Class: Aws::MachineLearning::Types::GetMLModelOutput
- Inherits:
-
Struct
- Object
- Struct
- Aws::MachineLearning::Types::GetMLModelOutput
- Includes:
- Structure
- Defined in:
- lib/aws-sdk-machinelearning/types.rb
Overview
Represents the output of a ‘GetMLModel` operation, and provides detailed information about a `MLModel`.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the ‘MLModel`, normalized and scaled on computation resources.
-
#created_at ⇒ Time
The time that the ‘MLModel` was created.
-
#created_by_iam_user ⇒ String
The AWS user account from which the ‘MLModel` was created.
-
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the ‘MLModel`.
-
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘MLModel` as `COMPLETED` or `FAILED`.
-
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
-
#last_updated_at ⇒ Time
The time of the most recent edit to the ‘MLModel`.
-
#log_uri ⇒ String
A link to the file that contains logs of the ‘CreateMLModel` operation.
-
#message ⇒ String
A description of the most recent details about accessing the ‘MLModel`.
-
#ml_model_id ⇒ String
The MLModel ID, which is same as the ‘MLModelId` in the request.
-
#ml_model_type ⇒ String
Identifies the ‘MLModel` category.
-
#name ⇒ String
A user-supplied name or description of the ‘MLModel`.
-
#recipe ⇒ String
The recipe to use when training the ‘MLModel`.
-
#schema ⇒ String
The schema used by all of the data files referenced by the ‘DataSource`.
-
#score_threshold ⇒ Float
The scoring threshold is used in binary classification ‘MLModel` models.
-
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the ‘ScoreThreshold`.
-
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
-
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘MLModel` as `INPROGRESS`.
-
#status ⇒ String
The current status of the ‘MLModel`.
-
#training_data_source_id ⇒ String
The ID of the training ‘DataSource`.
-
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the ‘MLModel`.
Instance Attribute Details
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the ‘MLModel`, normalized and scaled on computation resources. `ComputeTime` is only available if the `MLModel` is in the `COMPLETED` state.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#created_at ⇒ Time
The time that the ‘MLModel` was created. The time is expressed in epoch time.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#created_by_iam_user ⇒ String
The AWS user account from which the ‘MLModel` was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the ‘MLModel`
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘MLModel` as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the `MLModel` is in the `COMPLETED` or `FAILED` state.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#last_updated_at ⇒ Time
The time of the most recent edit to the ‘MLModel`. The time is expressed in epoch time.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#log_uri ⇒ String
A link to the file that contains logs of the ‘CreateMLModel` operation.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#message ⇒ String
A description of the most recent details about accessing the ‘MLModel`.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#ml_model_id ⇒ String
The MLModel ID, which is same as the ‘MLModelId` in the request.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#ml_model_type ⇒ String
Identifies the ‘MLModel` category. The following are the available types:
-
REGRESSION – Produces a numeric result. For example, “What price should a house be listed at?”
-
BINARY – Produces one of two possible results. For example, “Is this an e-commerce website?”
-
MULTICLASS – Produces one of several possible results. For example, “Is this a HIGH, LOW or MEDIUM risk trade?”
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#name ⇒ String
A user-supplied name or description of the ‘MLModel`.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#recipe ⇒ String
The recipe to use when training the ‘MLModel`. The `Recipe` provides detailed information about the observation data to use during training, and manipulations to perform on the observation data during training.
Note: This parameter is provided as part of the verbose format.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#schema ⇒ String
The schema used by all of the data files referenced by the ‘DataSource`.
Note: This parameter is provided as part of the verbose format.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#score_threshold ⇒ Float
The scoring threshold is used in binary classification ‘MLModel` models. It marks the boundary between a positive prediction and a negative prediction.
Output values greater than or equal to the threshold receive a positive result from the MLModel, such as ‘true`. Output values less than the threshold receive a negative response from the MLModel, such as `false`.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the ‘ScoreThreshold`. The time is expressed in epoch time.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘MLModel` as `INPROGRESS`. `StartedAt` isn’t available if the ‘MLModel` is in the `PENDING` state.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#status ⇒ String
The current status of the ‘MLModel`. This element can have one of the following values:
-
‘PENDING` - Amazon Machine Learning (Amazon ML) submitted a request to describe a `MLModel`.
-
‘INPROGRESS` - The request is processing.
-
‘FAILED` - The request did not run to completion. The ML model isn’t usable.
-
‘COMPLETED` - The request completed successfully.
-
‘DELETED` - The `MLModel` is marked as deleted. It isn’t usable.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#training_data_source_id ⇒ String
The ID of the training ‘DataSource`.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the ‘MLModel`. The list is implemented as a map of key-value pairs.
The following is the current set of training parameters:
-
‘sgd.maxMLModelSizeInBytes` - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.
The value is an integer that ranges from ‘100000` to `2147483648`. The default value is `33554432`.
-
‘sgd.maxPasses` - The number of times that the training process traverses the observations to build the `MLModel`. The value is an integer that ranges from `1` to `10000`. The default value is `10`.
-
‘sgd.shuffleType` - Whether Amazon ML shuffles the training data. Shuffling data improves a model’s ability to find the optimal solution for a variety of data types. The valid values are ‘auto` and `none`. The default value is `none`. We strongly recommend that you shuffle your data.
-
‘sgd.l1RegularizationAmount` - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as `1.0E-08`.
The value is a double that ranges from ‘0` to `MAX_DOUBLE`. The default is to not use L1 normalization. This parameter can’t be used when ‘L2` is specified. Use this parameter sparingly.
-
‘sgd.l2RegularizationAmount` - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as `1.0E-08`.
The value is a double that ranges from ‘0` to `MAX_DOUBLE`. The default is to not use L2 normalization. This parameter can’t be used when ‘L1` is specified. Use this parameter sparingly.
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2339 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |