Class: GraphUtils::BipartiteGraph
- Inherits:
-
Object
- Object
- GraphUtils::BipartiteGraph
- Defined in:
- lib/GraphUtils.rb
Overview
Represents a bipartite graph.
Instance Attribute Summary collapse
-
#e ⇒ Object
Returns the value of attribute e.
-
#x ⇒ Object
readonly
Returns the value of attribute x.
-
#y ⇒ Object
Returns the value of attribute y.
Instance Method Summary collapse
-
#initialize(x, y, e) ⇒ BipartiteGraph
constructor
First argument to the constructor is the first set of values, second argument is the second set.
-
#maximum_matching ⇒ Object
algorithm to compute maximum matching in O(sqrtV E) taken from Perl package Graph::Bipartite.
-
#removable_values(matching) ⇒ Object
Computes a mapping from x value to a set of y values.
Constructor Details
#initialize(x, y, e) ⇒ BipartiteGraph
First argument to the constructor is the first set of values, second argument is the second set. The third argument is a hash which maps elements from the first set to an array of elements from the second set, designating edges (adjancency list).
15 16 17 18 19 20 21 22 23 24 25 |
# File 'lib/GraphUtils.rb', line 15 def initialize(x, y, e) unless x.kind_of?(Set) and y.kind_of?(Set) and e.kind_of?(Hash) and not x.empty? and not y.empty? and not e.empty? raise ArgumentError, "Two non-empty sets of values and a hash where key => [value] designates edges must be given!" end @x = x @y = y @e = e @max_matching = nil end |
Instance Attribute Details
#e ⇒ Object
Returns the value of attribute e.
10 11 12 |
# File 'lib/GraphUtils.rb', line 10 def e @e end |
#x ⇒ Object (readonly)
Returns the value of attribute x.
9 10 11 |
# File 'lib/GraphUtils.rb', line 9 def x @x end |
#y ⇒ Object
Returns the value of attribute y.
10 11 12 |
# File 'lib/GraphUtils.rb', line 10 def y @y end |
Instance Method Details
#maximum_matching ⇒ Object
algorithm to compute maximum matching in O(sqrtV E) taken from Perl package Graph::Bipartite
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/GraphUtils.rb', line 29 def maximum_matching @e_double = @e.dup @e.each_key { |k| @e[k].each { |v| if not @e_double.has_key?(v) @e_double[v] = Set.new end @e_double[v].add(k) } } matching = Hash.new @e_double.each_key { |key| matching[key] = nil } if @max_matching.nil? recalc = true else recalc = false @max_matching.each { |k,v| if not @e[k].include?(v) recalc = true else # recompute the new matching based on the old matching matching[k] = v matching[v] = k end } end if recalc level = Hash.new while sbfs(matching, level) > 0 sdfs(matching, level) end @max_matching = matching.delete_if { |k,v| @y.include?(k) or v.nil? } end return @max_matching end |
#removable_values(matching) ⇒ Object
Computes a mapping from x value to a set of y values. Each mapping designates an arc which can be removed because it doesn’t belong to any matching. The method requires a matching as an argument.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
# File 'lib/GraphUtils.rb', line 70 def removable_values(matching) edges = Array.new label = Hash.new @e.each_key { |k| @e[k].each { |v| if matching.has_key?(k) and matching[k] == v edge = DirectedEdge.new(k, v) edges << edge label[edge] = :used else edges << DirectedEdge.new(v, k) end } } # edges in strongly connected components GraphUtils::strongly_connected_components(@x | @y, edges).each { |component| componentHelper = Hash.new component.each { |i| componentHelper[i] = 1 } (edges.select { |edge| componentHelper.has_key?(edge.startVertex) and componentHelper.has_key?(edge.endVertex) }).each { |edge| label[edge] = :used } } # edges traversed during breadth-first search for m-alternating # paths starting at m-free vertices ((@x - matching.keys) + (@y - matching.values)).each { |vertex| GraphUtils::find_paths(vertex, edges).each { |edge| label[edge] = :used } } pruneMap = Hash.new (edges.delete_if { |edge| label.has_key?(edge) }).each { |edge| if not pruneMap.has_key?(edge.endVertex) pruneMap[edge.endVertex] = Set.new end pruneMap[edge.endVertex].add(edge.startVertex) } return pruneMap end |