Class: Matrix::LUPDecomposition
- Includes:
- ConversionHelper
- Defined in:
- lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb
Overview
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a m-by-m permutation matrix P so that L*U = P*A. If m < n, then L is m-by-m and U is m-by-n.
The LUP decomposition with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if singular? returns true.
Instance Attribute Summary collapse
-
#pivots ⇒ Object
readonly
Returns the pivoting indices.
Instance Method Summary collapse
-
#det ⇒ Object
(also: #determinant)
Returns the determinant of
A
, calculated efficiently from the factorization. -
#initialize(a) ⇒ LUPDecomposition
constructor
A new instance of LUPDecomposition.
- #l ⇒ Object
-
#p ⇒ Object
Returns the permutation matrix
P
. -
#singular? ⇒ Boolean
Returns
true
ifU
, and henceA
, is singular. -
#solve(b) ⇒ Object
Returns
m
so thatA*m = b
, or equivalently so thatL*U*m = P*b
b
can be a Matrix or a Vector. -
#to_ary ⇒ Object
(also: #to_a)
Returns
L
,U
,P
in an array. -
#u ⇒ Object
Returns the upper triangular factor
U
.
Constructor Details
#initialize(a) ⇒ LUPDecomposition
Returns a new instance of LUPDecomposition.
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 153 def initialize a raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix) # Use a "left-looking", dot-product, Crout/Doolittle algorithm. @lu = a.to_a @row_size = a.row_size @col_size = a.column_size @pivots = Array.new(@row_size) @row_size.times do |i| @pivots[i] = i end @pivot_sign = 1 lu_col_j = Array.new(@row_size) # Outer loop. @col_size.times do |j| # Make a copy of the j-th column to localize references. @row_size.times do |i| lu_col_j[i] = @lu[i][j] end # Apply previous transformations. @row_size.times do |i| lu_row_i = @lu[i] # Most of the time is spent in the following dot product. kmax = [i, j].min s = 0 kmax.times do |k| s += lu_row_i[k]*lu_col_j[k] end lu_row_i[j] = lu_col_j[i] -= s end # Find pivot and exchange if necessary. p = j (j+1).upto(@row_size-1) do |i| if (lu_col_j[i].abs > lu_col_j[p].abs) p = i end end if (p != j) @col_size.times do |k| t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t end k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k @pivot_sign = -@pivot_sign end # Compute multipliers. if (j < @row_size && @lu[j][j] != 0) (j+1).upto(@row_size-1) do |i| @lu[i][j] = @lu[i][j].quo(@lu[j][j]) end end end end |
Instance Attribute Details
#pivots ⇒ Object (readonly)
Returns the pivoting indices
62 63 64 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 62 def pivots @pivots end |
Instance Method Details
#det ⇒ Object Also known as: determinant
Returns the determinant of A
, calculated efficiently from the factorization.
78 79 80 81 82 83 84 85 86 87 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 78 def det if (@row_size != @col_size) Matrix.Raise Matrix::ErrDimensionMismatch unless square? end d = @pivot_sign @col_size.times do |j| d *= @lu[j][j] end d end |
#l ⇒ Object
21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 21 def l Matrix.build(@row_size, @col_size) do |i, j| if (i > j) @lu[i][j] elsif (i == j) 1 else 0 end end end |
#p ⇒ Object
Returns the permutation matrix P
47 48 49 50 51 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 47 def p rows = Array.new(@row_size){Array.new(@col_size, 0)} @pivots.each_with_index{|p, i| rows[i][p] = 1} Matrix.send :new, rows, @col_size end |
#singular? ⇒ Boolean
Returns true
if U
, and hence A
, is singular.
66 67 68 69 70 71 72 73 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 66 def singular? () @col_size.times do |j| if (@lu[j][j] == 0) return true end end false end |
#solve(b) ⇒ Object
Returns m
so that A*m = b
, or equivalently so that L*U*m = P*b
b
can be a Matrix or a Vector
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 94 def solve b if (singular?) Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular." end if b.is_a? Matrix if (b.row_size != @row_size) Matrix.Raise Matrix::ErrDimensionMismatch end # Copy right hand side with pivoting nx = b.column_size m = @pivots.map{|row| b.row(row).to_a} # Solve L*Y = P*b @col_size.times do |k| (k+1).upto(@col_size-1) do |i| nx.times do |j| m[i][j] -= m[k][j]*@lu[i][k] end end end # Solve U*m = Y (@col_size-1).downto(0) do |k| nx.times do |j| m[k][j] = m[k][j].quo(@lu[k][k]) end k.times do |i| nx.times do |j| m[i][j] -= m[k][j]*@lu[i][k] end end end Matrix.send :new, m, nx else # same algorithm, specialized for simpler case of a vector b = convert_to_array(b) if (b.size != @row_size) Matrix.Raise Matrix::ErrDimensionMismatch end # Copy right hand side with pivoting m = b.values_at(*@pivots) # Solve L*Y = P*b @col_size.times do |k| (k+1).upto(@col_size-1) do |i| m[i] -= m[k]*@lu[i][k] end end # Solve U*m = Y (@col_size-1).downto(0) do |k| m[k] = m[k].quo(@lu[k][k]) k.times do |i| m[i] -= m[k]*@lu[i][k] end end Vector.elements(m, false) end end |
#to_ary ⇒ Object Also known as: to_a
Returns L
, U
, P
in an array
55 56 57 |
# File 'lib/backports/1.9.2/stdlib/matrix/lup_decomposition.rb', line 55 def to_ary [l, u, p] end |