Class: Aws::FraudDetector::Types::GetEventPredictionResult
- Inherits:
-
Struct
- Object
- Struct
- Aws::FraudDetector::Types::GetEventPredictionResult
- Includes:
- Structure
- Defined in:
- lib/aws-sdk-frauddetector/types.rb
Overview
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#external_model_outputs ⇒ Array<Types::ExternalModelOutputs>
The model scores for Amazon SageMaker models.
-
#model_scores ⇒ Array<Types::ModelScores>
The model scores.
-
#rule_results ⇒ Array<Types::RuleResult>
The results from the rules.
Instance Attribute Details
#external_model_outputs ⇒ Array<Types::ExternalModelOutputs>
The model scores for Amazon SageMaker models.
2535 2536 2537 2538 2539 2540 2541 |
# File 'lib/aws-sdk-frauddetector/types.rb', line 2535 class GetEventPredictionResult < Struct.new( :model_scores, :rule_results, :external_model_outputs) SENSITIVE = [] include Aws::Structure end |
#model_scores ⇒ Array<Types::ModelScores>
The model scores. Amazon Fraud Detector generates model scores between 0 and 1000, where 0 is low fraud risk and 1000 is high fraud risk. Model scores are directly related to the false positive rate (FPR). For example, a score of 600 corresponds to an estimated 10% false positive rate whereas a score of 900 corresponds to an estimated 2% false positive rate.
2535 2536 2537 2538 2539 2540 2541 |
# File 'lib/aws-sdk-frauddetector/types.rb', line 2535 class GetEventPredictionResult < Struct.new( :model_scores, :rule_results, :external_model_outputs) SENSITIVE = [] include Aws::Structure end |
#rule_results ⇒ Array<Types::RuleResult>
The results from the rules.
2535 2536 2537 2538 2539 2540 2541 |
# File 'lib/aws-sdk-frauddetector/types.rb', line 2535 class GetEventPredictionResult < Struct.new( :model_scores, :rule_results, :external_model_outputs) SENSITIVE = [] include Aws::Structure end |