Class: Aws::SageMaker::Types::DescribeTrainingJobResponse

Inherits:
Struct
  • Object
show all
Includes:
Aws::Structure
Defined in:
lib/aws-sdk-sagemaker/types.rb

Overview

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#algorithm_specificationTypes::AlgorithmSpecification

Information about the algorithm used for training, and algorithm metadata.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#auto_ml_job_arnString

The Amazon Resource Name (ARN) of an AutoML job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#billable_time_in_secondsInteger

The billable time in seconds. Billable time refers to the absolute wall-clock time.

Multiply ‘BillableTimeInSeconds` by the number of instances (`InstanceCount`) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: `BillableTimeInSeconds * InstanceCount` .

You can calculate the savings from using managed spot training using the formula ‘(1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100`. For example, if `BillableTimeInSeconds` is 100 and `TrainingTimeInSeconds` is 500, the savings is 80%.

Returns:

  • (Integer)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#checkpoint_configTypes::CheckpointConfig

Contains information about the output location for managed spot training checkpoint data.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#creation_timeTime

A timestamp that indicates when the training job was created.

Returns:

  • (Time)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#debug_hook_configTypes::DebugHookConfig

Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the ‘DebugHookConfig` parameter, see [Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#debug_rule_configurationsArray<Types::DebugRuleConfiguration>

Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.

Returns:



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#debug_rule_evaluation_statusesArray<Types::DebugRuleEvaluationStatus>

Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_inter_container_traffic_encryptionBoolean

To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.

Returns:

  • (Boolean)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_managed_spot_trainingBoolean

A Boolean indicating whether managed spot training is enabled (‘True`) or not (`False`).

Returns:

  • (Boolean)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_network_isolationBoolean

If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose ‘True`. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Returns:

  • (Boolean)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#environmentHash<String,String>

The environment variables to set in the Docker container.

Returns:

  • (Hash<String,String>)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#experiment_configTypes::ExperimentConfig

Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:

  • CreateProcessingJob][1
  • CreateTrainingJob][2
  • CreateTransformJob][3

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html [2]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html [3]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#failure_reasonString

If the training job failed, the reason it failed.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#final_metric_data_listArray<Types::MetricData>

A collection of ‘MetricData` objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.

Returns:



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#hyper_parametersHash<String,String>

Algorithm-specific parameters.

Returns:

  • (Hash<String,String>)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#infra_check_configTypes::InfraCheckConfig

Contains information about the infrastructure health check configuration for the training job.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#input_data_configArray<Types::Channel>

An array of ‘Channel` objects that describes each data input channel.

Returns:



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#labeling_job_arnString

The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#last_modified_timeTime

A timestamp that indicates when the status of the training job was last modified.

Returns:

  • (Time)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#model_artifactsTypes::ModelArtifacts

Information about the Amazon S3 location that is configured for storing model artifacts.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#output_data_configTypes::OutputDataConfig

The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#profiler_configTypes::ProfilerConfig

Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#profiler_rule_configurationsArray<Types::ProfilerRuleConfiguration>

Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#profiler_rule_evaluation_statusesArray<Types::ProfilerRuleEvaluationStatus>

Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#profiling_statusString

Profiling status of a training job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#remote_debug_configTypes::RemoteDebugConfig

Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see [Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#resource_configTypes::ResourceConfig

Resources, including ML compute instances and ML storage volumes, that are configured for model training.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#retry_strategyTypes::RetryStrategy

The number of times to retry the job when the job fails due to an ‘InternalServerError`.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#role_arnString

The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#secondary_statusString

Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see ‘StatusMessage` under [SecondaryStatusTransition].

SageMaker provides primary statuses and secondary statuses that apply to each of them:

InProgress : * ‘Starting` - Starting the training job.

* `Downloading` - An optional stage for algorithms that support
  `File` training input mode. It indicates that data is being
  downloaded to the ML storage volumes.

* `Training` - Training is in progress.

* `Interrupted` - The job stopped because the managed spot
  training instances were interrupted.

* `Uploading` - Training is complete and the model artifacts are
  being uploaded to the S3 location.

Completed : * ‘Completed` - The training job has completed.

^

Failed : * ‘Failed` - The training job has failed. The reason for the

  failure is returned in the `FailureReason` field of
  `DescribeTrainingJobResponse`.

^

Stopped : * ‘MaxRuntimeExceeded` - The job stopped because it exceeded the

  maximum allowed runtime.

* `MaxWaitTimeExceeded` - The job stopped because it exceeded the
  maximum allowed wait time.

* `Stopped` - The training job has stopped.

Stopping : * ‘Stopping` - Stopping the training job.

^

Valid values for ‘SecondaryStatus` are subject to change.

We no longer support the following secondary statuses:

  • ‘LaunchingMLInstances`

  • ‘PreparingTraining`

  • ‘DownloadingTrainingImage`

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#secondary_status_transitionsArray<Types::SecondaryStatusTransition>

A history of all of the secondary statuses that the training job has transitioned through.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#stopping_conditionTypes::StoppingCondition

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#tensor_board_output_configTypes::TensorBoardOutputConfig

Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_end_timeTime

Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of ‘TrainingStartTime` and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.

Returns:

  • (Time)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_job_arnString

The Amazon Resource Name (ARN) of the training job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_job_nameString

Name of the model training job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_job_statusString

The status of the training job.

SageMaker provides the following training job statuses:

  • ‘InProgress` - The training is in progress.

  • ‘Completed` - The training job has completed.

  • ‘Failed` - The training job has failed. To see the reason for the failure, see the `FailureReason` field in the response to a `DescribeTrainingJobResponse` call.

  • ‘Stopping` - The training job is stopping.

  • ‘Stopped` - The training job has stopped.

For more detailed information, see ‘SecondaryStatus`.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_start_timeTime

Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of ‘TrainingEndTime`. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.

Returns:

  • (Time)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#training_time_in_secondsInteger

The training time in seconds.

Returns:

  • (Integer)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#tuning_job_arnString

The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.

Returns:

  • (String)


18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#vpc_configTypes::VpcConfig

A [VpcConfig] object that specifies the VPC that this training job has access to. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html

Returns:



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end

#warm_pool_statusTypes::WarmPoolStatus

The status of the warm pool associated with the training job.



18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832

class DescribeTrainingJobResponse < Struct.new(
  :training_job_name,
  :training_job_arn,
  :tuning_job_arn,
  :labeling_job_arn,
  :auto_ml_job_arn,
  :model_artifacts,
  :training_job_status,
  :secondary_status,
  :failure_reason,
  :hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :output_data_config,
  :resource_config,
  :warm_pool_status,
  :vpc_config,
  :stopping_condition,
  :creation_time,
  :training_start_time,
  :training_end_time,
  :last_modified_time,
  :secondary_status_transitions,
  :final_metric_data_list,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config,
  :training_time_in_seconds,
  :billable_time_in_seconds,
  :debug_hook_config,
  :experiment_config,
  :debug_rule_configurations,
  :tensor_board_output_config,
  :debug_rule_evaluation_statuses,
  :profiler_config,
  :profiler_rule_configurations,
  :profiler_rule_evaluation_statuses,
  :profiling_status,
  :environment,
  :retry_strategy,
  :remote_debug_config,
  :infra_check_config)
  SENSITIVE = []
  include Aws::Structure
end