Class: Aws::SageMaker::Types::S3DataSource
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::S3DataSource
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Describes the S3 data source.
Your input bucket must be in the same Amazon Web Services region as your training job.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#attribute_names ⇒ Array<String>
A list of one or more attribute names to use that are found in a specified augmented manifest file.
-
#instance_group_names ⇒ Array<String>
A list of names of instance groups that get data from the S3 data source.
-
#s3_data_distribution_type ⇒ String
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify
FullyReplicated. -
#s3_data_type ⇒ String
If you choose
S3Prefix,S3Uriidentifies a key name prefix. -
#s3_uri ⇒ String
Depending on the value specified for the
S3DataType, identifies either a key name prefix or a manifest.
Instance Attribute Details
#attribute_names ⇒ Array<String>
A list of one or more attribute names to use that are found in a specified augmented manifest file.
37899 37900 37901 37902 37903 37904 37905 37906 37907 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 37899 class S3DataSource < Struct.new( :s3_data_type, :s3_uri, :s3_data_distribution_type, :attribute_names, :instance_group_names) SENSITIVE = [] include Aws::Structure end |
#instance_group_names ⇒ Array<String>
A list of names of instance groups that get data from the S3 data source.
37899 37900 37901 37902 37903 37904 37905 37906 37907 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 37899 class S3DataSource < Struct.new( :s3_data_type, :s3_uri, :s3_data_distribution_type, :attribute_names, :instance_group_names) SENSITIVE = [] include Aws::Structure end |
#s3_data_distribution_type ⇒ String
If you want SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify FullyReplicated.
If you want SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify ShardedByS3Key. If there are n ML compute instances launched for a training job, each instance gets approximately 1/n of the number of S3 objects. In this case, model training on each machine uses only the subset of training data.
Don’t choose more ML compute instances for training than available S3 objects. If you do, some nodes won’t get any data and you will pay for nodes that aren’t getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms.
In distributed training, where you use multiple ML compute EC2 instances, you might choose ShardedByS3Key. If the algorithm requires copying training data to the ML storage volume (when TrainingInputMode is set to File), this copies 1/n of the number of objects.
37899 37900 37901 37902 37903 37904 37905 37906 37907 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 37899 class S3DataSource < Struct.new( :s3_data_type, :s3_uri, :s3_data_distribution_type, :attribute_names, :instance_group_names) SENSITIVE = [] include Aws::Structure end |
#s3_data_type ⇒ String
If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training.
If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training.
If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile can only be used if the Channel’s input mode is Pipe.
37899 37900 37901 37902 37903 37904 37905 37906 37907 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 37899 class S3DataSource < Struct.new( :s3_data_type, :s3_uri, :s3_data_distribution_type, :attribute_names, :instance_group_names) SENSITIVE = [] include Aws::Structure end |
#s3_uri ⇒ String
Depending on the value specified for the S3DataType, identifies either a key name prefix or a manifest. For example:
-
A key name prefix might look like this:
s3://bucketname/exampleprefix/ -
A manifest might look like this:
s3://bucketname/example.manifestA manifest is an S3 object which is a JSON file consisting of an array of elements. The first element is a prefix which is followed by one or more suffixes. SageMaker appends the suffix elements to the prefix to get a full set of
S3Uri. Note that the prefix must be a valid non-emptyS3Urithat precludes users from specifying a manifest whose individualS3Uriis sourced from different S3 buckets.The following code example shows a valid manifest format:
‘[ “s3://customer_bucket/some/prefix/”,`
‘ “relative/path/to/custdata-1”,`
‘ “relative/path/custdata-2”,`
‘ …`
‘ “relative/path/custdata-N”`
]This JSON is equivalent to the following
S3Urilist:s3://customer_bucket/some/prefix/relative/path/to/custdata-1s3://customer_bucket/some/prefix/relative/path/custdata-2...s3://customer_bucket/some/prefix/relative/path/custdata-NThe complete set of
S3Uriin this manifest is the input data for the channel for this data source. The object that eachS3Uripoints to must be readable by the IAM role that SageMaker uses to perform tasks on your behalf.
Your input bucket must be located in same Amazon Web Services region as your training job.
37899 37900 37901 37902 37903 37904 37905 37906 37907 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 37899 class S3DataSource < Struct.new( :s3_data_type, :s3_uri, :s3_data_distribution_type, :attribute_names, :instance_group_names) SENSITIVE = [] include Aws::Structure end |