Class: Aws::Neptunedata::Types::CustomModelTransformParameters
- Inherits:
-
Struct
- Object
- Struct
- Aws::Neptunedata::Types::CustomModelTransformParameters
- Includes:
- Structure
- Defined in:
- lib/aws-sdk-neptunedata/types.rb
Overview
Contains custom model transform parameters. See [Use a trained model to generate new model artifacts].
[1]: docs.aws.amazon.com/neptune/latest/userguide/machine-learning-model-transform.html
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#source_s3_directory_path ⇒ String
The path to the Amazon S3 location where the Python module implementing your model is located.
-
#transform_entry_point_script ⇒ String
The name of the entry point in your module of a script that should be run after the best model from the hyperparameter search has been identified, to compute the model artifacts necessary for model deployment.
Instance Attribute Details
#source_s3_directory_path ⇒ String
The path to the Amazon S3 location where the Python module implementing your model is located. This must point to a valid existing Amazon S3 location that contains, at a minimum, a training script, a transform script, and a ‘model-hpo-configuration.json` file.
534 535 536 537 538 539 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 534 class CustomModelTransformParameters < Struct.new( :source_s3_directory_path, :transform_entry_point_script) SENSITIVE = [] include Aws::Structure end |
#transform_entry_point_script ⇒ String
The name of the entry point in your module of a script that should be run after the best model from the hyperparameter search has been identified, to compute the model artifacts necessary for model deployment. It should be able to run with no command-line arguments. The default is ‘transform.py`.
534 535 536 537 538 539 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 534 class CustomModelTransformParameters < Struct.new( :source_s3_directory_path, :transform_entry_point_script) SENSITIVE = [] include Aws::Structure end |