Class: Aws::MachineLearning::Types::GetEvaluationOutput
- Inherits:
-
Struct
- Object
- Struct
- Aws::MachineLearning::Types::GetEvaluationOutput
- Includes:
- Structure
- Defined in:
- lib/aws-sdk-machinelearning/types.rb
Overview
Represents the output of a ‘GetEvaluation` operation and describes an `Evaluation`.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the ‘Evaluation`, normalized and scaled on computation resources.
-
#created_at ⇒ Time
The time that the ‘Evaluation` was created.
-
#created_by_iam_user ⇒ String
The AWS user account that invoked the evaluation.
-
#evaluation_data_source_id ⇒ String
The ‘DataSource` used for this evaluation.
-
#evaluation_id ⇒ String
The evaluation ID which is same as the ‘EvaluationId` in the request.
-
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘Evaluation` as `COMPLETED` or `FAILED`.
-
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
-
#last_updated_at ⇒ Time
The time of the most recent edit to the ‘Evaluation`.
-
#log_uri ⇒ String
A link to the file that contains logs of the ‘CreateEvaluation` operation.
-
#message ⇒ String
A description of the most recent details about evaluating the ‘MLModel`.
-
#ml_model_id ⇒ String
The ID of the ‘MLModel` that was the focus of the evaluation.
-
#name ⇒ String
A user-supplied name or description of the ‘Evaluation`.
-
#performance_metrics ⇒ Types::PerformanceMetrics
Measurements of how well the ‘MLModel` performed using observations referenced by the `DataSource`.
-
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘Evaluation` as `INPROGRESS`.
-
#status ⇒ String
The status of the evaluation.
Instance Attribute Details
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the ‘Evaluation`, normalized and scaled on computation resources. `ComputeTime` is only available if the `Evaluation` is in the `COMPLETED` state.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#created_at ⇒ Time
The time that the ‘Evaluation` was created. The time is expressed in epoch time.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#created_by_iam_user ⇒ String
The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#evaluation_data_source_id ⇒ String
The ‘DataSource` used for this evaluation.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#evaluation_id ⇒ String
The evaluation ID which is same as the ‘EvaluationId` in the request.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘Evaluation` as `COMPLETED` or `FAILED`. `FinishedAt` is only available when the `Evaluation` is in the `COMPLETED` or `FAILED` state.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#last_updated_at ⇒ Time
The time of the most recent edit to the ‘Evaluation`. The time is expressed in epoch time.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#log_uri ⇒ String
A link to the file that contains logs of the ‘CreateEvaluation` operation.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#message ⇒ String
A description of the most recent details about evaluating the ‘MLModel`.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#ml_model_id ⇒ String
The ID of the ‘MLModel` that was the focus of the evaluation.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#name ⇒ String
A user-supplied name or description of the ‘Evaluation`.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#performance_metrics ⇒ Types::PerformanceMetrics
Measurements of how well the ‘MLModel` performed using observations referenced by the `DataSource`. One of the following metric is returned based on the type of the `MLModel`:
-
BinaryAUC: A binary ‘MLModel` uses the Area Under the Curve (AUC) technique to measure performance.
-
RegressionRMSE: A regression ‘MLModel` uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
-
MulticlassAvgFScore: A multiclass ‘MLModel` uses the F1 score technique to measure performance.
For more information about performance metrics, please see the [Amazon Machine Learning Developer Guide].
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the ‘Evaluation` as `INPROGRESS`. `StartedAt` isn’t available if the ‘Evaluation` is in the `PENDING` state.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |
#status ⇒ String
The status of the evaluation. This element can have one of the following values:
-
‘PENDING` - Amazon Machine Language (Amazon ML) submitted a request to evaluate an `MLModel`.
-
‘INPROGRESS` - The evaluation is underway.
-
‘FAILED` - The request to evaluate an `MLModel` did not run to completion. It is not usable.
-
‘COMPLETED` - The evaluation process completed successfully.
-
‘DELETED` - The `Evaluation` is marked as deleted. It is not usable.
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
# File 'lib/aws-sdk-machinelearning/types.rb', line 2117 class GetEvaluationOutput < Struct.new( :evaluation_id, :ml_model_id, :evaluation_data_source_id, :input_data_location_s3, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :performance_metrics, :log_uri, :message, :compute_time, :finished_at, :started_at) SENSITIVE = [] include Aws::Structure end |