Class: Aws::SageMaker::Types::ModelPackageContainerDefinition
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::ModelPackageContainerDefinition
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Describes the Docker container for the model package.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#additional_s3_data_source ⇒ Types::AdditionalS3DataSource
The additional data source that is used during inference in the Docker container for your model package.
-
#base_model ⇒ Types::BaseModel
Identifies the foundation model that was used as the starting point for model customization.
-
#container_hostname ⇒ String
The DNS host name for the Docker container.
-
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
-
#framework ⇒ String
The machine learning framework of the model package container image.
-
#framework_version ⇒ String
The framework version of the Model Package Container Image.
-
#image ⇒ String
The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored.
-
#image_digest ⇒ String
An MD5 hash of the training algorithm that identifies the Docker image used for training.
-
#is_checkpoint ⇒ Boolean
Specifies whether the model data is a training checkpoint.
-
#model_data_etag ⇒ String
The ETag associated with Model Data URL.
-
#model_data_source ⇒ Types::ModelDataSource
Specifies the location of ML model data to deploy during endpoint creation.
-
#model_data_url ⇒ String
The Amazon S3 path where the model artifacts, which result from model training, are stored.
-
#model_input ⇒ Types::ModelInput
A structure with Model Input details.
-
#nearest_model_name ⇒ String
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.
-
#product_id ⇒ String
The Amazon Web Services Marketplace product ID of the model package.
Instance Attribute Details
#additional_s3_data_source ⇒ Types::AdditionalS3DataSource
The additional data source that is used during inference in the Docker container for your model package.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#base_model ⇒ Types::BaseModel
Identifies the foundation model that was used as the starting point for model customization.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#container_hostname ⇒ String
The DNS host name for the Docker container.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#framework ⇒ String
The machine learning framework of the model package container image.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#framework_version ⇒ String
The framework version of the Model Package Container Image.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#image ⇒ String
The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored.
If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and ‘registry/repository` image path formats. For more information, see [Using Your Own Algorithms with Amazon SageMaker].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#image_digest ⇒ String
An MD5 hash of the training algorithm that identifies the Docker image used for training.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#is_checkpoint ⇒ Boolean
Specifies whether the model data is a training checkpoint.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#model_data_etag ⇒ String
The ETag associated with Model Data URL.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#model_data_source ⇒ Types::ModelDataSource
Specifies the location of ML model data to deploy during endpoint creation.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#model_data_url ⇒ String
The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
<note markdown=“1”> The model artifacts must be in an S3 bucket that is in the same region as the model package.
</note>
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#model_input ⇒ Types::ModelInput
A structure with Model Input details.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#nearest_model_name ⇒ String
The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |
#product_id ⇒ String
The Amazon Web Services Marketplace product ID of the model package.
39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 39003 class ModelPackageContainerDefinition < Struct.new( :container_hostname, :image, :image_digest, :model_data_url, :model_data_source, :product_id, :environment, :model_input, :framework, :framework_version, :nearest_model_name, :additional_s3_data_source, :model_data_etag, :is_checkpoint, :base_model) SENSITIVE = [] include Aws::Structure end |