Class: Aws::Neptunedata::Types::StartMLModelTrainingJobInput
- Inherits:
-
Struct
- Object
- Struct
- Aws::Neptunedata::Types::StartMLModelTrainingJobInput
- Includes:
- Structure
- Defined in:
- lib/aws-sdk-neptunedata/types.rb
Overview
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#base_processing_instance_type ⇒ String
The type of ML instance used in preparing and managing training of ML models.
-
#custom_model_training_parameters ⇒ Types::CustomModelTrainingParameters
The configuration for custom model training.
-
#data_processing_job_id ⇒ String
The job ID of the completed data-processing job that has created the data that the training will work with.
-
#enable_managed_spot_training ⇒ Boolean
Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances.
-
#id ⇒ String
A unique identifier for the new job.
-
#max_hpo_number_of_training_jobs ⇒ Integer
Maximum total number of training jobs to start for the hyperparameter tuning job.
-
#max_hpo_parallel_training_jobs ⇒ Integer
Maximum number of parallel training jobs to start for the hyperparameter tuning job.
-
#neptune_iam_role_arn ⇒ String
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources.
-
#previous_model_training_job_id ⇒ String
The job ID of a completed model-training job that you want to update incrementally based on updated data.
-
#s3_output_encryption_kms_key ⇒ String
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job.
-
#sagemaker_iam_role_arn ⇒ String
The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error will occur.
-
#security_group_ids ⇒ Array<String>
The VPC security group IDs.
-
#subnets ⇒ Array<String>
The IDs of the subnets in the Neptune VPC.
-
#train_model_s3_location ⇒ String
The location in Amazon S3 where the model artifacts are to be stored.
-
#training_instance_type ⇒ String
The type of ML instance used for model training.
-
#training_instance_volume_size_in_gb ⇒ Integer
The disk volume size of the training instance.
-
#training_time_out_in_seconds ⇒ Integer
Timeout in seconds for the training job.
-
#volume_encryption_kms_key ⇒ String
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instances that run the training job.
Instance Attribute Details
#base_processing_instance_type ⇒ String
The type of ML instance used in preparing and managing training of ML models. This is a CPU instance chosen based on memory requirements for processing the training data and model.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#custom_model_training_parameters ⇒ Types::CustomModelTrainingParameters
The configuration for custom model training. This is a JSON object.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#data_processing_job_id ⇒ String
The job ID of the completed data-processing job that has created the data that the training will work with.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
Optimizes the cost of training machine-learning models by using Amazon Elastic Compute Cloud spot instances. The default is ‘False`.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#id ⇒ String
A unique identifier for the new job. The default is An autogenerated UUID.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#max_hpo_number_of_training_jobs ⇒ Integer
Maximum total number of training jobs to start for the hyperparameter tuning job. The default is 2. Neptune ML automatically tunes the hyperparameters of the machine learning model. To obtain a model that performs well, use at least 10 jobs (in other words, set ‘maxHPONumberOfTrainingJobs` to 10). In general, the more tuning runs, the better the results.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#max_hpo_parallel_training_jobs ⇒ Integer
Maximum number of parallel training jobs to start for the hyperparameter tuning job. The default is 2. The number of parallel jobs you can run is limited by the available resources on your training instance.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#neptune_iam_role_arn ⇒ String
The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3 resources. This must be listed in your DB cluster parameter group or an error will occur.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#previous_model_training_job_id ⇒ String
The job ID of a completed model-training job that you want to update incrementally based on updated data.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#s3_output_encryption_kms_key ⇒ String
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the output of the processing job. The default is none.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#sagemaker_iam_role_arn ⇒ String
The ARN of an IAM role for SageMaker execution.This must be listed in your DB cluster parameter group or an error will occur.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#security_group_ids ⇒ Array<String>
The VPC security group IDs. The default is None.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#subnets ⇒ Array<String>
The IDs of the subnets in the Neptune VPC. The default is None.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#train_model_s3_location ⇒ String
The location in Amazon S3 where the model artifacts are to be stored.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#training_instance_type ⇒ String
The type of ML instance used for model training. All Neptune ML models support CPU, GPU, and multiGPU training. The default is ‘ml.p3.2xlarge`. Choosing the right instance type for training depends on the task type, graph size, and your budget.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#training_instance_volume_size_in_gb ⇒ Integer
The disk volume size of the training instance. Both input data and the output model are stored on disk, so the volume size must be large enough to hold both data sets. The default is 0. If not specified or 0, Neptune ML selects a disk volume size based on the recommendation generated in the data processing step.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#training_time_out_in_seconds ⇒ Integer
Timeout in seconds for the training job. The default is 86,400 (1 day).
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |
#volume_encryption_kms_key ⇒ String
The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instances that run the training job. The default is None.
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 |
# File 'lib/aws-sdk-neptunedata/types.rb', line 3585 class StartMLModelTrainingJobInput < Struct.new( :id, :previous_model_training_job_id, :data_processing_job_id, :train_model_s3_location, :sagemaker_iam_role_arn, :neptune_iam_role_arn, :base_processing_instance_type, :training_instance_type, :training_instance_volume_size_in_gb, :training_time_out_in_seconds, :max_hpo_number_of_training_jobs, :max_hpo_parallel_training_jobs, :subnets, :security_group_ids, :volume_encryption_kms_key, :s3_output_encryption_kms_key, :enable_managed_spot_training, :custom_model_training_parameters) SENSITIVE = [] include Aws::Structure end |