Class: Aws::SageMaker::Types::HyperParameterTrainingJobDefinition
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::HyperParameterTrainingJobDefinition
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Defines the training jobs launched by a hyperparameter tuning job.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#algorithm_specification ⇒ Types::HyperParameterAlgorithmSpecification
The [HyperParameterAlgorithmSpecification] object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
-
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
-
#definition_name ⇒ String
The job definition name.
-
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`.
-
#enable_managed_spot_training ⇒ Boolean
A Boolean indicating whether managed spot training is enabled (‘True`) or not (`False`).
-
#enable_network_isolation ⇒ Boolean
Isolates the training container.
-
#environment ⇒ Hash<String,String>
An environment variable that you can pass into the SageMaker [CreateTrainingJob] API.
-
#hyper_parameter_ranges ⇒ Types::ParameterRanges
Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches.
-
#hyper_parameter_tuning_resource_config ⇒ Types::HyperParameterTuningResourceConfig
The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job.
-
#input_data_config ⇒ Array<Types::Channel>
An array of [Channel] objects that specify the input for the training jobs that the tuning job launches.
-
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
-
#resource_config ⇒ Types::ResourceConfig
The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.
-
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
-
#role_arn ⇒ String
The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
-
#static_hyper_parameters ⇒ Hash<String,String>
Specifies the values of hyperparameters that do not change for the tuning job.
-
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model hyperparameter training job can run.
-
#tuning_objective ⇒ Types::HyperParameterTuningJobObjective
Defines the objective metric for a hyperparameter tuning job.
-
#vpc_config ⇒ Types::VpcConfig
The [VpcConfig] object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to.
Instance Attribute Details
#algorithm_specification ⇒ Types::HyperParameterAlgorithmSpecification
The [HyperParameterAlgorithmSpecification] object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#definition_name ⇒ String
The job definition name.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
A Boolean indicating whether managed spot training is enabled (‘True`) or not (`False`).
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#enable_network_isolation ⇒ Boolean
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#environment ⇒ Hash<String,String>
An environment variable that you can pass into the SageMaker
- CreateTrainingJob][1
-
API. You can use an existing [environment
variable from the training container] or use your own. See
- Define metrics and variables][3
-
for more information.
<note markdown=“1”> The maximum number of items specified for ‘Map Entries` refers to the maximum number of environment variables for each `TrainingJobDefinition` and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of environment variables for all the training job definitions can’t exceed the maximum number specified.
</note>
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html [2]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment [3]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#hyper_parameter_ranges ⇒ Types::ParameterRanges
Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.
<note markdown=“1”> The maximum number of items specified for ‘Array Members` refers to the maximum number of hyperparameters for each range and also the maximum for the hyperparameter tuning job itself. That is, the sum of the number of hyperparameters for all the ranges can’t exceed the maximum number specified.
</note>
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#hyper_parameter_tuning_resource_config ⇒ Types::HyperParameterTuningResourceConfig
The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose ‘File` for `TrainingInputMode` in the `AlgorithmSpecification` parameter to additionally store training data in the storage volume (optional).
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#input_data_config ⇒ Array<Types::Channel>
An array of [Channel] objects that specify the input for the training jobs that the tuning job launches.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#resource_config ⇒ Types::ResourceConfig
The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.
Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose ‘File` as the `TrainingInputMode` in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
<note markdown=“1”> If you want to use hyperparameter optimization with instance type flexibility, use ‘HyperParameterTuningResourceConfig` instead.
</note>
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#role_arn ⇒ String
The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#static_hyper_parameters ⇒ Hash<String,String>
Specifies the values of hyperparameters that do not change for the tuning job.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#tuning_objective ⇒ Types::HyperParameterTuningJobObjective
Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the ‘Type` parameter. If you want to define a custom objective metric, see [Define metrics and environment variables].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |
#vpc_config ⇒ Types::VpcConfig
The [VpcConfig] object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 24131 class HyperParameterTrainingJobDefinition < Struct.new( :definition_name, :tuning_objective, :hyper_parameter_ranges, :static_hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :vpc_config, :output_data_config, :resource_config, :hyper_parameter_tuning_resource_config, :stopping_condition, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :retry_strategy, :environment) SENSITIVE = [] include Aws::Structure end |