Class: Aws::Bedrock::Types::KnowledgeBaseVectorSearchConfiguration

Inherits:
Struct
  • Object
show all
Includes:
Structure
Defined in:
lib/aws-sdk-bedrock/types.rb

Overview

The configuration details for returning the results from the knowledge base vector search.

Constant Summary collapse

SENSITIVE =
[:filter]

Instance Attribute Summary collapse

Instance Attribute Details

#filterTypes::RetrievalFilter

Specifies the filters to use on the metadata fields in the knowledge base data sources before returning results.



4398
4399
4400
4401
4402
4403
4404
# File 'lib/aws-sdk-bedrock/types.rb', line 4398

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#number_of_resultsInteger

The number of text chunks to retrieve; the number of results to return.

Returns:

  • (Integer)


4398
4399
4400
4401
4402
4403
4404
# File 'lib/aws-sdk-bedrock/types.rb', line 4398

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#override_search_typeString

By default, Amazon Bedrock decides a search strategy for you. If you’re using an Amazon OpenSearch Serverless vector store that contains a filterable text field, you can specify whether to query the knowledge base with a ‘HYBRID` search using both vector embeddings and raw text, or `SEMANTIC` search using only vector embeddings. For other vector store configurations, only `SEMANTIC` search is available.

Returns:

  • (String)


4398
4399
4400
4401
4402
4403
4404
# File 'lib/aws-sdk-bedrock/types.rb', line 4398

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter)
  SENSITIVE = [:filter]
  include Aws::Structure
end