE str)
{
    RETURN_SIZED_ENUMERATOR(str, 0, 0, rb_str_each_char_size);
    return rb_str_enumerate_codepoints(str, 0);
}

#each_grapheme_cluster {|cstr| ... } ⇒ String #each_grapheme_clusterObject

Passes each grapheme cluster in str to the given block, or returns an enumerator if no block is given. Unlike String#each_char, this enumerates by grapheme clusters defined by Unicode Standard Annex #29 unicode.org/reports/tr29/

"a\u0300".each_char.to_a.size #=> 2
"a\u0300".each_grapheme_cluster.to_a.size #=> 1

Overloads:

  • #each_grapheme_cluster {|cstr| ... } ⇒ String

    Yields:

    • (cstr)

    Returns:



8976
8977
8978
8979
8980
8981
# File 'string.c', line 8976

static VALUE
rb_str_each_grapheme_cluster(VALUE str)
{
    RETURN_SIZED_ENUMERATOR(str, 0, 0, rb_str_each_grapheme_cluster_size);
    return rb_str_enumerate_grapheme_clusters(str, 0);
}

#each_line(separator = $/, chomp: false) {|substr| ... } ⇒ String #each_line(separator = $/, chomp: false) ⇒ Object

Splits str using the supplied parameter as the record separator ($/ by default), passing each substring in turn to the supplied block. If a zero-length record separator is supplied, the string is split into paragraphs delimited by multiple successive newlines.

If chomp is true, separator will be removed from the end of each line.

If no block is given, an enumerator is returned instead.

"hello\nworld".each_line {|s| p s}
# prints:
#   "hello\n"
#   "world"

"hello\nworld".each_line('l') {|s| p s}
# prints:
#   "hel"
#   "l"
#   "o\nworl"
#   "d"

"hello\n\n\nworld".each_line('') {|s| p s}
# prints
#   "hello\n\n"
#   "world"

"hello\nworld".each_line(chomp: true) {|s| p s}
# prints:
#   "hello"
#   "world"

"hello\nworld".each_line('l', chomp: true) {|s| p s}
# prints:
#   "he"
#   ""
#   "o\nwor"
#   "d"

Overloads:

  • #each_line(separator = $/, chomp: false) {|substr| ... } ⇒ String

    Yields:

    • (substr)

    Returns:



8606
8607
8608
8609
8610
8611
# File 'string.c', line 8606

static VALUE
rb_str_each_line(int argc, VALUE *argv, VALUE str)
{
    RETURN_SIZED_ENUMERATOR(str, argc, argv, 0);
    return rb_str_enumerate_lines(argc, argv, str, 0);
}

#empty?Boolean

Returns true if the length of self is zero, false otherwise:

"hello".empty? # => false
" ".empty? # => false
"".empty? # => true

Returns:

  • (Boolean)


2002
2003
2004
2005
2006
2007
2008
# File 'string.c', line 2002

static VALUE
rb_str_empty(VALUE str)
{
    if (RSTRING_LEN(str) == 0)
	return Qtrue;
    return Qfalse;
}

#encode(encoding, **options) ⇒ String #encode(dst_encoding, src_encoding, **options) ⇒ String #encode(**options) ⇒ String

The first form returns a copy of str transcoded to encoding encoding. The second form returns a copy of str transcoded from src_encoding to dst_encoding. The last form returns a copy of str transcoded to Encoding.default_internal.

By default, the first and second form raise Encoding::UndefinedConversionError for characters that are undefined in the destination encoding, and Encoding::InvalidByteSequenceError for invalid byte sequences in the source encoding. The last form by default does not raise exceptions but uses replacement strings.

The options keyword arguments give details for conversion. The arguments are:

:invalid

If the value is :replace, #encode replaces invalid byte sequences in str with the replacement character. The default is to raise the Encoding::InvalidByteSequenceError exception

:undef

If the value is :replace, #encode replaces characters which are undefined in the destination encoding with the replacement character. The default is to raise the Encoding::UndefinedConversionError.

:replace

Sets the replacement string to the given value. The default replacement string is “uFFFD” for Unicode encoding forms, and “?” otherwise.

:fallback

Sets the replacement string by the given object for undefined character. The object should be a Hash, a Proc, a Method, or an object which has [] method. Its key is an undefined character encoded in the source encoding of current transcoder. Its value can be any encoding until it can be converted into the destination encoding of the transcoder.

:xml

The value must be :text or :attr. If the value is :text #encode replaces undefined characters with their (upper-case hexadecimal) numeric character references. ‘&’, ‘<’, and ‘>’ are converted to “&amp;”, “&lt;”, and “&gt;”, respectively. If the value is :attr, #encode also quotes the replacement result (using ‘“’), and replaces ‘”’ with “&quot;”.

:cr_newline

Replaces LF (“n”) with CR (“r”) if value is true.

:crlf_newline

Replaces LF (“n”) with CRLF (“rn”) if value is true.

:universal_newline

Replaces CRLF (“rn”) and CR (“r”) with LF (“n”) if value is true.

Overloads:

  • #encode(encoding, **options) ⇒ String

    Returns:

  • #encode(dst_encoding, src_encoding, **options) ⇒ String

    Returns:

  • #encode(**options) ⇒ String

    Returns:



2877
2878
2879
2880
2881
2882
2883
# File 'transcode.c', line 2877

static VALUE
str_encode(int argc, VALUE *argv, VALUE str)
{
    VALUE newstr = str;
    int encidx = str_transcode(argc, argv, &newstr);
    return encoded_dup(newstr, str, encidx);
}

#encode!(encoding, **options) ⇒ String #encode!(dst_encoding, src_encoding, **options) ⇒ String

The first form transcodes the contents of str from str.encoding to encoding. The second form transcodes the contents of str from src_encoding to dst_encoding. The options keyword arguments give details for conversion. See String#encode for details. Returns the string even if no changes were made.

Overloads:

  • #encode!(encoding, **options) ⇒ String

    Returns:

  • #encode!(dst_encoding, src_encoding, **options) ⇒ String

    Returns:



2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
# File 'transcode.c', line 2799

static VALUE
str_encode_bang(int argc, VALUE *argv, VALUE str)
{
    VALUE newstr;
    int encidx;

    rb_check_frozen(str);

    newstr = str;
    encidx = str_transcode(argc, argv, &newstr);

    if (encidx < 0) return str;
    if (newstr == str) {
	rb_enc_associate_index(str, encidx);
	return str;
    }
    rb_str_shared_replace(str, newstr);
    return str_encode_associate(str, encidx);
}

#encodingEncoding

Returns the Encoding object that represents the encoding of obj.

Returns:



1201
1202
1203
1204
1205
1206
1207
1208
1209
# File 'encoding.c', line 1201

VALUE
rb_obj_encoding(VALUE obj)
{
    int idx = rb_enc_get_index(obj);
    if (idx < 0) {
	rb_raise(rb_eTypeError, "unknown encoding");
    }
    return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK);
}

#end_with?([suffixes]) ⇒ Boolean

Returns true if str ends with one of the suffixes given.

"hello".end_with?("ello")               #=> true

# returns true if one of the +suffixes+ matches.
"hello".end_with?("heaven", "ello")     #=> true
"hello".end_with?("heaven", "paradise") #=> false

Returns:

  • (Boolean)


10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
# File 'string.c', line 10168

static VALUE
rb_str_end_with(int argc, VALUE *argv, VALUE str)
{
    int i;
    char *p, *s, *e;
    rb_encoding *enc;

    for (i=0; i<argc; i++) {
	VALUE tmp = argv[i];
	StringValue(tmp);
	enc = rb_enc_check(str, tmp);
	if (RSTRING_LEN(str) < RSTRING_LEN(tmp)) continue;
	p = RSTRING_PTR(str);
        e = p + RSTRING_LEN(str);
	s = e - RSTRING_LEN(tmp);
	if (rb_enc_left_char_head(p, s, e, enc) != s)
	    continue;
	if (memcmp(s, RSTRING_PTR(tmp), RSTRING_LEN(tmp)) == 0)
	    return Qtrue;
    }
    return Qfalse;
}

#eql?(object) ⇒ Boolean

Returns true if object has the same length and content;

as +self+; +false+ otherwise:
  s = 'foo'
  s.eql?('foo') # => true
  s.eql?('food') # => false
  s.eql?('FOO') # => false

Returns +false+ if the two strings' encodings are not compatible:
  "\u{e4 f6 fc}".encode("ISO-8859-1").eql?("\u{c4 d6 dc}") # => false

Returns:

  • (Boolean)


3424
3425
3426
3427
3428
3429
3430
# File 'string.c', line 3424

MJIT_FUNC_EXPORTED VALUE
rb_str_eql(VALUE str1, VALUE str2)
{
    if (str1 == str2) return Qtrue;
    if (!RB_TYPE_P(str2, T_STRING)) return Qfalse;
    return rb_str_eql_internal(str1, str2);
}

#force_encoding(encoding) ⇒ String

Changes the encoding to encoding and returns self.

Returns:



10384
10385
10386
10387
10388
10389
10390
10391
# File 'string.c', line 10384

static VALUE
rb_str_force_encoding(VALUE str, VALUE enc)
{
    str_modifiable(str);
    rb_enc_associate(str, rb_to_encoding(enc));
    ENC_CODERANGE_CLEAR(str);
    return str;
}

#freezeObject



2740
2741
2742
2743
2744
2745
2746
# File 'string.c', line 2740

VALUE
rb_str_freeze(VALUE str)
{
    if (OBJ_FROZEN(str)) return str;
    rb_str_resize(str, RSTRING_LEN(str));
    return rb_obj_freeze(str);
}

#getbyte(index) ⇒ 0 .. 255

returns the indexth byte as an integer.

Returns:

  • (0 .. 255)


5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
# File 'string.c', line 5646

static VALUE
rb_str_getbyte(VALUE str, VALUE index)
{
    long pos = NUM2LONG(index);

    if (pos < 0)
        pos += RSTRING_LEN(str);
    if (pos < 0 ||  RSTRING_LEN(str) <= pos)
        return Qnil;

    return INT2FIX((unsigned char)RSTRING_PTR(str)[pos]);
}

#grapheme_clustersArray

Returns an array of grapheme clusters in str. This is a shorthand for str.each_grapheme_cluster.to_a.

If a block is given, which is a deprecated form, works the same as each_grapheme_cluster.

Returns:



8994
8995
8996
8997
8998
8999
# File 'string.c', line 8994

static VALUE
rb_str_grapheme_clusters(VALUE str)
{
    VALUE ary = WANTARRAY("grapheme_clusters", rb_str_strlen(str));
    return rb_str_enumerate_grapheme_clusters(str, ary);
}

#gsub(pattern, replacement) ⇒ String #gsub(pattern, hash) ⇒ String #gsub(pattern) {|match| ... } ⇒ String #gsub(pattern) ⇒ Object

Returns a copy of str with all occurrences of pattern substituted for the second argument. The pattern is typically a Regexp; if given as a String, any regular expression metacharacters it contains will be interpreted literally, e.g. \d will match a backslash followed by ‘d’, instead of a digit.

If replacement is a String it will be substituted for the matched text. It may contain back-references to the pattern’s capture groups of the form \d, where d is a group number, or \k<n>, where n is a group name. Similarly, \&, \', \`, and + correspond to special variables, $&, $', $`, and $+, respectively. (See regexp.rdoc for details.) \0 is the same as \&. \\ is interpreted as an escape, i.e., a single backslash. Note that, within replacement the special match variables, such as $&, will not refer to the current match.

If the second argument is a Hash, and the matched text is one of its keys, the corresponding value is the replacement string.

In the block form, the current match string is passed in as a parameter, and variables such as $1, $2, $`, $&, and $' will be set appropriately. (See regexp.rdoc for details.) The value returned by the block will be substituted for the match on each call.

When neither a block nor a second argument is supplied, an Enumerator is returned.

"hello".gsub(/[aeiou]/, '*')                  #=> "h*ll*"
"hello".gsub(/([aeiou])/, '<\1>')             #=> "h<e>ll<o>"
"hello".gsub(/./) {|s| s.ord.to_s + ' '}      #=> "104 101 108 108 111 "
"hello".gsub(/(?<foo>[aeiou])/, '{\k<foo>}')  #=> "h{e}ll{o}"
'hello'.gsub(/[eo]/, 'e' => 3, 'o' => '*')    #=> "h3ll*"

Note that a string literal consumes backslashes. (See syntax/literals.rdoc for details on string literals.) Back-references are typically preceded by an additional backslash. For example, if you want to write a back-reference \& in replacement with a double-quoted string literal, you need to write: "..\\&..". If you want to write a non-back-reference string \& in replacement, you need first to escape the backslash to prevent this method from interpreting it as a back-reference, and then you need to escape the backslashes again to prevent a string literal from consuming them: "..\\\\&..". You may want to use the block form to avoid a lot of backslashes.

Overloads:



5571
5572
5573
5574
5575
# File 'string.c', line 5571

static VALUE
rb_str_gsub(int argc, VALUE *argv, VALUE str)
{
    return str_gsub(argc, argv, str, 0);
}

#gsub!(pattern, replacement) ⇒ String? #gsub!(pattern, hash) ⇒ String? #gsub!(pattern) {|match| ... } ⇒ String? #gsub!(pattern) ⇒ Object

Performs the substitutions of String#gsub in place, returning str, or nil if no substitutions were performed. If no block and no replacement is given, an enumerator is returned instead.

Overloads:



5503
5504
5505
5506
5507
5508
# File 'string.c', line 5503

static VALUE
rb_str_gsub_bang(int argc, VALUE *argv, VALUE str)
{
    str_modify_keep_cr(str);
    return str_gsub(argc, argv, str, 1);
}

#hashInteger

Returns the integer hash value for self. The value is based on the length, content and encoding of self.

Returns:



3317
3318
3319
3320
3321
3322
# File 'string.c', line 3317

static VALUE
rb_str_hash_m(VALUE str)
{
    st_index_t hval = rb_str_hash(str);
    return ST2FIX(hval);
}

#hexInteger

Treats leading characters from str as a string of hexadecimal digits (with an optional sign and an optional 0x) and returns the corresponding number. Zero is returned on error.

"0x0a".hex     #=> 10
"-1234".hex    #=> -4660
"0".hex        #=> 0
"wombat".hex   #=> 0

Returns:



9642
9643
9644
9645
9646
# File 'string.c', line 9642

static VALUE
rb_str_hex(VALUE str)
{
    return rb_str_to_inum(str, 16, FALSE);
}

#include?(other_str) ⇒ Boolean

Returns true if str contains the given string or character.

"hello".include? "lo"   #=> true
"hello".include? "ol"   #=> false
"hello".include? ?h     #=> true

Returns:

  • (Boolean)


5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
# File 'string.c', line 5941

static VALUE
rb_str_include(VALUE str, VALUE arg)
{
    long i;

    StringValue(arg);
    i = rb_str_index(str, arg, 0);

    if (i == -1) return Qfalse;
    return Qtrue;
}

#index(substring, offset = 0) ⇒ Integer? #index(regexp, offset = 0) ⇒ Integer?

Returns the Integer index of the first occurrence of the given substring, or nil if none found:

'foo'.index('f') # => 0
'foo'.index('o') # => 1
'foo'.index('oo') # => 1
'foo'.index('ooo') # => nil

Returns the Integer index of the first match for the given Regexp regexp, or nil if none found:

'foo'.index(/f/) # => 0
'foo'.index(/o/) # => 1
'foo'.index(/oo/) # => 1
'foo'.index(/ooo/) # => nil

Integer argument offset, if given, specifies the position in the string to begin the search:

'foo'.index('o', 1) # => 1
'foo'.index('o', 2) # => 2
'foo'.index('o', 3) # => nil

If offset is negative, counts backward from the end of self:

'foo'.index('o', -1) # => 2
'foo'.index('o', -2) # => 1
'foo'.index('o', -3) # => 1
'foo'.index('o', -4) # => nil

Related: String#rindex

Overloads:



3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
# File 'string.c', line 3691

static VALUE
rb_str_index_m(int argc, VALUE *argv, VALUE str)
{
    VALUE sub;
    VALUE initpos;
    long pos;

    if (rb_scan_args(argc, argv, "11", &sub, &initpos) == 2) {
	pos = NUM2LONG(initpos);
    }
    else {
	pos = 0;
    }
    if (pos < 0) {
	pos += str_strlen(str, NULL);
	if (pos < 0) {
	    if (RB_TYPE_P(sub, T_REGEXP)) {
		rb_backref_set(Qnil);
	    }
	    return Qnil;
	}
    }

    if (RB_TYPE_P(sub, T_REGEXP)) {
	if (pos > str_strlen(str, NULL))
	    return Qnil;
	pos = str_offset(RSTRING_PTR(str), RSTRING_END(str), pos,
			 rb_enc_check(str, sub), single_byte_optimizable(str));

	if (rb_reg_search(sub, str, pos, 0) < 0) {
            return Qnil;
        } else {
            VALUE match = rb_backref_get();
            struct re_registers *regs = RMATCH_REGS(match);
            pos = rb_str_sublen(str, BEG(0));
            return LONG2NUM(pos);
        }
    }
    else {
        StringValue(sub);
	pos = rb_str_index(str, sub, pos);
	pos = rb_str_sublen(str, pos);
    }

    if (pos == -1) return Qnil;
    return LONG2NUM(pos);
}

#replace(other_str) ⇒ String

Replaces the contents of str with the corresponding values in other_str.

s = "hello"         #=> "hello"
s.replace "world"   #=> "world"

Returns:



5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
# File 'string.c', line 5589

VALUE
rb_str_replace(VALUE str, VALUE str2)
{
    str_modifiable(str);
    if (str == str2) return str;

    StringValue(str2);
    str_discard(str);
    return str_replace(str, str2);
}

#insert(index, other_string) ⇒ self

Inserts the given other_string into self; returns self.

If the Integer index is positive, inserts other_string at offset index:

'foo'.insert(1, 'bar') # => "fbaroo"

If the Integer index is negative, counts backward from the end of self and inserts other_string at offset index+1 (that is, after self[index]):

'foo'.insert(-2, 'bar') # => "fobaro"

Returns:

  • (self)


4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
# File 'string.c', line 4991

static VALUE
rb_str_insert(VALUE str, VALUE idx, VALUE str2)
{
    long pos = NUM2LONG(idx);

    if (pos == -1) {
	return rb_str_append(str, str2);
    }
    else if (pos < 0) {
	pos++;
    }
    rb_str_splice(str, pos, 0, str2);
    return str;
}

#inspectString

Returns a printable version of str, surrounded by quote marks, with special characters escaped.

str = "hello"
str[3] = "\b"
str.inspect       #=> "\"hel\\bo\""

Returns:



6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
# File 'string.c', line 6156

VALUE
rb_str_inspect(VALUE str)
{
    int encidx = ENCODING_GET(str);
    rb_encoding *enc = rb_enc_from_index(encidx), *actenc;
    const char *p, *pend, *prev;
    char buf[CHAR_ESC_LEN + 1];
    VALUE result = rb_str_buf_new(0);
    rb_encoding *resenc = rb_default_internal_encoding();
    int unicode_p = rb_enc_unicode_p(enc);
    int asciicompat = rb_enc_asciicompat(enc);

    if (resenc == NULL) resenc = rb_default_external_encoding();
    if (!rb_enc_asciicompat(resenc)) resenc = rb_usascii_encoding();
    rb_enc_associate(result, resenc);
    str_buf_cat2(result, "\"");

    p = RSTRING_PTR(str); pend = RSTRING_END(str);
    prev = p;
    actenc = get_actual_encoding(encidx, str);
    if (actenc != enc) {
	enc = actenc;
	if (unicode_p) unicode_p = rb_enc_unicode_p(enc);
    }
    while (p < pend) {
	unsigned int c, cc;
	int n;

        n = rb_enc_precise_mbclen(p, pend, enc);
        if (!MBCLEN_CHARFOUND_P(n)) {
	    if (p > prev) str_buf_cat(result, prev, p - prev);
            n = rb_enc_mbminlen(enc);
            if (pend < p + n)
                n = (int)(pend - p);
            while (n--) {
                snprintf(buf, CHAR_ESC_LEN, "\\x%02X", *p & 0377);
                str_buf_cat(result, buf, strlen(buf));
                prev = ++p;
            }
	    continue;
	}
        n = MBCLEN_CHARFOUND_LEN(n);
	c = rb_enc_mbc_to_codepoint(p, pend, enc);
	p += n;
	if ((asciicompat || unicode_p) &&
	  (c == '"'|| c == '\\' ||
	    (c == '#' &&
             p < pend &&
             MBCLEN_CHARFOUND_P(rb_enc_precise_mbclen(p,pend,enc)) &&
             (cc = rb_enc_codepoint(p,pend,enc),
              (cc == '$' || cc == '@' || cc == '{'))))) {
	    if (p - n > prev) str_buf_cat(result, prev, p - n - prev);
	    str_buf_cat2(result, "\\");
	    if (asciicompat || enc == resenc) {
		prev = p - n;
		continue;
	    }
	}
	switch (c) {
	  case '\n': cc = 'n'; break;
	  case '\r': cc = 'r'; break;
	  case '\t': cc = 't'; break;
	  case '\f': cc = 'f'; break;
	  case '\013': cc = 'v'; break;
	  case '\010': cc = 'b'; break;
	  case '\007': cc = 'a'; break;
	  case 033: cc = 'e'; break;
	  default: cc = 0; break;
	}
	if (cc) {
	    if (p - n > prev) str_buf_cat(result, prev, p - n - prev);
	    buf[0] = '\\';
	    buf[1] = (char)cc;
	    str_buf_cat(result, buf, 2);
	    prev = p;
	    continue;
	}
	if ((enc == resenc && rb_enc_isprint(c, enc)) ||
	    (asciicompat && rb_enc_isascii(c, enc) && ISPRINT(c))) {
	    continue;
	}
	else {
	    if (p - n > prev) str_buf_cat(result, prev, p - n - prev);
	    rb_str_buf_cat_escaped_char(result, c, unicode_p);
	    prev = p;
	    continue;
	}
    }
    if (p > prev) str_buf_cat(result, prev, p - prev);
    str_buf_cat2(result, "\"");

    return result;
}

#internObject #to_symObject

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist. See Symbol#id2name.

"Koala".intern         #=> :Koala
s = 'cat'.to_sym       #=> :cat
s == :cat              #=> true
s = '@cat'.to_sym      #=> :@cat
s == :@cat             #=> true

This can also be used to create symbols that cannot be represented using the :xxx notation.

'cat and dog'.to_sym   #=> :"cat and dog"


839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# File 'symbol.c', line 839

VALUE
rb_str_intern(VALUE str)
{
    VALUE sym;
#if USE_SYMBOL_GC
    rb_encoding *enc, *ascii;
    int type;
#else
    ID id;
#endif
    GLOBAL_SYMBOLS_ENTER(symbols);
    {
        sym = lookup_str_sym_with_lock(symbols, str);

        if (sym) {
            // ok
        }
        else {
#if USE_SYMBOL_GC
            enc = rb_enc_get(str);
            ascii = rb_usascii_encoding();
            if (enc != ascii && sym_check_asciionly(str)) {
                str = rb_str_dup(str);
                rb_enc_associate(str, ascii);
                OBJ_FREEZE(str);
                enc = ascii;
            }
            else {
                str = rb_str_dup(str);
                OBJ_FREEZE(str);
            }
            str = rb_fstring(str);
            type = rb_str_symname_type(str, IDSET_ATTRSET_FOR_INTERN);
            if (type < 0) type = ID_JUNK;
            sym = dsymbol_alloc(symbols, rb_cSymbol, str, enc, type);
#else
            id = intern_str(str, 0);
            sym = ID2SYM(id);
#endif
        }
    }
    GLOBAL_SYMBOLS_LEAVE();
    return sym;
}

#lengthInteger

Returns the count of characters (not bytes) in self:

"\x80\u3042".length # => 2
"hello".length # => 5

String#size is an alias for String#length.

Related: String#bytesize.

Returns:



1969
1970
1971
1972
1973
# File 'string.c', line 1969

VALUE
rb_str_length(VALUE str)
{
    return LONG2NUM(str_strlen(str, NULL));
}

#lines(separator = $/, chomp: false) ⇒ Array

Returns an array of lines in str split using the supplied record separator ($/ by default). This is a shorthand for str.each_line(separator, getline_args).to_a.

If chomp is true, separator will be removed from the end of each line.

"hello\nworld\n".lines              #=> ["hello\n", "world\n"]
"hello  world".lines(' ')           #=> ["hello ", " ", "world"]
"hello\nworld\n".lines(chomp: true) #=> ["hello", "world"]

If a block is given, which is a deprecated form, works the same as each_line.

Returns:



8632
8633
8634
8635
8636
8637
# File 'string.c', line 8632

static VALUE
rb_str_lines(int argc, VALUE *argv, VALUE str)
{
    VALUE ary = WANTARRAY("lines", 0);
    return rb_str_enumerate_lines(argc, argv, str, ary);
}

#ljust(integer, padstr = ' ') ⇒ String

If integer is greater than the length of str, returns a new String of length integer with str left justified and padded with padstr; otherwise, returns str.

"hello".ljust(4)            #=> "hello"
"hello".ljust(20)           #=> "hello               "
"hello".ljust(20, '1234')   #=> "hello123412341234123"

Returns:



9980
9981
9982
9983
9984
# File 'string.c', line 9980

static VALUE
rb_str_ljust(int argc, VALUE *argv, VALUE str)
{
    return rb_str_justify(argc, argv, str, 'l');
}

#lstripString

Returns a copy of the receiver with leading whitespace removed. See also String#rstrip and String#strip.

Refer to String#strip for the definition of whitespace.

"  hello  ".lstrip   #=> "hello  "
"hello".lstrip       #=> "hello"

Returns:



9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
# File 'string.c', line 9335

static VALUE
rb_str_lstrip(VALUE str)
{
    char *start;
    long len, loffset;
    RSTRING_GETMEM(str, start, len);
    loffset = lstrip_offset(str, start, start+len, STR_ENC_GET(str));
    if (loffset <= 0) return str_duplicate(rb_cString, str);
    return rb_str_subseq(str, loffset, len - loffset);
}

#lstrip!self?

Removes leading whitespace from the receiver. Returns the altered receiver, or nil if no change was made. See also String#rstrip! and String#strip!.

Refer to String#strip for the definition of whitespace.

"  hello  ".lstrip!  #=> "hello  "
"hello  ".lstrip!    #=> nil
"hello".lstrip!      #=> nil

Returns:

  • (self, nil)


9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
# File 'string.c', line 9297

static VALUE
rb_str_lstrip_bang(VALUE str)
{
    rb_encoding *enc;
    char *start, *s;
    long olen, loffset;

    str_modify_keep_cr(str);
    enc = STR_ENC_GET(str);
    RSTRING_GETMEM(str, start, olen);
    loffset = lstrip_offset(str, start, start+olen, enc);
    if (loffset > 0) {
	long len = olen-loffset;
	s = start + loffset;
	memmove(start, s, len);
	STR_SET_LEN(str, len);
#if !SHARABLE_MIDDLE_SUBSTRING
	TERM_FILL(start+len, rb_enc_mbminlen(enc));
#endif
	return str;
    }
    return Qnil;
}

#match(pattern, offset = 0) ⇒ MatchData? #match(pattern, offset = 0) {|matchdata| ... } ⇒ Object

Returns a Matchdata object (or nil) based on self and the given pattern.

Note: also updates Regexp-related global variables.

  • Computes regexp by converting pattern (if not already a Regexp).

    regexp = Regexp.new(pattern)
    
  • Computes matchdata, which will be either a MatchData object or nil (see Regexp#match):

    matchdata = <tt>regexp.match(self)
    

With no block given, returns the computed matchdata:

'foo'.match('f') # => #<MatchData "f">
'foo'.match('o') # => #<MatchData "o">
'foo'.match('x') # => nil

If Integer argument offset is given, the search begins at index offset:

'foo'.match('f', 1) # => nil
'foo'.match('o', 1) # => #<MatchData "o">

With a block given, calls the block with the computed matchdata and returns the block’s return value:

'foo'.match(/o/) {|matchdata| matchdata } # => #<MatchData "o">
'foo'.match(/x/) {|matchdata| matchdata } # => nil
'foo'.match(/f/, 1) {|matchdata| matchdata } # => nil

Overloads:

  • #match(pattern, offset = 0) ⇒ MatchData?

    Returns:

  • #match(pattern, offset = 0) {|matchdata| ... } ⇒ Object

    Yields:

    • (matchdata)

    Returns:



3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
# File 'string.c', line 3987

static VALUE
rb_str_match_m(int argc, VALUE *argv, VALUE str)
{
    VALUE re, result;
    if (argc < 1)
	rb_check_arity(argc, 1, 2);
    re = argv[0];
    argv[0] = str;
    result = rb_funcallv(get_pat(re), rb_intern("match"), argc, argv);
    if (!NIL_P(result) && rb_block_given_p()) {
	return rb_yield(result);
    }
    return result;
}

#match?(pattern, offset = 0) ⇒ Boolean

Returns true or false based on whether a match is found for self and pattern.

Note: does not update Regexp-related global variables.

Computes regexp by converting pattern (if not already a Regexp).

regexp = Regexp.new(pattern)

Returns true if self+.match(regexp) returns a Matchdata object, false otherwise:

'foo'.match?(/o/) # => true
'foo'.match?('o') # => true
'foo'.match?(/x/) # => false

If Integer argument offset is given, the search begins at index offset:

'foo'.match?('f', 1) # => false
'foo'.match?('o', 1) # => true

Returns:

  • (Boolean)


4025
4026
4027
4028
4029
4030
4031
4032
# File 'string.c', line 4025

static VALUE
rb_str_match_m_p(int argc, VALUE *argv, VALUE str)
{
    VALUE re;
    rb_check_arity(argc, 1, 2);
    re = get_pat(argv[0]);
    return rb_reg_match_p(re, str, argc > 1 ? NUM2LONG(argv[1]) : 0);
}

#succString

Returns the successor to self. The successor is calculated by incrementing characters.

The first character to be incremented is the rightmost alphanumeric: or, if no alphanumerics, the rightmost character:

'THX1138'.succ # => "THX1139"
'<<koala>>'.succ # => "<<koalb>>"
'***'.succ # => '**+'

The successor to a digit is another digit, “carrying” to the next-left character for a “rollover” from 9 to 0, and prepending another digit if necessary:

'00'.succ # => "01"
'09'.succ # => "10"
'99'.succ # => "100"

The successor to a letter is another letter of the same case, carrying to the next-left character for a rollover, and prepending another same-case letter if necessary:

'aa'.succ # => "ab"
'az'.succ # => "ba"
'zz'.succ # => "aaa"
'AA'.succ # => "AB"
'AZ'.succ # => "BA"
'ZZ'.succ # => "AAA"

The successor to a non-alphanumeric character is the next character in the underlying character set’s collating sequence, carrying to the next-left character for a rollover, and prepending another character if necessary:

s = 0.chr * 3
s # => "\x00\x00\x00"
s.succ # => "\x00\x00\x01"
s = 255.chr * 3
s # => "\xFF\xFF\xFF"
s.succ # => "\x01\x00\x00\x00"

Carrying can occur between and among mixtures of alphanumeric characters:

s = 'zz99zz99'
s.succ # => "aaa00aa00"
s = '99zz99zz'
s.succ # => "100aa00aa"

The successor to an empty String is a new empty String:

''.succ # => ""

String#next is an alias for String#succ.

Returns:



4272
4273
4274
4275
4276
4277
4278
4279
# File 'string.c', line 4272

VALUE
rb_str_succ(VALUE orig)
{
    VALUE str;
    str = rb_str_new(RSTRING_PTR(orig), RSTRING_LEN(orig));
    rb_enc_cr_str_copy_for_substr(str, orig);
    return str_succ(str);
}

#succ!self

Equivalent to String#succ, but modifies self in place; returns self.

String#next! is an alias for String#succ!.

Returns:

  • (self)


4378
4379
4380
4381
4382
4383
4384
# File 'string.c', line 4378

static VALUE
rb_str_succ_bang(VALUE str)
{
    rb_str_modify(str);
    str_succ(str);
    return str;
}

#octInteger

Treats leading characters of str as a string of octal digits (with an optional sign) and returns the corresponding number. Returns 0 if the conversion fails.

"123".oct       #=> 83
"-377".oct      #=> -255
"bad".oct       #=> 0
"0377bad".oct   #=> 255

If str starts with 0, radix indicators are honored. See Kernel#Integer.

Returns:



9666
9667
9668
9669
9670
# File 'string.c', line 9666

static VALUE
rb_str_oct(VALUE str)
{
    return rb_str_to_inum(str, -8, FALSE);
}

#ordInteger

Returns the Integer ordinal of a one-character string.

"a".ord         #=> 97

Returns:



9802
9803
9804
9805
9806
9807
9808
9809
# File 'string.c', line 9802

static VALUE
rb_str_ord(VALUE s)
{
    unsigned int c;

    c = rb_enc_codepoint(RSTRING_PTR(s), RSTRING_END(s), STR_ENC_GET(s));
    return UINT2NUM(c);
}

#partition(sep) ⇒ Array #partition(regexp) ⇒ Array

Searches sep or pattern (regexp) in the string and returns the part before it, the match, and the part after it. If it is not found, returns two empty strings and str.

"hello".partition("l")         #=> ["he", "l", "lo"]
"hello".partition("x")         #=> ["hello", "", ""]
"hello".partition(/.l/)        #=> ["h", "el", "lo"]

Overloads:



10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
# File 'string.c', line 10041

static VALUE
rb_str_partition(VALUE str, VALUE sep)
{
    long pos;

    sep = get_pat_quoted(sep, 0);
    if (RB_TYPE_P(sep, T_REGEXP)) {
	if (rb_reg_search(sep, str, 0, 0) < 0) {
            goto failed;
	}
	VALUE match = rb_backref_get();
	struct re_registers *regs = RMATCH_REGS(match);

        pos = BEG(0);
	sep = rb_str_subseq(str, pos, END(0) - pos);
    }
    else {
	pos = rb_str_index(str, sep, 0);
	if (pos < 0) goto failed;
    }
    return rb_ary_new3(3, rb_str_subseq(str, 0, pos),
		          sep,
		          rb_str_subseq(str, pos+RSTRING_LEN(sep),
					     RSTRING_LEN(str)-pos-RSTRING_LEN(sep)));

  failed:
    return rb_ary_new3(3, str_duplicate(rb_cString, str), str_new_empty_String(str), str_new_empty_String(str));
}

#prepend(*other_strings) ⇒ String

Returns a new String containing the concatenation of all given other_strings and self:

s = 'foo'
s.prepend('bar', 'baz') # => "barbazfoo"

Related: String#concat.

Returns:



3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
# File 'string.c', line 3266

static VALUE
rb_str_prepend_multi(int argc, VALUE *argv, VALUE str)
{
    str_modifiable(str);

    if (argc == 1) {
	rb_str_update(str, 0L, 0L, argv[0]);
    }
    else if (argc > 1) {
	int i;
	VALUE arg_str = rb_str_tmp_new(0);
	rb_enc_copy(arg_str, str);
	for (i = 0; i < argc; i++) {
	    rb_str_append(arg_str, argv[i]);
	}
	rb_str_update(str, 0L, 0L, arg_str);
    }

    return str;
}

#replace(other_str) ⇒ String

Replaces the contents of str with the corresponding values in other_str.

s = "hello"         #=> "hello"
s.replace "world"   #=> "world"

Returns:



5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
# File 'string.c', line 5589

VALUE
rb_str_replace(VALUE str, VALUE str2)
{
    str_modifiable(str);
    if (str == str2) return str;

    StringValue(str2);
    str_discard(str);
    return str_replace(str, str2);
}

#reverseString

Returns a new string with the characters from str in reverse order.

"stressed".reverse   #=> "desserts"

Returns:



5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
# File 'string.c', line 5844

static VALUE
rb_str_reverse(VALUE str)
{
    rb_encoding *enc;
    VALUE rev;
    char *s, *e, *p;
    int cr;

    if (RSTRING_LEN(str) <= 1) return str_duplicate(rb_cString, str);
    enc = STR_ENC_GET(str);
    rev = rb_str_new(0, RSTRING_LEN(str));
    s = RSTRING_PTR(str); e = RSTRING_END(str);
    p = RSTRING_END(rev);
    cr = ENC_CODERANGE(str);

    if (RSTRING_LEN(str) > 1) {
	if (single_byte_optimizable(str)) {
	    while (s < e) {
		*--p = *s++;
	    }
	}
	else if (cr == ENC_CODERANGE_VALID) {
	    while (s < e) {
		int clen = rb_enc_fast_mbclen(s, e, enc);

		p -= clen;
		memcpy(p, s, clen);
		s += clen;
	    }
	}
	else {
	    cr = rb_enc_asciicompat(enc) ?
		ENC_CODERANGE_7BIT : ENC_CODERANGE_VALID;
	    while (s < e) {
		int clen = rb_enc_mbclen(s, e, enc);

		if (clen > 1 || (*s & 0x80)) cr = ENC_CODERANGE_UNKNOWN;
		p -= clen;
		memcpy(p, s, clen);
		s += clen;
	    }
	}
    }
    STR_SET_LEN(rev, RSTRING_LEN(str));
    str_enc_copy(rev, str);
    ENC_CODERANGE_SET(rev, cr);

    return rev;
}

#reverse!String

Reverses str in place.

Returns:



5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
# File 'string.c', line 5902

static VALUE
rb_str_reverse_bang(VALUE str)
{
    if (RSTRING_LEN(str) > 1) {
	if (single_byte_optimizable(str)) {
	    char *s, *e, c;

	    str_modify_keep_cr(str);
	    s = RSTRING_PTR(str);
	    e = RSTRING_END(str) - 1;
	    while (s < e) {
		c = *s;
		*s++ = *e;
		*e-- = c;
	    }
	}
	else {
	    str_shared_replace(str, rb_str_reverse(str));
	}
    }
    else {
	str_modify_keep_cr(str);
    }
    return str;
}

#rindex(substring, offset = self.length) ⇒ Integer? #rindex(regexp, offset = self.length) ⇒ Integer?

Returns the Integer index of the last occurrence of the given substring, or nil if none found:

'foo'.rindex('f') # => 0
'foo'.rindex('o') # => 2
'foo'.rindex('oo') # => 1
'foo'.rindex('ooo') # => nil

Returns the Integer index of the last match for the given Regexp regexp, or nil if none found:

'foo'.rindex(/f/) # => 0
'foo'.rindex(/o/) # => 2
'foo'.rindex(/oo/) # => 1
'foo'.rindex(/ooo/) # => nil

Integer argument offset, if given and non-negative, specifies the maximum starting position in the

string to _end_ the search:
 'foo'.rindex('o', 0) # => nil
 'foo'.rindex('o', 1) # => 1
 'foo'.rindex('o', 2) # => 2
 'foo'.rindex('o', 3) # => 2

If offset is a negative Integer, the maximum starting position in the string to end the search is the sum of the string’s length and offset:

'foo'.rindex('o', -1) # => 2
'foo'.rindex('o', -2) # => 1
'foo'.rindex('o', -3) # => nil
'foo'.rindex('o', -4) # => nil

Related: String#index

Overloads:

  • #rindex(substring, offset = self.length) ⇒ Integer?

    Returns:

  • #rindex(regexp, offset = self.length) ⇒ Integer?

    Returns:



3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
# File 'string.c', line 3865

static VALUE
rb_str_rindex_m(int argc, VALUE *argv, VALUE str)
{
    VALUE sub;
    VALUE vpos;
    rb_encoding *enc = STR_ENC_GET(str);
    long pos, len = str_strlen(str, enc); /* str's enc */

    if (rb_scan_args(argc, argv, "11", &sub, &vpos) == 2) {
	pos = NUM2LONG(vpos);
	if (pos < 0) {
	    pos += len;
	    if (pos < 0) {
		if (RB_TYPE_P(sub, T_REGEXP)) {
		    rb_backref_set(Qnil);
		}
		return Qnil;
	    }
	}
	if (pos > len) pos = len;
    }
    else {
	pos = len;
    }

    if (RB_TYPE_P(sub, T_REGEXP)) {
	/* enc = rb_get_check(str, sub); */
	pos = str_offset(RSTRING_PTR(str), RSTRING_END(str), pos,
			 enc, single_byte_optimizable(str));

	if (rb_reg_search(sub, str, pos, 1) >= 0) {
            VALUE match = rb_backref_get();
            struct re_registers *regs = RMATCH_REGS(match);
            pos = rb_str_sublen(str, BEG(0));
            return LONG2NUM(pos);
        }
    }
    else {
        StringValue(sub);
	pos = rb_str_rindex(str, sub, pos);
	if (pos >= 0) return LONG2NUM(pos);
    }
    return Qnil;
}

#rjust(integer, padstr = ' ') ⇒ String

If integer is greater than the length of str, returns a new String of length integer with str right justified and padded with padstr; otherwise, returns str.

"hello".rjust(4)            #=> "hello"
"hello".rjust(20)           #=> "               hello"
"hello".rjust(20, '1234')   #=> "123412341234123hello"

Returns:



10000
10001
10002
10003
10004
# File 'string.c', line 10000

static VALUE
rb_str_rjust(int argc, VALUE *argv, VALUE str)
{
    return rb_str_justify(argc, argv, str, 'r');
}

#rpartition(sep) ⇒ Array #rpartition(regexp) ⇒ Array

Searches sep or pattern (regexp) in the string from the end of the string, and returns the part before it, the match, and the part after it. If it is not found, returns two empty strings and str.

"hello".rpartition("l")         #=> ["hel", "l", "o"]
"hello".rpartition("x")         #=> ["", "", "hello"]
"hello".rpartition(/.l/)        #=> ["he", "ll", "o"]

Overloads:



10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
# File 'string.c', line 10085

static VALUE
rb_str_rpartition(VALUE str, VALUE sep)
{
    long pos = RSTRING_LEN(str);

    sep = get_pat_quoted(sep, 0);
    if (RB_TYPE_P(sep, T_REGEXP)) {
        if (rb_reg_search(sep, str, pos, 1) < 0) {
            goto failed;
        }
        VALUE match = rb_backref_get();
	struct re_registers *regs = RMATCH_REGS(match);

        pos = BEG(0);
        sep = rb_str_subseq(str, pos, END(0) - pos);
    }
    else {
	pos = rb_str_sublen(str, pos);
	pos = rb_str_rindex(str, sep, pos);
        if(pos < 0) {
            goto failed;
        }
        pos = rb_str_offset(str, pos);
    }

    return rb_ary_new3(3, rb_str_subseq(str, 0, pos),
		          sep,
		          rb_str_subseq(str, pos+RSTRING_LEN(sep),
					RSTRING_LEN(str)-pos-RSTRING_LEN(sep)));
  failed:
    return rb_ary_new3(3, str_new_empty_String(str), str_new_empty_String(str), str_duplicate(rb_cString, str));
}

#rstripString

Returns a copy of the receiver with trailing whitespace removed. See also String#lstrip and String#strip.

Refer to String#strip for the definition of whitespace.

"  hello  ".rstrip   #=> "  hello"
"hello".rstrip       #=> "hello"

Returns:



9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
# File 'string.c', line 9424

static VALUE
rb_str_rstrip(VALUE str)
{
    rb_encoding *enc;
    char *start;
    long olen, roffset;

    enc = STR_ENC_GET(str);
    RSTRING_GETMEM(str, start, olen);
    roffset = rstrip_offset(str, start, start+olen, enc);

    if (roffset <= 0) return str_duplicate(rb_cString, str);
    return rb_str_subseq(str, 0, olen-roffset);
}

#rstrip!self?

Removes trailing whitespace from the receiver. Returns the altered receiver, or nil if no change was made. See also String#lstrip! and String#strip!.

Refer to String#strip for the definition of whitespace.

"  hello  ".rstrip!  #=> "  hello"
"  hello".rstrip!    #=> nil
"hello".rstrip!      #=> nil

Returns:

  • (self, nil)


9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
# File 'string.c', line 9387

static VALUE
rb_str_rstrip_bang(VALUE str)
{
    rb_encoding *enc;
    char *start;
    long olen, roffset;

    str_modify_keep_cr(str);
    enc = STR_ENC_GET(str);
    RSTRING_GETMEM(str, start, olen);
    roffset = rstrip_offset(str, start, start+olen, enc);
    if (roffset > 0) {
	long len = olen - roffset;

	STR_SET_LEN(str, len);
#if !SHARABLE_MIDDLE_SUBSTRING
	TERM_FILL(start+len, rb_enc_mbminlen(enc));
#endif
	return str;
    }
    return Qnil;
}

#scan(pattern) ⇒ Array #scan(pattern) {|match, ...| ... } ⇒ String

Both forms iterate through str, matching the pattern (which may be a Regexp or a String). For each match, a result is generated and either added to the result array or passed to the block. If the pattern contains no groups, each individual result consists of the matched string, $&. If the pattern contains groups, each individual result is itself an array containing one entry per group.

a = "cruel world"
a.scan(/\w+/)        #=> ["cruel", "world"]
a.scan(/.../)        #=> ["cru", "el ", "wor"]
a.scan(/(...)/)      #=> [["cru"], ["el "], ["wor"]]
a.scan(/(..)(..)/)   #=> [["cr", "ue"], ["l ", "wo"]]

And the block form:

a.scan(/\w+/) {|w| print "<<#{w}>> " }
print "\n"
a.scan(/(.)(.)/) {|x,y| print y, x }
print "\n"

produces:

<<cruel>> <<world>>
rceu lowlr

Overloads:



9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
# File 'string.c', line 9594

static VALUE
rb_str_scan(VALUE str, VALUE pat)
{
    VALUE result;
    long start = 0;
    long last = -1, prev = 0;
    char *p = RSTRING_PTR(str); long len = RSTRING_LEN(str);

    pat = get_pat_quoted(pat, 1);
    mustnot_broken(str);
    if (!rb_block_given_p()) {
	VALUE ary = rb_ary_new();

	while (!NIL_P(result = scan_once(str, pat, &start, 0))) {
	    last = prev;
	    prev = start;
	    rb_ary_push(ary, result);
	}
	if (last >= 0) rb_pat_search(pat, str, last, 1);
	else rb_backref_set(Qnil);
	return ary;
    }

    while (!NIL_P(result = scan_once(str, pat, &start, 1))) {
	last = prev;
	prev = start;
	rb_yield(result);
	str_mod_check(str, p, len);
    }
    if (last >= 0) rb_pat_search(pat, str, last, 1);
    return str;
}

#scrubString #scrub(repl) ⇒ String #scrub {|bytes| ... } ⇒ String

If the string is invalid byte sequence then replace invalid bytes with given replacement character, else returns self. If block is given, replace invalid bytes with returned value of the block.

"abc\u3042\x81".scrub #=> "abc\u3042\uFFFD"
"abc\u3042\x81".scrub("*") #=> "abc\u3042*"
"abc\u3042\xE3\x80".scrub{|bytes| '<'+bytes.unpack('H*')[0]+'>' } #=> "abc\u3042<e380>"

Overloads:



10798
10799
10800
10801
10802
10803
10804
# File 'string.c', line 10798

static VALUE
str_scrub(int argc, VALUE *argv, VALUE str)
{
    VALUE repl = argc ? (rb_check_arity(argc, 0, 1), argv[0]) : Qnil;
    VALUE new = rb_str_scrub(str, repl);
    return NIL_P(new) ? str_duplicate(rb_cString, str): new;
}

#scrub!String #scrub!(repl) ⇒ String #scrub! {|bytes| ... } ⇒ String

If the string is invalid byte sequence then replace invalid bytes with given replacement character, else returns self. If block is given, replace invalid bytes with returned value of the block.

"abc\u3042\x81".scrub! #=> "abc\u3042\uFFFD"
"abc\u3042\x81".scrub!("*") #=> "abc\u3042*"
"abc\u3042\xE3\x80".scrub!{|bytes| '<'+bytes.unpack('H*')[0]+'>' } #=> "abc\u3042<e380>"

Overloads:



10820
10821
10822
10823
10824
10825
10826
10827
# File 'string.c', line 10820

static VALUE
str_scrub_bang(int argc, VALUE *argv, VALUE str)
{
    VALUE repl = argc ? (rb_check_arity(argc, 0, 1), argv[0]) : Qnil;
    VALUE new = rb_str_scrub(str, repl);
    if (!NIL_P(new)) rb_str_replace(str, new);
    return str;
}

#setbyte(index, integer) ⇒ Integer

modifies the indexth byte as integer.

Returns:



5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
# File 'string.c', line 5665

static VALUE
rb_str_setbyte(VALUE str, VALUE index, VALUE value)
{
    long pos = NUM2LONG(index);
    long len = RSTRING_LEN(str);
    char *head, *left = 0;
    unsigned char *ptr;
    rb_encoding *enc;
    int cr = ENC_CODERANGE_UNKNOWN, width, nlen;

    if (pos < -len || len <= pos)
        rb_raise(rb_eIndexError, "index %ld out of string", pos);
    if (pos < 0)
        pos += len;

    VALUE v = rb_to_int(value);
    VALUE w = rb_int_and(v, INT2FIX(0xff));
    unsigned char byte = NUM2INT(w) & 0xFF;

    if (!str_independent(str))
	str_make_independent(str);
    enc = STR_ENC_GET(str);
    head = RSTRING_PTR(str);
    ptr = (unsigned char *)&head[pos];
    if (!STR_EMBED_P(str)) {
	cr = ENC_CODERANGE(str);
	switch (cr) {
	  case ENC_CODERANGE_7BIT:
            left = (char *)ptr;
	    *ptr = byte;
	    if (ISASCII(byte)) goto end;
	    nlen = rb_enc_precise_mbclen(left, head+len, enc);
	    if (!MBCLEN_CHARFOUND_P(nlen))
		ENC_CODERANGE_SET(str, ENC_CODERANGE_BROKEN);
	    else
		ENC_CODERANGE_SET(str, ENC_CODERANGE_VALID);
	    goto end;
	  case ENC_CODERANGE_VALID:
	    left = rb_enc_left_char_head(head, ptr, head+len, enc);
	    width = rb_enc_precise_mbclen(left, head+len, enc);
	    *ptr = byte;
	    nlen = rb_enc_precise_mbclen(left, head+len, enc);
	    if (!MBCLEN_CHARFOUND_P(nlen))
		ENC_CODERANGE_SET(str, ENC_CODERANGE_BROKEN);
	    else if (MBCLEN_CHARFOUND_LEN(nlen) != width || ISASCII(byte))
		ENC_CODERANGE_CLEAR(str);
	    goto end;
	}
    }
    ENC_CODERANGE_CLEAR(str);
    *ptr = byte;

  end:
    return value;
}

#lengthInteger

Returns the count of characters (not bytes) in self:

"\x80\u3042".length # => 2
"hello".length # => 5

String#size is an alias for String#length.

Related: String#bytesize.

Returns:



1969
1970
1971
1972
1973
# File 'string.c', line 1969

VALUE
rb_str_length(VALUE str)
{
    return LONG2NUM(str_strlen(str, NULL));
}

#[](index) ⇒ nil #[](start, length) ⇒ nil #[](range) ⇒ nil #[](regexp, capture = 0) ⇒ nil #[](substring) ⇒ nil

Returns the substring of self specified by the arguments.

When the single Integer argument index is given, returns the 1-character substring found in self at offset index:

'bar'[2] # => "r"

Counts backward from the end of self if index is negative:

'foo'[-3] # => "f"

Returns nil if index is out of range:

'foo'[3] # => nil
'foo'[-4] # => nil

When the two Integer arguments start and length are given, returns the substring of the given length found in self at offset start:

'foo'[0, 2] # => "fo"
'foo'[0, 0] # => ""

Counts backward from the end of self if start is negative:

'foo'[-2, 2] # => "oo"

Special case: returns a new empty String if start is equal to the length of self:

'foo'[3, 2] # => ""

Returns nil if start is out of range:

'foo'[4, 2] # => nil
'foo'[-4, 2] # => nil

Returns the trailing substring of self if length is large:

'foo'[1, 50] # => "oo"

Returns nil if length is negative:

'foo'[0, -1] # => nil

When the single Range argument range is given, derives start and length values from the given range, and returns values as above:

  • 'foo'[0..1] is equivalent to 'foo'[0, 2].

  • 'foo'[0...1] is equivalent to 'foo'[0, 1].

When the Regexp argument regexp is given, and the capture argument is 0, returns the first matching substring found in self, or nil if none found:

'foo'[/o/] # => "o"
'foo'[/x/] # => nil
s = 'hello there'
s[/[aeiou](.)\1/] # => "ell"
s[/[aeiou](.)\1/, 0] # => "ell"

If argument capture is given and not 0, it should be either an Integer capture group index or a String or Symbol capture group name; the method call returns only the specified capture (see Regexp Capturing):

s = 'hello there'
s[/[aeiou](.)\1/, 1] # => "l"
s[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "non_vowel"] # => "l"
s[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, :vowel] # => "e"

If an invalid capture group index is given, nil is returned. If an invalid capture group name is given, IndexError is raised.

When the single String argument substring is given, returns the substring from self if found, otherwise nil:

'foo'['oo'] # => "oo"
'foo'['xx'] # => nil

String#slice is an alias for String#[].

Overloads:

  • #[](index) ⇒ nil

    Returns:

    • (nil)
  • #[](start, length) ⇒ nil

    Returns:

    • (nil)
  • #[](range) ⇒ nil

    Returns:

    • (nil)
  • #[](regexp, capture = 0) ⇒ nil

    Returns:

    • (nil)
  • #[](substring) ⇒ nil

    Returns:

    • (nil)


4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
# File 'string.c', line 4735

static VALUE
rb_str_aref_m(int argc, VALUE *argv, VALUE str)
{
    if (argc == 2) {
	if (RB_TYPE_P(argv[0], T_REGEXP)) {
	    return rb_str_subpat(str, argv[0], argv[1]);
	}
	else {
	    long beg = NUM2LONG(argv[0]);
	    long len = NUM2LONG(argv[1]);
	    return rb_str_substr(str, beg, len);
	}
    }
    rb_check_arity(argc, 1, 2);
    return rb_str_aref(str, argv[0]);
}

#slice!(integer) ⇒ String? #slice!(integer, integer) ⇒ String? #slice!(range) ⇒ String? #slice!(regexp) ⇒ String? #slice!(other_str) ⇒ String?

Deletes the specified portion from str, and returns the portion deleted.

string = "this is a string"
string.slice!(2)        #=> "i"
string.slice!(3..6)     #=> " is "
string.slice!(/s.*t/)   #=> "sa st"
string.slice!("r")      #=> "r"
string                  #=> "thing"

Overloads:



5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
# File 'string.c', line 5026

static VALUE
rb_str_slice_bang(int argc, VALUE *argv, VALUE str)
{
    VALUE result = Qnil;
    VALUE indx;
    long beg, len = 1;
    char *p;

    rb_check_arity(argc, 1, 2);
    str_modify_keep_cr(str);
    indx = argv[0];
    if (RB_TYPE_P(indx, T_REGEXP)) {
	if (rb_reg_search(indx, str, 0, 0) < 0) return Qnil;
	VALUE match = rb_backref_get();
	struct re_registers *regs = RMATCH_REGS(match);
	int nth = 0;
	if (argc > 1 && (nth = rb_reg_backref_number(match, argv[1])) < 0) {
	    if ((nth += regs->num_regs) <= 0) return Qnil;
	}
	else if (nth >= regs->num_regs) return Qnil;
	beg = BEG(nth);
	len = END(nth) - beg;
        goto subseq;
    }
    else if (argc == 2) {
	beg = NUM2LONG(indx);
	len = NUM2LONG(argv[1]);
        goto num_index;
    }
    else if (FIXNUM_P(indx)) {
	beg = FIX2LONG(indx);
	if (!(p = rb_str_subpos(str, beg, &len))) return Qnil;
	if (!len) return Qnil;
	beg = p - RSTRING_PTR(str);
	goto subseq;
    }
    else if (RB_TYPE_P(indx, T_STRING)) {
	beg = rb_str_index(str, indx, 0);
	if (beg == -1) return Qnil;
	len = RSTRING_LEN(indx);
        result = str_duplicate(rb_cString, indx);
        goto squash;
    }
    else {
	switch (rb_range_beg_len(indx, &beg, &len, str_strlen(str, NULL), 0)) {
	  case Qnil:
	    return Qnil;
	  case Qfalse:
	    beg = NUM2LONG(indx);
	    if (!(p = rb_str_subpos(str, beg, &len))) return Qnil;
	    if (!len) return Qnil;
	    beg = p - RSTRING_PTR(str);
	    goto subseq;
	  default:
	    goto num_index;
	}
    }

  num_index:
    if (!(p = rb_str_subpos(str, beg, &len))) return Qnil;
    beg = p - RSTRING_PTR(str);

  subseq:
    result = rb_str_new(RSTRING_PTR(str)+beg, len);
    rb_enc_cr_str_copy_for_substr(result, str);

  squash:
    if (len > 0) {
	if (beg == 0) {
	    rb_str_drop_bytes(str, len);
	}
	else {
	    char *sptr = RSTRING_PTR(str);
	    long slen = RSTRING_LEN(str);
	    if (beg + len > slen) /* pathological check */
		len = slen - beg;
	    memmove(sptr + beg,
		    sptr + beg + len,
		    slen - (beg + len));
	    slen -= len;
	    STR_SET_LEN(str, slen);
	    TERM_FILL(&sptr[slen], TERM_LEN(str));
	}
    }
    return result;
}

#split(pattern = nil, [limit]) ⇒ Array #split(pattern = nil, [limit]) {|sub| ... } ⇒ String

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If pattern is a single space, str is split on whitespace, with leading and trailing whitespace and runs of contiguous whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern matches a zero-length string, str is split into individual characters. If pattern contains groups, the respective matches will be returned in the array as well.

If pattern is nil, the value of $; is used. If $; is nil (which is the default), str is split on whitespace as if ‘ ’ were specified.

If the limit parameter is omitted, trailing null fields are suppressed. If limit is a positive number, at most that number of split substrings will be returned (captured groups will be returned as well, but are not counted towards the limit). If limit is 1, the entire string is returned as the only entry in an array. If negative, there is no limit to the number of fields returned, and trailing null fields are not suppressed.

When the input str is empty an empty Array is returned as the string is considered to have no fields to split.

" now's  the time ".split       #=> ["now's", "the", "time"]
" now's  the time ".split(' ')  #=> ["now's", "the", "time"]
" now's  the time".split(/ /)   #=> ["", "now's", "", "the", "time"]
"1, 2.34,56, 7".split(%r{,\s*}) #=> ["1", "2.34", "56", "7"]
"hello".split(//)               #=> ["h", "e", "l", "l", "o"]
"hello".split(//, 3)            #=> ["h", "e", "llo"]
"hi mom".split(%r{\s*})         #=> ["h", "i", "m", "o", "m"]

"mellow yellow".split("ello")   #=> ["m", "w y", "w"]
"1,2,,3,4,,".split(',')         #=> ["1", "2", "", "3", "4"]
"1,2,,3,4,,".split(',', 4)      #=> ["1", "2", "", "3,4,,"]
"1,2,,3,4,,".split(',', -4)     #=> ["1", "2", "", "3", "4", "", ""]

"1:2:3".split(/(:)()()/, 2)     #=> ["1", ":", "", "", "2:3"]

"".split(',', -1)               #=> []

If a block is given, invoke the block with each split substring.

Overloads:

  • #split(pattern = nil, [limit]) ⇒ Array

    Returns:

  • #split(pattern = nil, [limit]) {|sub| ... } ⇒ String

    Yields:

    Returns:



8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
# File 'string.c', line 8150

static VALUE
rb_str_split_m(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    VALUE spat;
    VALUE limit;
    split_type_t split_type;
    long beg, end, i = 0, empty_count = -1;
    int lim = 0;
    VALUE result, tmp;

    result = rb_block_given_p() ? Qfalse : Qnil;
    if (rb_scan_args(argc, argv, "02", &spat, &limit) == 2) {
	lim = NUM2INT(limit);
	if (lim <= 0) limit = Qnil;
	else if (lim == 1) {
	    if (RSTRING_LEN(str) == 0)
                return result ? rb_ary_new2(0) : str;
            tmp = str_duplicate(rb_cString, str);
	    if (!result) {
		rb_yield(tmp);
                return str;
	    }
	    return rb_ary_new3(1, tmp);
	}
	i = 1;
    }
    if (NIL_P(limit) && !lim) empty_count = 0;

    enc = STR_ENC_GET(str);
    split_type = SPLIT_TYPE_REGEXP;
    if (!NIL_P(spat)) {
	spat = get_pat_quoted(spat, 0);
    }
    else if (NIL_P(spat = rb_fs)) {
	split_type = SPLIT_TYPE_AWK;
    }
    else if (!(spat = rb_fs_check(spat))) {
	rb_raise(rb_eTypeError, "value of $; must be String or Regexp");
    }
    else {
        rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$; is set to non-nil value");
    }
    if (split_type != SPLIT_TYPE_AWK) {
        switch (BUILTIN_TYPE(spat)) {
          case T_REGEXP:
            rb_reg_options(spat); /* check if uninitialized */
            tmp = RREGEXP_SRC(spat);
            split_type = literal_split_pattern(tmp, SPLIT_TYPE_REGEXP);
            if (split_type == SPLIT_TYPE_AWK) {
                spat = tmp;
                split_type = SPLIT_TYPE_STRING;
            }
            break;

          case T_STRING:
	    mustnot_broken(spat);
            split_type = literal_split_pattern(spat, SPLIT_TYPE_STRING);
            break;

          default:
            UNREACHABLE_RETURN(Qnil);
	}
    }

#define SPLIT_STR(beg, len) (empty_count = split_string(result, str, beg, len, empty_count))

    if (result) result = rb_ary_new();
    beg = 0;
    char *ptr = RSTRING_PTR(str);
    char *eptr = RSTRING_END(str);
    if (split_type == SPLIT_TYPE_AWK) {
	char *bptr = ptr;
	int skip = 1;
	unsigned int c;

	end = beg;
	if (is_ascii_string(str)) {
	    while (ptr < eptr) {
		c = (unsigned char)*ptr++;
		if (skip) {
		    if (ascii_isspace(c)) {
			beg = ptr - bptr;
		    }
		    else {
			end = ptr - bptr;
			skip = 0;
			if (!NIL_P(limit) && lim <= i) break;
		    }
		}
		else if (ascii_isspace(c)) {
		    SPLIT_STR(beg, end-beg);
		    skip = 1;
		    beg = ptr - bptr;
		    if (!NIL_P(limit)) ++i;
		}
		else {
		    end = ptr - bptr;
		}
	    }
	}
	else {
	    while (ptr < eptr) {
		int n;

		c = rb_enc_codepoint_len(ptr, eptr, &n, enc);
		ptr += n;
		if (skip) {
		    if (rb_isspace(c)) {
			beg = ptr - bptr;
		    }
		    else {
			end = ptr - bptr;
			skip = 0;
			if (!NIL_P(limit) && lim <= i) break;
		    }
		}
		else if (rb_isspace(c)) {
		    SPLIT_STR(beg, end-beg);
		    skip = 1;
		    beg = ptr - bptr;
		    if (!NIL_P(limit)) ++i;
		}
		else {
		    end = ptr - bptr;
		}
	    }
	}
    }
    else if (split_type == SPLIT_TYPE_STRING) {
	char *str_start = ptr;
	char *substr_start = ptr;
	char *sptr = RSTRING_PTR(spat);
	long slen = RSTRING_LEN(spat);

	mustnot_broken(str);
	enc = rb_enc_check(str, spat);
	while (ptr < eptr &&
	       (end = rb_memsearch(sptr, slen, ptr, eptr - ptr, enc)) >= 0) {
	    /* Check we are at the start of a char */
	    char *t = rb_enc_right_char_head(ptr, ptr + end, eptr, enc);
	    if (t != ptr + end) {
		ptr = t;
		continue;
	    }
	    SPLIT_STR(substr_start - str_start, (ptr+end) - substr_start);
	    ptr += end + slen;
	    substr_start = ptr;
	    if (!NIL_P(limit) && lim <= ++i) break;
	}
	beg = ptr - str_start;
    }
    else if (split_type == SPLIT_TYPE_CHARS) {
        char *str_start = ptr;
        int n;

        mustnot_broken(str);
        enc = rb_enc_get(str);
        while (ptr < eptr &&
               (n = rb_enc_precise_mbclen(ptr, eptr, enc)) > 0) {
            SPLIT_STR(ptr - str_start, n);
            ptr += n;
            if (!NIL_P(limit) && lim <= ++i) break;
        }
        beg = ptr - str_start;
    }
    else {
	long len = RSTRING_LEN(str);
	long start = beg;
	long idx;
	int last_null = 0;
	struct re_registers *regs;
        VALUE match = 0;

        for (; rb_reg_search(spat, str, start, 0) >= 0;
             (match ? (rb_match_unbusy(match), rb_backref_set(match)) : (void)0)) {
            match = rb_backref_get();
            if (!result) rb_match_busy(match);
            regs = RMATCH_REGS(match);
            end = BEG(0);
	    if (start == end && BEG(0) == END(0)) {
		if (!ptr) {
		    SPLIT_STR(0, 0);
		    break;
		}
		else if (last_null == 1) {
                    SPLIT_STR(beg, rb_enc_fast_mbclen(ptr+beg, eptr, enc));
		    beg = start;
		}
		else {
                    if (start == len)
                        start++;
                    else
                        start += rb_enc_fast_mbclen(ptr+start,eptr,enc);
		    last_null = 1;
		    continue;
		}
	    }
	    else {
		SPLIT_STR(beg, end-beg);
		beg = start = END(0);
	    }
	    last_null = 0;

	    for (idx=1; idx < regs->num_regs; idx++) {
		if (BEG(idx) == -1) continue;
		SPLIT_STR(BEG(idx), END(idx)-BEG(idx));
	    }
	    if (!NIL_P(limit) && lim <= ++i) break;
	}
        if (match) rb_match_unbusy(match);
    }
    if (RSTRING_LEN(str) > 0 && (!NIL_P(limit) || RSTRING_LEN(str) > beg || lim < 0)) {
	SPLIT_STR(beg, RSTRING_LEN(str)-beg);
    }

    return result ? result : str;
}

#squeeze([other_str]) ⇒ String

Builds a set of characters from the other_str parameter(s) using the procedure described for String#count. Returns a new string where runs of the same character that occur in this set are replaced by a single character. If no arguments are given, all runs of identical characters are replaced by a single character.

"yellow moon".squeeze                  #=> "yelow mon"
"  now   is  the".squeeze(" ")         #=> " now is the"
"putters shoot balls".squeeze("m-z")   #=> "puters shot balls"

Returns:



7863
7864
7865
7866
7867
7868
7869
# File 'string.c', line 7863

static VALUE
rb_str_squeeze(int argc, VALUE *argv, VALUE str)
{
    str = str_duplicate(rb_cString, str);
    rb_str_squeeze_bang(argc, argv, str);
    return str;
}

#squeeze!([other_str]) ⇒ String?

Squeezes str in place, returning either str, or nil if no changes were made.

Returns:



7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
# File 'string.c', line 7772

static VALUE
rb_str_squeeze_bang(int argc, VALUE *argv, VALUE str)
{
    char squeez[TR_TABLE_SIZE];
    rb_encoding *enc = 0;
    VALUE del = 0, nodel = 0;
    unsigned char *s, *send, *t;
    int i, modify = 0;
    int ascompat, singlebyte = single_byte_optimizable(str);
    unsigned int save;

    if (argc == 0) {
	enc = STR_ENC_GET(str);
    }
    else {
	for (i=0; i<argc; i++) {
	    VALUE s = argv[i];

	    StringValue(s);
	    enc = rb_enc_check(str, s);
	    if (singlebyte && !single_byte_optimizable(s))
		singlebyte = 0;
	    tr_setup_table(s, squeez, i==0, &del, &nodel, enc);
	}
    }

    str_modify_keep_cr(str);
    s = t = (unsigned char *)RSTRING_PTR(str);
    if (!s || RSTRING_LEN(str) == 0) return Qnil;
    send = (unsigned char *)RSTRING_END(str);
    save = -1;
    ascompat = rb_enc_asciicompat(enc);

    if (singlebyte) {
        while (s < send) {
            unsigned int c = *s++;
	    if (c != save || (argc > 0 && !squeez[c])) {
	        *t++ = save = c;
	    }
	}
    }
    else {
	while (s < send) {
	    unsigned int c;
	    int clen;

            if (ascompat && (c = *s) < 0x80) {
		if (c != save || (argc > 0 && !squeez[c])) {
		    *t++ = save = c;
		}
		s++;
	    }
	    else {
                c = rb_enc_codepoint_len((char *)s, (char *)send, &clen, enc);

		if (c != save || (argc > 0 && !tr_find(c, squeez, del, nodel))) {
		    if (t != s) rb_enc_mbcput(c, t, enc);
		    save = c;
		    t += clen;
		}
		s += clen;
	    }
	}
    }

    TERM_FILL((char *)t, TERM_LEN(str));
    if ((char *)t - RSTRING_PTR(str) != RSTRING_LEN(str)) {
        STR_SET_LEN(str, (char *)t - RSTRING_PTR(str));
	modify = 1;
    }

    if (modify) return str;
    return Qnil;
}

#start_with?([prefixes]) ⇒ Boolean

Returns true if str starts with one of the prefixes given. Each of the prefixes should be a String or a Regexp.

"hello".start_with?("hell")               #=> true
"hello".start_with?(/H/i)                 #=> true

# returns true if one of the prefixes matches.
"hello".start_with?("heaven", "hell")     #=> true
"hello".start_with?("heaven", "paradise") #=> false

Returns:

  • (Boolean)


10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
# File 'string.c', line 10133

static VALUE
rb_str_start_with(int argc, VALUE *argv, VALUE str)
{
    int i;

    for (i=0; i<argc; i++) {
	VALUE tmp = argv[i];
	if (RB_TYPE_P(tmp, T_REGEXP)) {
	    if (rb_reg_start_with_p(tmp, str))
		return Qtrue;
	}
	else {
	    StringValue(tmp);
	    rb_enc_check(str, tmp);
	    if (RSTRING_LEN(str) < RSTRING_LEN(tmp)) continue;
	    if (memcmp(RSTRING_PTR(str), RSTRING_PTR(tmp), RSTRING_LEN(tmp)) == 0)
		return Qtrue;
	}
    }
    return Qfalse;
}

#stripString

Returns a copy of the receiver with leading and trailing whitespace removed.

Whitespace is defined as any of the following characters: null, horizontal tab, line feed, vertical tab, form feed, carriage return, space.

"    hello    ".strip   #=> "hello"
"\tgoodbye\r\n".strip   #=> "goodbye"
"\x00\t\n\v\f\r ".strip #=> ""
"hello".strip           #=> "hello"

Returns:



9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
# File 'string.c', line 9497

static VALUE
rb_str_strip(VALUE str)
{
    char *start;
    long olen, loffset, roffset;
    rb_encoding *enc = STR_ENC_GET(str);

    RSTRING_GETMEM(str, start, olen);
    loffset = lstrip_offset(str, start, start+olen, enc);
    roffset = rstrip_offset(str, start+loffset, start+olen, enc);

    if (loffset <= 0 && roffset <= 0) return str_duplicate(rb_cString, str);
    return rb_str_subseq(str, loffset, olen-loffset-roffset);
}

#strip!self?

Removes leading and trailing whitespace from the receiver. Returns the altered receiver, or nil if there was no change.

Refer to String#strip for the definition of whitespace.

"  hello  ".strip!  #=> "hello"
"hello".strip!      #=> nil

Returns:

  • (self, nil)


9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
# File 'string.c', line 9453

static VALUE
rb_str_strip_bang(VALUE str)
{
    char *start;
    long olen, loffset, roffset;
    rb_encoding *enc;

    str_modify_keep_cr(str);
    enc = STR_ENC_GET(str);
    RSTRING_GETMEM(str, start, olen);
    loffset = lstrip_offset(str, start, start+olen, enc);
    roffset = rstrip_offset(str, start+loffset, start+olen, enc);

    if (loffset > 0 || roffset > 0) {
	long len = olen-roffset;
	if (loffset > 0) {
	    len -= loffset;
	    memmove(start, start + loffset, len);
	}
	STR_SET_LEN(str, len);
#if !SHARABLE_MIDDLE_SUBSTRING
	TERM_FILL(start+len, rb_enc_mbminlen(enc));
#endif
	return str;
    }
    return Qnil;
}

#sub(pattern, replacement) ⇒ String #sub(pattern, hash) ⇒ String #sub(pattern) {|match| ... } ⇒ String

Returns a copy of str with the first occurrence of pattern replaced by the second argument. The pattern is typically a Regexp; if given as a String, any regular expression metacharacters it contains will be interpreted literally, e.g. \d will match a backslash followed by ‘d’, instead of a digit.

If replacement is a String it will be substituted for the matched text. It may contain back-references to the pattern’s capture groups of the form \d, where d is a group number, or \k<n>, where n is a group name. Similarly, \&, \', \`, and + correspond to special variables, $&, $', $`, and $+, respectively. (See regexp.rdoc for details.) \0 is the same as \&. \\ is interpreted as an escape, i.e., a single backslash. Note that, within replacement the special match variables, such as $&, will not refer to the current match.

If the second argument is a Hash, and the matched text is one of its keys, the corresponding value is the replacement string.

In the block form, the current match string is passed in as a parameter, and variables such as $1, $2, $`, $&, and $' will be set appropriately. (See regexp.rdoc for details.) The value returned by the block will be substituted for the match on each call.

"hello".sub(/[aeiou]/, '*')                  #=> "h*llo"
"hello".sub(/([aeiou])/, '<\1>')             #=> "h<e>llo"
"hello".sub(/./) {|s| s.ord.to_s + ' ' }     #=> "104 ello"
"hello".sub(/(?<foo>[aeiou])/, '*\k<foo>*')  #=> "h*e*llo"
'Is SHELL your preferred shell?'.sub(/[[:upper:]]{2,}/, ENV)
 #=> "Is /bin/bash your preferred shell?"

Note that a string literal consumes backslashes. (See syntax/literals.rdoc for details about string literals.) Back-references are typically preceded by an additional backslash. For example, if you want to write a back-reference \& in replacement with a double-quoted string literal, you need to write: "..\\&..". If you want to write a non-back-reference string \& in replacement, you need first to escape the backslash to prevent this method from interpreting it as a back-reference, and then you need to escape the backslashes again to prevent a string literal from consuming them: "..\\\\&..". You may want to use the block form to avoid a lot of backslashes.

Overloads:



5359
5360
5361
5362
5363
5364
5365
# File 'string.c', line 5359

static VALUE
rb_str_sub(int argc, VALUE *argv, VALUE str)
{
    str = str_duplicate(rb_cString, str);
    rb_str_sub_bang(argc, argv, str);
    return str;
}

#sub!(pattern, replacement) ⇒ String? #sub!(pattern) {|match| ... } ⇒ String?

Performs the same substitution as String#sub in-place.

Returns str if a substitution was performed or nil if no substitution was performed.

Overloads:

  • #sub!(pattern, replacement) ⇒ String?

    Returns:

  • #sub!(pattern) {|match| ... } ⇒ String?

    Yields:

    Returns:



5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
# File 'string.c', line 5194

static VALUE
rb_str_sub_bang(int argc, VALUE *argv, VALUE str)
{
    VALUE pat, repl, hash = Qnil;
    int iter = 0;
    long plen;
    int min_arity = rb_block_given_p() ? 1 : 2;
    long beg;

    rb_check_arity(argc, min_arity, 2);
    if (argc == 1) {
	iter = 1;
    }
    else {
	repl = argv[1];
	hash = rb_check_hash_type(argv[1]);
	if (NIL_P(hash)) {
	    StringValue(repl);
	}
    }

    pat = get_pat_quoted(argv[0], 1);

    str_modifiable(str);
    beg = rb_pat_search(pat, str, 0, 1);
    if (beg >= 0) {
	rb_encoding *enc;
	int cr = ENC_CODERANGE(str);
	long beg0, end0;
	VALUE match, match0 = Qnil;
	struct re_registers *regs;
	char *p, *rp;
	long len, rlen;

	match = rb_backref_get();
	regs = RMATCH_REGS(match);
	if (RB_TYPE_P(pat, T_STRING)) {
	    beg0 = beg;
	    end0 = beg0 + RSTRING_LEN(pat);
	    match0 = pat;
	}
	else {
	    beg0 = BEG(0);
	    end0 = END(0);
	    if (iter) match0 = rb_reg_nth_match(0, match);
	}

	if (iter || !NIL_P(hash)) {
	    p = RSTRING_PTR(str); len = RSTRING_LEN(str);

            if (iter) {
                repl = rb_obj_as_string(rb_yield(match0));
            }
            else {
                repl = rb_hash_aref(hash, rb_str_subseq(str, beg0, end0 - beg0));
                repl = rb_obj_as_string(repl);
            }
	    str_mod_check(str, p, len);
	    rb_check_frozen(str);
	}
	else {
	    repl = rb_reg_regsub(repl, str, regs, RB_TYPE_P(pat, T_STRING) ? Qnil : pat);
	}

        enc = rb_enc_compatible(str, repl);
        if (!enc) {
            rb_encoding *str_enc = STR_ENC_GET(str);
	    p = RSTRING_PTR(str); len = RSTRING_LEN(str);
	    if (coderange_scan(p, beg0, str_enc) != ENC_CODERANGE_7BIT ||
		coderange_scan(p+end0, len-end0, str_enc) != ENC_CODERANGE_7BIT) {
                rb_raise(rb_eEncCompatError, "incompatible character encodings: %s and %s",
			 rb_enc_name(str_enc),
			 rb_enc_name(STR_ENC_GET(repl)));
            }
            enc = STR_ENC_GET(repl);
        }
	rb_str_modify(str);
	rb_enc_associate(str, enc);
	if (ENC_CODERANGE_UNKNOWN < cr && cr < ENC_CODERANGE_BROKEN) {
	    int cr2 = ENC_CODERANGE(repl);
            if (cr2 == ENC_CODERANGE_BROKEN ||
                (cr == ENC_CODERANGE_VALID && cr2 == ENC_CODERANGE_7BIT))
                cr = ENC_CODERANGE_UNKNOWN;
            else
                cr = cr2;
	}
	plen = end0 - beg0;
        rlen = RSTRING_LEN(repl);
	len = RSTRING_LEN(str);
	if (rlen > plen) {
	    RESIZE_CAPA(str, len + rlen - plen);
	}
	p = RSTRING_PTR(str);
	if (rlen != plen) {
	    memmove(p + beg0 + rlen, p + beg0 + plen, len - beg0 - plen);
	}
        rp = RSTRING_PTR(repl);
        memmove(p + beg0, rp, rlen);
	len += rlen - plen;
	STR_SET_LEN(str, len);
	TERM_FILL(&RSTRING_PTR(str)[len], TERM_LEN(str));
	ENC_CODERANGE_SET(str, cr);

	return str;
    }
    return Qnil;
}

#succString

Returns the successor to self. The successor is calculated by incrementing characters.

The first character to be incremented is the rightmost alphanumeric: or, if no alphanumerics, the rightmost character:

'THX1138'.succ # => "THX1139"
'<<koala>>'.succ # => "<<koalb>>"
'***'.succ # => '**+'

The successor to a digit is another digit, “carrying” to the next-left character for a “rollover” from 9 to 0, and prepending another digit if necessary:

'00'.succ # => "01"
'09'.succ # => "10"
'99'.succ # => "100"

The successor to a letter is another letter of the same case, carrying to the next-left character for a rollover, and prepending another same-case letter if necessary:

'aa'.succ # => "ab"
'az'.succ # => "ba"
'zz'.succ # => "aaa"
'AA'.succ # => "AB"
'AZ'.succ # => "BA"
'ZZ'.succ # => "AAA"

The successor to a non-alphanumeric character is the next character in the underlying character set’s collating sequence, carrying to the next-left character for a rollover, and prepending another character if necessary:

s = 0.chr * 3
s # => "\x00\x00\x00"
s.succ # => "\x00\x00\x01"
s = 255.chr * 3
s # => "\xFF\xFF\xFF"
s.succ # => "\x01\x00\x00\x00"

Carrying can occur between and among mixtures of alphanumeric characters:

s = 'zz99zz99'
s.succ # => "aaa00aa00"
s = '99zz99zz'
s.succ # => "100aa00aa"

The successor to an empty String is a new empty String:

''.succ # => ""

String#next is an alias for String#succ.

Returns:



4272
4273
4274
4275
4276
4277
4278
4279
# File 'string.c', line 4272

VALUE
rb_str_succ(VALUE orig)
{
    VALUE str;
    str = rb_str_new(RSTRING_PTR(orig), RSTRING_LEN(orig));
    rb_enc_cr_str_copy_for_substr(str, orig);
    return str_succ(str);
}

#succ!self

Equivalent to String#succ, but modifies self in place; returns self.

String#next! is an alias for String#succ!.

Returns:

  • (self)


4378
4379
4380
4381
4382
4383
4384
# File 'string.c', line 4378

static VALUE
rb_str_succ_bang(VALUE str)
{
    rb_str_modify(str);
    str_succ(str);
    return str;
}

#sum(n = 16) ⇒ Integer

Returns a basic n-bit checksum of the characters in str, where n is the optional Integer parameter, defaulting to 16. The result is simply the sum of the binary value of each byte in str modulo 2**n - 1. This is not a particularly good checksum.

Returns:



9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
# File 'string.c', line 9821

static VALUE
rb_str_sum(int argc, VALUE *argv, VALUE str)
{
    int bits = 16;
    char *ptr, *p, *pend;
    long len;
    VALUE sum = INT2FIX(0);
    unsigned long sum0 = 0;

    if (rb_check_arity(argc, 0, 1) && (bits = NUM2INT(argv[0])) < 0) {
        bits = 0;
    }
    ptr = p = RSTRING_PTR(str);
    len = RSTRING_LEN(str);
    pend = p + len;

    while (p < pend) {
        if (FIXNUM_MAX - UCHAR_MAX < sum0) {
            sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0));
            str_mod_check(str, ptr, len);
            sum0 = 0;
        }
        sum0 += (unsigned char)*p;
        p++;
    }

    if (bits == 0) {
        if (sum0) {
            sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0));
        }
    }
    else {
        if (sum == INT2FIX(0)) {
            if (bits < (int)sizeof(long)*CHAR_BIT) {
                sum0 &= (((unsigned long)1)<<bits)-1;
            }
            sum = LONG2FIX(sum0);
        }
        else {
            VALUE mod;

            if (sum0) {
                sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0));
            }

            mod = rb_funcall(INT2FIX(1), idLTLT, 1, INT2FIX(bits));
            mod = rb_funcall(mod, '-', 1, INT2FIX(1));
            sum = rb_funcall(sum, '&', 1, mod);
        }
    }
    return sum;
}

#swapcaseString #swapcase([options]) ⇒ String

Returns a copy of str with uppercase alphabetic characters converted to lowercase and lowercase characters converted to uppercase.

See String#downcase for meaning of options and use with different encodings.

"Hello".swapcase          #=> "hELLO"
"cYbEr_PuNk11".swapcase   #=> "CyBeR_pUnK11"

Overloads:



7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
# File 'string.c', line 7193

static VALUE
rb_str_swapcase(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE | ONIGENC_CASE_DOWNCASE;
    VALUE ret;

    flags = check_case_options(argc, argv, flags);
    enc = str_true_enc(str);
    if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return str_duplicate(rb_cString, str);
    if (flags&ONIGENC_CASE_ASCII_ONLY) {
        ret = rb_str_new(0, RSTRING_LEN(str));
        rb_str_ascii_casemap(str, ret, &flags, enc);
    }
    else {
        ret = rb_str_casemap(str, &flags, enc);
    }
    return ret;
}

#swapcase!String? #swapcase!([options]) ⇒ String?

Equivalent to String#swapcase, but modifies the receiver in place, returning str, or nil if no changes were made.

See String#downcase for meaning of options and use with different encodings.

Overloads:



7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
# File 'string.c', line 7160

static VALUE
rb_str_swapcase_bang(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE | ONIGENC_CASE_DOWNCASE;

    flags = check_case_options(argc, argv, flags);
    str_modify_keep_cr(str);
    enc = str_true_enc(str);
    if (flags&ONIGENC_CASE_ASCII_ONLY)
        rb_str_ascii_casemap(str, str, &flags, enc);
    else
	str_shared_replace(str, rb_str_casemap(str, &flags, enc));

    if (ONIGENC_CASE_MODIFIED&flags) return str;
    return Qnil;
}

#to_cObject

Returns a complex which denotes the string form. The parser ignores leading whitespaces and trailing garbage. Any digit sequences can be separated by an underscore. Returns zero for null or garbage string.

'9'.to_c           #=> (9+0i)
'2.5'.to_c         #=> (2.5+0i)
'2.5/1'.to_c       #=> ((5/2)+0i)
'-3/2'.to_c        #=> ((-3/2)+0i)
'-i'.to_c          #=> (0-1i)
'45i'.to_c         #=> (0+45i)
'3-4i'.to_c        #=> (3-4i)
'-4e2-4e-2i'.to_c  #=> (-400.0-0.04i)
'-0.0-0.0i'.to_c   #=> (-0.0-0.0i)
'1/2+3/4i'.to_c    #=> ((1/2)+(3/4)*i)
'ruby'.to_c        #=> (0+0i)

See Kernel.Complex.



2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
# File 'complex.c', line 2038

static VALUE
string_to_c(VALUE self)
{
    char *s;
    VALUE num;

    rb_must_asciicompat(self);

    s = RSTRING_PTR(self);

    if (s && s[RSTRING_LEN(self)]) {
	rb_str_modify(self);
	s = RSTRING_PTR(self);
	s[RSTRING_LEN(self)] = '\0';
    }

    if (!s)
	s = (char *)"";

    (void)parse_comp(s, 0, &num);

    return num;
}

#to_fFloat

Returns the result of interpreting leading characters in str as a floating point number. Extraneous characters past the end of a valid number are ignored. If there is not a valid number at the start of str, 0.0 is returned. This method never raises an exception.

"123.45e1".to_f        #=> 1234.5
"45.67 degrees".to_f   #=> 45.67
"thx1138".to_f         #=> 0.0

Returns:



6001
6002
6003
6004
6005
# File 'string.c', line 6001

static VALUE
rb_str_to_f(VALUE str)
{
    return DBL2NUM(rb_str_to_dbl(str, FALSE));
}

#to_i(base = 10) ⇒ Integer

Returns the result of interpreting leading characters in str as an integer base base (between 2 and 36). Extraneous characters past the end of a valid number are ignored. If there is not a valid number at the start of str, 0 is returned. This method never raises an exception when base is valid.

"12345".to_i             #=> 12345
"99 red balloons".to_i   #=> 99
"0a".to_i                #=> 0
"0a".to_i(16)            #=> 10
"hello".to_i             #=> 0
"1100101".to_i(2)        #=> 101
"1100101".to_i(8)        #=> 294977
"1100101".to_i(10)       #=> 1100101
"1100101".to_i(16)       #=> 17826049

Returns:



5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
# File 'string.c', line 5975

static VALUE
rb_str_to_i(int argc, VALUE *argv, VALUE str)
{
    int base = 10;

    if (rb_check_arity(argc, 0, 1) && (base = NUM2INT(argv[0])) < 0) {
	rb_raise(rb_eArgError, "invalid radix %d", base);
    }
    return rb_str_to_inum(str, base, FALSE);
}

#to_rObject

Returns the result of interpreting leading characters in str as a rational. Leading whitespace and extraneous characters past the end of a valid number are ignored. Digit sequences can be separated by an underscore. If there is not a valid number at the start of str, zero is returned. This method never raises an exception.

'  2  '.to_r       #=> (2/1)
'300/2'.to_r       #=> (150/1)
'-9.2'.to_r        #=> (-46/5)
'-9.2e2'.to_r      #=> (-920/1)
'1_234_567'.to_r   #=> (1234567/1)
'21 June 09'.to_r  #=> (21/1)
'21/06/09'.to_r    #=> (7/2)
'BWV 1079'.to_r    #=> (0/1)

NOTE: “0.3”.to_r isn’t the same as 0.3.to_r. The former is equivalent to “3/10”.to_r, but the latter isn’t so.

"0.3".to_r == 3/10r  #=> true
0.3.to_r   == 3/10r  #=> false

See also Kernel#Rational.



2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
# File 'rational.c', line 2534

static VALUE
string_to_r(VALUE self)
{
    VALUE num;

    rb_must_asciicompat(self);

    num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE);

    if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
	rb_raise(rb_eFloatDomainError, "Infinity");
    return num;
}

#to_sString #to_strString

Returns self.

If called on a subclass of String, converts the receiver to a String object.

Overloads:



6018
6019
6020
6021
6022
6023
6024
6025
# File 'string.c', line 6018

static VALUE
rb_str_to_s(VALUE str)
{
    if (rb_obj_class(str) != rb_cString) {
	return str_duplicate(rb_cString, str);
    }
    return str;
}

#to_sString #to_strString

Returns self.

If called on a subclass of String, converts the receiver to a String object.

Overloads:



6018
6019
6020
6021
6022
6023
6024
6025
# File 'string.c', line 6018

static VALUE
rb_str_to_s(VALUE str)
{
    if (rb_obj_class(str) != rb_cString) {
	return str_duplicate(rb_cString, str);
    }
    return str;
}

#internObject #to_symObject

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist. See Symbol#id2name.

"Koala".intern         #=> :Koala
s = 'cat'.to_sym       #=> :cat
s == :cat              #=> true
s = '@cat'.to_sym      #=> :@cat
s == :@cat             #=> true

This can also be used to create symbols that cannot be represented using the :xxx notation.

'cat and dog'.to_sym   #=> :"cat and dog"


839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# File 'symbol.c', line 839

VALUE
rb_str_intern(VALUE str)
{
    VALUE sym;
#if USE_SYMBOL_GC
    rb_encoding *enc, *ascii;
    int type;
#else
    ID id;
#endif
    GLOBAL_SYMBOLS_ENTER(symbols);
    {
        sym = lookup_str_sym_with_lock(symbols, str);

        if (sym) {
            // ok
        }
        else {
#if USE_SYMBOL_GC
            enc = rb_enc_get(str);
            ascii = rb_usascii_encoding();
            if (enc != ascii && sym_check_asciionly(str)) {
                str = rb_str_dup(str);
                rb_enc_associate(str, ascii);
                OBJ_FREEZE(str);
                enc = ascii;
            }
            else {
                str = rb_str_dup(str);
                OBJ_FREEZE(str);
            }
            str = rb_fstring(str);
            type = rb_str_symname_type(str, IDSET_ATTRSET_FOR_INTERN);
            if (type < 0) type = ID_JUNK;
            sym = dsymbol_alloc(symbols, rb_cSymbol, str, enc, type);
#else
            id = intern_str(str, 0);
            sym = ID2SYM(id);
#endif
        }
    }
    GLOBAL_SYMBOLS_LEAVE();
    return sym;
}

#tr(from_str, to_str) ⇒ String

Returns a copy of str with the characters in from_str replaced by the corresponding characters in to_str. If to_str is shorter than from_str, it is padded with its last character in order to maintain the correspondence.

"hello".tr('el', 'ip')      #=> "hippo"
"hello".tr('aeiou', '*')    #=> "h*ll*"
"hello".tr('aeiou', 'AA*')  #=> "hAll*"

Both strings may use the c1-c2 notation to denote ranges of characters, and from_str may start with a ^, which denotes all characters except those listed.

"hello".tr('a-y', 'b-z')    #=> "ifmmp"
"hello".tr('^aeiou', '*')   #=> "*e**o"

The backslash character \ can be used to escape ^ or - and is otherwise ignored unless it appears at the end of a range or the end of the from_str or to_str:

"hello^world".tr("\\^aeiou", "*") #=> "h*ll**w*rld"
"hello-world".tr("a\\-eo", "*")   #=> "h*ll**w*rld"

"hello\r\nworld".tr("\r", "")   #=> "hello\nworld"
"hello\r\nworld".tr("\\r", "")  #=> "hello\r\nwold"
"hello\r\nworld".tr("\\\r", "") #=> "hello\nworld"

"X['\\b']".tr("X\\", "")   #=> "['b']"
"X['\\b']".tr("X-\\]", "") #=> "'b'"

Returns:



7575
7576
7577
7578
7579
7580
7581
# File 'string.c', line 7575

static VALUE
rb_str_tr(VALUE str, VALUE src, VALUE repl)
{
    str = str_duplicate(rb_cString, str);
    tr_trans(str, src, repl, 0);
    return str;
}

#tr!(from_str, to_str) ⇒ String?

Translates str in place, using the same rules as String#tr. Returns str, or nil if no changes were made.

Returns:



7533
7534
7535
7536
7537
# File 'string.c', line 7533

static VALUE
rb_str_tr_bang(VALUE str, VALUE src, VALUE repl)
{
    return tr_trans(str, src, repl, 0);
}

#tr_s(from_str, to_str) ⇒ String

Processes a copy of str as described under String#tr, then removes duplicate characters in regions that were affected by the translation.

"hello".tr_s('l', 'r')     #=> "hero"
"hello".tr_s('el', '*')    #=> "h*o"
"hello".tr_s('el', 'hx')   #=> "hhxo"

Returns:



7900
7901
7902
7903
7904
7905
7906
# File 'string.c', line 7900

static VALUE
rb_str_tr_s(VALUE str, VALUE src, VALUE repl)
{
    str = str_duplicate(rb_cString, str);
    tr_trans(str, src, repl, 1);
    return str;
}

#tr_s!(from_str, to_str) ⇒ String?

Performs String#tr_s processing on str in place, returning str, or nil if no changes were made.

Returns:



7880
7881
7882
7883
7884
# File 'string.c', line 7880

static VALUE
rb_str_tr_s_bang(VALUE str, VALUE src, VALUE repl)
{
    return tr_trans(str, src, repl, 1);
}

#undumpString

Returns an unescaped version of the string. This does the inverse of String#dump.

"\"hello \\n ''\"".undump #=> "hello \n ''"

Returns:



6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
# File 'string.c', line 6558

static VALUE
str_undump(VALUE str)
{
    const char *s = RSTRING_PTR(str);
    const char *s_end = RSTRING_END(str);
    rb_encoding *enc = rb_enc_get(str);
    VALUE undumped = rb_enc_str_new(s, 0L, enc);
    bool utf8 = false;
    bool binary = false;
    int w;

    rb_must_asciicompat(str);
    if (rb_str_is_ascii_only_p(str) == Qfalse) {
	rb_raise(rb_eRuntimeError, "non-ASCII character detected");
    }
    if (!str_null_check(str, &w)) {
	rb_raise(rb_eRuntimeError, "string contains null byte");
    }
    if (RSTRING_LEN(str) < 2) goto invalid_format;
    if (*s != '"') goto invalid_format;

    /* strip '"' at the start */
    s++;

    for (;;) {
	if (s >= s_end) {
	    rb_raise(rb_eRuntimeError, "unterminated dumped string");
	}

	if (*s == '"') {
	    /* epilogue */
	    s++;
	    if (s == s_end) {
		/* ascii compatible dumped string */
		break;
	    }
	    else {
		static const char force_encoding_suffix[] = ".force_encoding(\""; /* "\")" */
		static const char dup_suffix[] = ".dup";
		const char *encname;
		int encidx;
		ptrdiff_t size;

		/* check separately for strings dumped by older versions */
		size = sizeof(dup_suffix) - 1;
		if (s_end - s > size && memcmp(s, dup_suffix, size) == 0) s += size;

		size = sizeof(force_encoding_suffix) - 1;
		if (s_end - s <= size) goto invalid_format;
		if (memcmp(s, force_encoding_suffix, size) != 0) goto invalid_format;
		s += size;

		if (utf8) {
		    rb_raise(rb_eRuntimeError, "dumped string contained Unicode escape but used force_encoding");
		}

		encname = s;
		s = memchr(s, '"', s_end-s);
		size = s - encname;
		if (!s) goto invalid_format;
		if (s_end - s != 2) goto invalid_format;
		if (s[0] != '"' || s[1] != ')') goto invalid_format;

		encidx = rb_enc_find_index2(encname, (long)size);
		if (encidx < 0) {
		    rb_raise(rb_eRuntimeError, "dumped string has unknown encoding name");
		}
		rb_enc_associate_index(undumped, encidx);
	    }
	    break;
	}

	if (*s == '\\') {
	    s++;
	    if (s >= s_end) {
		rb_raise(rb_eRuntimeError, "invalid escape");
	    }
	    undump_after_backslash(undumped, &s, s_end, &enc, &utf8, &binary);
	}
	else {
	    rb_str_cat(undumped, s++, 1);
	}
    }

    return undumped;
invalid_format:
    rb_raise(rb_eRuntimeError, "invalid dumped string; not wrapped with '\"' nor '\"...\".force_encoding(\"...\")' form");
}

#unicode_normalize(form = :nfc) ⇒ Object

Unicode Normalization—Returns a normalized form of str, using Unicode normalizations NFC, NFD, NFKC, or NFKD. The normalization form used is determined by form, which can be any of the four values :nfc, :nfd, :nfkc, or :nfkd. The default is :nfc.

If the string is not in a Unicode Encoding, then an Exception is raised. In this context, ‘Unicode Encoding’ means any of UTF-8, UTF-16BE/LE, and UTF-32BE/LE, as well as GB18030, UCS_2BE, and UCS_4BE. Anything other than UTF-8 is implemented by converting to UTF-8, which makes it slower than UTF-8.

"a\u0300".unicode_normalize        #=> "\u00E0"
"a\u0300".unicode_normalize(:nfc)  #=> "\u00E0"
"\u00E0".unicode_normalize(:nfd)   #=> "a\u0300"
"\xE0".force_encoding('ISO-8859-1').unicode_normalize(:nfd)
                                   #=> Encoding::CompatibilityError raised


10870
10871
10872
10873
10874
# File 'string.c', line 10870

static VALUE
rb_str_unicode_normalize(int argc, VALUE *argv, VALUE str)
{
    return unicode_normalize_common(argc, argv, str, id_normalize);
}

#unicode_normalize!(form = :nfc) ⇒ Object

Destructive version of String#unicode_normalize, doing Unicode normalization in place.



10883
10884
10885
10886
10887
# File 'string.c', line 10883

static VALUE
rb_str_unicode_normalize_bang(int argc, VALUE *argv, VALUE str)
{
    return rb_str_replace(str, unicode_normalize_common(argc, argv, str, id_normalize));
}

#unicode_normalized?(form = :nfc) ⇒ Boolean

Checks whether str is in Unicode normalization form form, which can be any of the four values :nfc, :nfd, :nfkc, or :nfkd. The default is :nfc.

If the string is not in a Unicode Encoding, then an Exception is raised. For details, see String#unicode_normalize.

"a\u0300".unicode_normalized?        #=> false
"a\u0300".unicode_normalized?(:nfd)  #=> true
"\u00E0".unicode_normalized?         #=> true
"\u00E0".unicode_normalized?(:nfd)   #=> false
"\xE0".force_encoding('ISO-8859-1').unicode_normalized?
                                     #=> Encoding::CompatibilityError raised

Returns:

  • (Boolean)


10906
10907
10908
10909
10910
# File 'string.c', line 10906

static VALUE
rb_str_unicode_normalized_p(int argc, VALUE *argv, VALUE str)
{
    return unicode_normalize_common(argc, argv, str, id_normalized_p);
}

#upcaseString #upcase([options]) ⇒ String

Returns a copy of str with all lowercase letters replaced with their uppercase counterparts.

See String#downcase for meaning of options and use with different encodings.

"hEllO".upcase   #=> "HELLO"

Overloads:



6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
# File 'string.c', line 6920

static VALUE
rb_str_upcase(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE;
    VALUE ret;

    flags = check_case_options(argc, argv, flags);
    enc = str_true_enc(str);
    if (case_option_single_p(flags, enc, str)) {
        ret = rb_str_new(RSTRING_PTR(str), RSTRING_LEN(str));
        str_enc_copy(ret, str);
        upcase_single(ret);
    }
    else if (flags&ONIGENC_CASE_ASCII_ONLY) {
        ret = rb_str_new(0, RSTRING_LEN(str));
        rb_str_ascii_casemap(str, ret, &flags, enc);
    }
    else {
        ret = rb_str_casemap(str, &flags, enc);
    }

    return ret;
}

#upcase!String? #upcase!([options]) ⇒ String?

Upcases the contents of str, returning nil if no changes were made.

See String#downcase for meaning of options and use with different encodings.

Overloads:



6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
# File 'string.c', line 6884

static VALUE
rb_str_upcase_bang(int argc, VALUE *argv, VALUE str)
{
    rb_encoding *enc;
    OnigCaseFoldType flags = ONIGENC_CASE_UPCASE;

    flags = check_case_options(argc, argv, flags);
    str_modify_keep_cr(str);
    enc = str_true_enc(str);
    if (case_option_single_p(flags, enc, str)) {
        if (upcase_single(str))
            flags |= ONIGENC_CASE_MODIFIED;
    }
    else if (flags&ONIGENC_CASE_ASCII_ONLY)
        rb_str_ascii_casemap(str, str, &flags, enc);
    else
	str_shared_replace(str, rb_str_casemap(str, &flags, enc));

    if (ONIGENC_CASE_MODIFIED&flags) return str;
    return Qnil;
}

#upto(other_string, exclusive = false) {|string| ... } ⇒ self #upto(other_string, exclusive = false) ⇒ Object

With a block given, calls the block with each String value returned by successive calls to String#succ; the first value is self, the next is self.succ, and so on; the sequence terminates when value other_string is reached; returns self:

'a8'.upto('b6') {|s| print s, ' ' } # => "a8"

Output:

a8 a9 b0 b1 b2 b3 b4 b5 b6

If argument exclusive is given as a truthy object, the last value is omitted:

'a8'.upto('b6', true) {|s| print s, ' ' } # => "a8"

Output:

a8 a9 b0 b1 b2 b3 b4 b5

If other_string would not be reached, does not call the block:

'25'.upto('5') {|s| fail s }
'aa'.upto('a') {|s| fail s }

With no block given, returns a new Enumerator:

'a8'.upto('b6') # => #<Enumerator: "a8":upto("b6")>

Overloads:

  • #upto(other_string, exclusive = false) {|string| ... } ⇒ self

    Yields:

    • (string)

    Returns:

    • (self)


4430
4431
4432
4433
4434
4435
4436
4437
4438
# File 'string.c', line 4430

static VALUE
rb_str_upto(int argc, VALUE *argv, VALUE beg)
{
    VALUE end, exclusive;

    rb_scan_args(argc, argv, "11", &end, &exclusive);
    RETURN_ENUMERATOR(beg, argc, argv);
    return rb_str_upto_each(beg, end, RTEST(exclusive), str_upto_i, Qnil);
}

#valid_encoding?Boolean

Returns true for a string which is encoded correctly.

"\xc2\xa1".force_encoding("UTF-8").valid_encoding?  #=> true
"\xc2".force_encoding("UTF-8").valid_encoding?      #=> false
"\x80".force_encoding("UTF-8").valid_encoding?      #=> false

Returns:

  • (Boolean)


10420
10421
10422
10423
10424
10425
10426
# File 'string.c', line 10420

static VALUE
rb_str_valid_encoding_p(VALUE str)
{
    int cr = rb_enc_str_coderange(str);

    return cr == ENC_CODERANGE_BROKEN ? Qfalse : Qtrue;
}