Class: Aws::SageMaker::Types::DescribeTrainingJobResponse
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::DescribeTrainingJobResponse
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#algorithm_specification ⇒ Types::AlgorithmSpecification
Information about the algorithm used for training, and algorithm metadata.
-
#auto_ml_job_arn ⇒ String
The Amazon Resource Name (ARN) of an AutoML job.
-
#billable_time_in_seconds ⇒ Integer
The billable time in seconds.
-
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
-
#creation_time ⇒ Time
A timestamp that indicates when the training job was created.
-
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths.
-
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
-
#debug_rule_evaluation_statuses ⇒ Array<Types::DebugRuleEvaluationStatus>
Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.
-
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`.
-
#enable_managed_spot_training ⇒ Boolean
A Boolean indicating whether managed spot training is enabled (‘True`) or not (`False`).
-
#enable_network_isolation ⇒ Boolean
If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose ‘True`.
-
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
-
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial.
-
#failure_reason ⇒ String
If the training job failed, the reason it failed.
-
#final_metric_data_list ⇒ Array<Types::MetricData>
A collection of ‘MetricData` objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
-
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters.
-
#infra_check_config ⇒ Types::InfraCheckConfig
Contains information about the infrastructure health check configuration for the training job.
-
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects that describes each data input channel.
-
#labeling_job_arn ⇒ String
The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.
-
#last_modified_time ⇒ Time
A timestamp that indicates when the status of the training job was last modified.
-
#model_artifacts ⇒ Types::ModelArtifacts
Information about the Amazon S3 location that is configured for storing model artifacts.
-
#output_data_config ⇒ Types::OutputDataConfig
The S3 path where model artifacts that you configured when creating the job are stored.
-
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
-
#profiler_rule_configurations ⇒ Array<Types::ProfilerRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
-
#profiler_rule_evaluation_statuses ⇒ Array<Types::ProfilerRuleEvaluationStatus>
Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.
-
#profiling_status ⇒ String
Profiling status of a training job.
-
#remote_debug_config ⇒ Types::RemoteDebugConfig
Configuration for remote debugging.
-
#resource_config ⇒ Types::ResourceConfig
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
-
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
-
#role_arn ⇒ String
The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
-
#secondary_status ⇒ String
Provides detailed information about the state of the training job.
-
#secondary_status_transitions ⇒ Array<Types::SecondaryStatusTransition>
A history of all of the secondary statuses that the training job has transitioned through.
-
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run.
-
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
-
#training_end_time ⇒ Time
Indicates the time when the training job ends on training instances.
-
#training_job_arn ⇒ String
The Amazon Resource Name (ARN) of the training job.
-
#training_job_name ⇒ String
Name of the model training job.
-
#training_job_status ⇒ String
The status of the training job.
-
#training_start_time ⇒ Time
Indicates the time when the training job starts on training instances.
-
#training_time_in_seconds ⇒ Integer
The training time in seconds.
-
#tuning_job_arn ⇒ String
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
-
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that this training job has access to.
-
#warm_pool_status ⇒ Types::WarmPoolStatus
The status of the warm pool associated with the training job.
Instance Attribute Details
#algorithm_specification ⇒ Types::AlgorithmSpecification
Information about the algorithm used for training, and algorithm metadata.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#auto_ml_job_arn ⇒ String
The Amazon Resource Name (ARN) of an AutoML job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#billable_time_in_seconds ⇒ Integer
The billable time in seconds. Billable time refers to the absolute wall-clock time.
Multiply ‘BillableTimeInSeconds` by the number of instances (`InstanceCount`) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: `BillableTimeInSeconds * InstanceCount` .
You can calculate the savings from using managed spot training using the formula ‘(1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100`. For example, if `BillableTimeInSeconds` is 100 and `TrainingTimeInSeconds` is 500, the savings is 80%.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#creation_time ⇒ Time
A timestamp that indicates when the training job was created.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the ‘DebugHookConfig` parameter, see [Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#debug_rule_evaluation_statuses ⇒ Array<Types::DebugRuleEvaluationStatus>
Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
A Boolean indicating whether managed spot training is enabled (‘True`) or not (`False`).
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#enable_network_isolation ⇒ Boolean
If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose ‘True`. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- CreateProcessingJob][1
- CreateTrainingJob][2
- CreateTransformJob][3
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html [2]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html [3]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#failure_reason ⇒ String
If the training job failed, the reason it failed.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#final_metric_data_list ⇒ Array<Types::MetricData>
A collection of ‘MetricData` objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#infra_check_config ⇒ Types::InfraCheckConfig
Contains information about the infrastructure health check configuration for the training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects that describes each data input channel.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#labeling_job_arn ⇒ String
The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#last_modified_time ⇒ Time
A timestamp that indicates when the status of the training job was last modified.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#model_artifacts ⇒ Types::ModelArtifacts
Information about the Amazon S3 location that is configured for storing model artifacts.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#output_data_config ⇒ Types::OutputDataConfig
The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#profiler_rule_configurations ⇒ Array<Types::ProfilerRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#profiler_rule_evaluation_statuses ⇒ Array<Types::ProfilerRuleEvaluationStatus>
Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#profiling_status ⇒ String
Profiling status of a training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#remote_debug_config ⇒ Types::RemoteDebugConfig
Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see [Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#resource_config ⇒ Types::ResourceConfig
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#role_arn ⇒ String
The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#secondary_status ⇒ String
Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see ‘StatusMessage` under [SecondaryStatusTransition].
SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress : * ‘Starting` - Starting the training job.
* `Downloading` - An optional stage for algorithms that support
`File` training input mode. It indicates that data is being
downloaded to the ML storage volumes.
* `Training` - Training is in progress.
* `Interrupted` - The job stopped because the managed spot
training instances were interrupted.
* `Uploading` - Training is complete and the model artifacts are
being uploaded to the S3 location.
Completed : * ‘Completed` - The training job has completed.
^
Failed : * ‘Failed` - The training job has failed. The reason for the
failure is returned in the `FailureReason` field of
`DescribeTrainingJobResponse`.
^
Stopped : * ‘MaxRuntimeExceeded` - The job stopped because it exceeded the
maximum allowed runtime.
* `MaxWaitTimeExceeded` - The job stopped because it exceeded the
maximum allowed wait time.
* `Stopped` - The training job has stopped.
Stopping : * ‘Stopping` - Stopping the training job.
^
Valid values for ‘SecondaryStatus` are subject to change.
We no longer support the following secondary statuses:
-
‘LaunchingMLInstances`
-
‘PreparingTraining`
-
‘DownloadingTrainingImage`
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#secondary_status_transitions ⇒ Array<Types::SecondaryStatusTransition>
A history of all of the secondary statuses that the training job has transitioned through.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_end_time ⇒ Time
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of ‘TrainingStartTime` and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_job_arn ⇒ String
The Amazon Resource Name (ARN) of the training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_job_name ⇒ String
Name of the model training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_job_status ⇒ String
The status of the training job.
SageMaker provides the following training job statuses:
-
‘InProgress` - The training is in progress.
-
‘Completed` - The training job has completed.
-
‘Failed` - The training job has failed. To see the reason for the failure, see the `FailureReason` field in the response to a `DescribeTrainingJobResponse` call.
-
‘Stopping` - The training job is stopping.
-
‘Stopped` - The training job has stopped.
For more detailed information, see ‘SecondaryStatus`.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_start_time ⇒ Time
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of ‘TrainingEndTime`. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#training_time_in_seconds ⇒ Integer
The training time in seconds.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#tuning_job_arn ⇒ String
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that this training job has access to. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |
#warm_pool_status ⇒ Types::WarmPoolStatus
The status of the warm pool associated with the training job.
18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 18832 class DescribeTrainingJobResponse < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :warm_pool_status, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :profiler_rule_configurations, :profiler_rule_evaluation_statuses, :profiling_status, :environment, :retry_strategy, :remote_debug_config, :infra_check_config) SENSITIVE = [] include Aws::Structure end |