Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Extended by:
- Deprecation
- Defined in:
- ext/bigdecimal/bigdecimal.c,
lib/bigdecimal.rb,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
Similarly:
(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true
(1.2 - 1.0) == 0.2 #=> false
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity
You can represent infinite numbers to BigDecimal using the strings 'Infinity'
, '+Infinity'
and '-Infinity'
(case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN
(for ‘not a number’) is returned.
Example:
BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0
and 0.0
are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util
, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:
require ‘bigdecimal/util’
42.to_d # => 0.42e2
0.5.to_d # => 0.5e0
(2/3r).to_d(3) # => 0.667e0
"0.5".to_d # => 0.5e0
License
Copyright © 2002 by Shigeo Kobayashi <[email protected]>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <[email protected]> and ruby-core members.
Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.
Defined Under Namespace
Modules: Deprecation
Constant Summary collapse
- VERSION =
The version of bigdecimal library
rb_str_new2(RUBY_BIGDECIMAL_VERSION)
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((SIGNED_VALUE)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff
- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02
- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01
- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04
- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.
0x01
- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x10
- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100
- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1
- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2
- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3
- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4
- ROUND_CEILING =
Round towards +Infinity. See BigDecimal.mode.
5
- ROUND_FLOOR =
Round towards -Infinity. See BigDecimal.mode.
6
- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7
- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0
- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1
- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2
- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3
- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3
- INFINITY =
Positive infinity value.
f_BigDecimal(1, &arg, rb_cBigDecimal)
- NAN =
‘Not a Number’ value.
f_BigDecimal(1, &arg, rb_cBigDecimal)
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Object
BigDecimal.double_fig.
- .inherited(subclass) ⇒ Object
-
.limit(*args) ⇒ Object
BigDecimal.limit(digits).
-
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value).
-
.new(*args) ⇒ Object
DEPRECATED: BigDecimal.new().
-
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode.
-
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit.
-
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#*(r) ⇒ Object
call-seq: mult(value, digits).
-
#**(n) ⇒ Object
Returns the value raised to the power of n.
-
#+(r) ⇒ Object
call-seq: add(value, digits).
-
#+ ⇒ Object
Return self.
-
#-(r) ⇒ Object
a - b -> bigdecimal.
-
#- ⇒ Object
Return the negation of self.
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(r) ⇒ Object
a < b.
-
#<=(r) ⇒ Object
a <= b.
-
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(r) ⇒ Object
a > b.
-
#>=(r) ⇒ Object
a >= b.
-
#_dump ⇒ Object
Method used to provide marshalling support.
-
#abs ⇒ Object
Returns the absolute value, as a BigDecimal.
-
#add(b, n) ⇒ Object
call-seq: add(value, digits).
-
#ceil(*args) ⇒ Object
ceil(n).
- #clone ⇒ Object
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
-
#div(*args) ⇒ Object
call-seq: div(value, digits) -> bigdecimal or integer.
-
#divmod(r) ⇒ Object
divmod(value).
- #dup ⇒ Object
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
-
#floor(*args) ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
-
#hash ⇒ Object
Creates a hash for this BigDecimal.
-
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
-
#initialize_copy(other) ⇒ Object
:nodoc:.
-
#inspect ⇒ Object
Returns a string representation of self.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#mult(b, n) ⇒ Object
call-seq: mult(value, digits).
-
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
-
#power(*args) ⇒ Object
power(n) power(n, prec).
-
#precs ⇒ Array
Returns an Array of two Integer values.
-
#quo ⇒ Object
For c = self/r: with round operation.
-
#remainder ⇒ Object
remainder.
-
#round(*args) ⇒ Object
round(n, mode).
-
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(nFig) ⇒ Object
sqrt(n).
-
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal.
-
#to_d ⇒ Object
call-seq: a.to_d -> bigdecimal.
-
#to_digits ⇒ Object
call-seq: a.to_digits -> string.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an Integer.
-
#to_int ⇒ Object
Returns the value as an Integer.
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(*args) ⇒ Object
to_s(s).
-
#truncate(*args) ⇒ Object
truncate(n).
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Methods included from Deprecation
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
# File 'ext/bigdecimal/bigdecimal.c', line 411
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
ENTER(2);
Real *pv;
unsigned char *pch;
unsigned char ch;
unsigned long m=0;
pch = (unsigned char *)StringValueCStr(str);
rb_check_safe_obj(str);
/* First get max prec */
while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
m = m*10 + (unsigned long)(ch-'0');
}
if (m > VpBaseFig()) m -= VpBaseFig();
GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
m /= VpBaseFig();
if (m && pv->MaxPrec > m) {
pv->MaxPrec = m+1;
}
return ToValue(pv);
}
|
.double_fig ⇒ Object
BigDecimal.double_fig
The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.
321 322 323 324 325 |
# File 'ext/bigdecimal/bigdecimal.c', line 321
static VALUE
BigDecimal_double_fig(VALUE self)
{
return INT2FIX(VpDblFig());
}
|
.inherited(subclass) ⇒ Object
18 19 20 |
# File 'lib/bigdecimal.rb', line 18 def inherited(subclass) warn "subclassing BigDecimal will be disallowed after bigdecimal version 2.0", uplevel: 1 end |
.limit(*args) ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 |
# File 'ext/bigdecimal/bigdecimal.c', line 2748
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = INT2NUM(VpGetPrecLimit());
if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
int nf;
if (NIL_P(nFig)) return nCur;
nf = NUM2INT(nFig);
if (nf < 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
|
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
-
NaN
- EXCEPTION_INFINITY
-
+Infinity or -Infinity
- EXCEPTION_UNDERFLOW
-
0
- EXCEPTION_OVERFLOW
-
+Infinity or -Infinity
- EXCEPTION_ZERODIVIDE
-
+Infinity or -Infinity
One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:
- ROUND_UP, :up
-
round away from zero
- ROUND_DOWN, :down, :truncate
-
round towards zero (truncate)
- ROUND_HALF_UP, :half_up, :default
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)
- ROUND_HALF_DOWN, :half_down
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.
- ROUND_HALF_EVEN, :half_even, :banker
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)
- ROUND_CEILING, :ceiling, :ceil
-
round towards positive infinity (ceil)
- ROUND_FLOOR, :floor
-
round towards negative infinity (floor)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
# File 'ext/bigdecimal/bigdecimal.c', line 560
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
rb_scan_args(argc, argv, "11", &which, &val);
f = (unsigned long)NUM2INT(which);
if (f & VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if (val == Qnil) return INT2FIX(fo);
if (val != Qfalse && val!=Qtrue) {
rb_raise(rb_eArgError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if (f & VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
(fo & (~VP_EXCEPTION_INFINITY))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
(fo & (~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_UNDERFLOW) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
(fo & (~VP_EXCEPTION_UNDERFLOW))));
}
fo = VpGetException();
if(f & VP_EXCEPTION_ZERODIVIDE) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
(fo & (~VP_EXCEPTION_ZERODIVIDE))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if (VP_ROUND_MODE == f) {
/* Rounding mode setting */
unsigned short sw;
fo = VpGetRoundMode();
if (NIL_P(val)) return INT2FIX(fo);
sw = check_rounding_mode(val);
fo = VpSetRoundMode(sw);
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
return Qnil;
}
|
.new(*args) ⇒ Object
DEPRECATED: BigDecimal.new()
2730 2731 2732 2733 2734 |
# File 'ext/bigdecimal/bigdecimal.c', line 2730
static VALUE
BigDecimal_s_new(int argc, VALUE *argv, VALUE klass)
{
return BigDecimal_new(argc, argv, klass);
}
|
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
For use with the BigDecimal::EXCEPTION_*
See BigDecimal.mode
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 |
# File 'ext/bigdecimal/bigdecimal.c', line 2807
static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
unsigned short const exception_mode = VpGetException();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetException(exception_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit
BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 |
# File 'ext/bigdecimal/bigdecimal.c', line 2857
static VALUE
BigDecimal_save_limit(VALUE self)
{
size_t const limit = VpGetPrecLimit();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetPrecLimit(limit);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
For use with the BigDecimal::ROUND_*
See BigDecimal.mode
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 |
# File 'ext/bigdecimal/bigdecimal.c', line 2832
static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
unsigned short const round_mode = VpGetRoundMode();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetRoundMode(round_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
# File 'ext/bigdecimal/bigdecimal.c', line 1431
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return ToValue(mod);
}
return DoSomeOne(self, r, '%');
}
|
#*(r) ⇒ Object
call-seq: mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 |
# File 'ext/bigdecimal/bigdecimal.c', line 1250
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}
if (!b) return DoSomeOne(self, r, '*');
SAVE(b);
mx = a->Prec + b->Prec;
GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
VpMult(c, a, b);
return ToValue(c);
}
|
#**(n) ⇒ Object
Returns the value raised to the power of n.
See BigDecimal#power.
2535 2536 2537 2538 2539 |
# File 'ext/bigdecimal/bigdecimal.c', line 2535
static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
return BigDecimal_power(1, &exp, self);
}
|
#+(r) ⇒ Object
call-seq: add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
# File 'ext/bigdecimal/bigdecimal.c', line 929
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r, 0);
}
if (!b) return DoSomeOne(self,r,'+');
SAVE(b);
if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a, b);
if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, 1);
}
else {
GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c, VpGetSign(a));
}
else {
VpAddSub(c, a, b, 1);
}
}
return ToValue(c);
}
|
#+ ⇒ Object
Return self.
+BigDecimal('5') #=> 0.5e1
906 907 908 909 910 |
# File 'ext/bigdecimal/bigdecimal.c', line 906
static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}
|
#-(r) ⇒ Object
a - b -> bigdecimal
Subtract the specified value.
e.g.
c = a - b
The precision of the result value depends on the type of b
.
If b
is a Float, the precision of the result is Float::DIG+1.
If b
is a BigDecimal, the precision of the result is b
‘s precision of internal representation from platform. So, it’s return value is platform dependent.
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
# File 'ext/bigdecimal/bigdecimal.c', line 987
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self,1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}
if (!b) return DoSomeOne(self,r,'-');
SAVE(b);
if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, -1);
}
else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if (!mx) {
VpSetInf(c,VpGetSign(a));
}
else {
VpAddSub(c, a, b, -1);
}
}
return ToValue(c);
}
|
#- ⇒ Object
Return the negation of self.
-BigDecimal('5') #=> -0.5e1
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 |
# File 'ext/bigdecimal/bigdecimal.c', line 1224
static VALUE
BigDecimal_neg(VALUE self)
{
ENTER(5);
Real *c, *a;
GUARD_OBJ(a, GetVpValue(self, 1));
GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
VpAsgn(c, a, -1);
return ToValue(c);
}
|
#/ ⇒ Object
For c = self/r: with round operation
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
# File 'ext/bigdecimal/bigdecimal.c', line 1319
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if (!NIL_P(r)) return r; /* coerced by other */
SAVE(c); SAVE(res); SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
}
return ToValue(c);
}
|
#<(r) ⇒ Object
a < b
Returns true if a is less than b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1170 1171 1172 1173 1174 |
# File 'ext/bigdecimal/bigdecimal.c', line 1170
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
|
#<=(r) ⇒ Object
a <= b
Returns true if a is less than or equal to b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1183 1184 1185 1186 1187 |
# File 'ext/bigdecimal/bigdecimal.c', line 1183
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
|
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
1141 1142 1143 1144 1145 |
# File 'ext/bigdecimal/bigdecimal.c', line 1141
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}
|
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1157 1158 1159 1160 1161 |
# File 'ext/bigdecimal/bigdecimal.c', line 1157
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1157 1158 1159 1160 1161 |
# File 'ext/bigdecimal/bigdecimal.c', line 1157
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#>(r) ⇒ Object
a > b
Returns true if a is greater than b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1196 1197 1198 1199 1200 |
# File 'ext/bigdecimal/bigdecimal.c', line 1196
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
|
#>=(r) ⇒ Object
a >= b
Returns true if a is greater than or equal to b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)
1209 1210 1211 1212 1213 |
# File 'ext/bigdecimal/bigdecimal.c', line 1209
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
|
#_dump ⇒ Object
Method used to provide marshalling support.
inf = BigDecimal('Infinity')
#=> Infinity
BigDecimal._load(inf._dump)
#=> Infinity
See the Marshal module.
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# File 'ext/bigdecimal/bigdecimal.c', line 389
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *vp;
char *psz;
VALUE dummy;
volatile VALUE dump;
rb_scan_args(argc, argv, "01", &dummy);
GUARD_OBJ(vp,GetVpValue(self, 1));
dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
psz = RSTRING_PTR(dump);
sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
VpToString(vp, psz+strlen(psz), 0, 0);
rb_str_resize(dump, strlen(psz));
return dump;
}
|
#abs ⇒ Object
Returns the absolute value, as a BigDecimal.
BigDecimal('5').abs #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 |
# File 'ext/bigdecimal/bigdecimal.c', line 1700
static VALUE
BigDecimal_abs(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpAsgn(c, a, 1);
VpChangeSign(c, 1);
return ToValue(c);
}
|
#add(b, n) ⇒ Object
call-seq: add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 |
# File 'ext/bigdecimal/bigdecimal.c', line 1625
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_add(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_add(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#ceil(*args) ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 |
# File 'ext/bigdecimal/bigdecimal.c', line 1952
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
} else {
iLoc = NUM2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#clone ⇒ Object
2557 2558 2559 2560 2561 |
# File 'ext/bigdecimal/bigdecimal.c', line 2557
static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}
|
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# File 'ext/bigdecimal/bigdecimal.c', line 872
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
ENTER(2);
VALUE obj;
Real *b;
if (RB_TYPE_P(other, T_FLOAT)) {
GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
obj = rb_assoc_new(ToValue(b), self);
}
else {
if (RB_TYPE_P(other, T_RATIONAL)) {
Real* pv = DATA_PTR(self);
GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
}
else {
GUARD_OBJ(b, GetVpValue(other, 1));
}
obj = rb_assoc_new(b->obj, self);
}
return obj;
}
|
#div(*args) ⇒ Object
call-seq:
div(value, digits) -> bigdecimal or integer
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as for the / operator or #quo.
If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3) # => 0.133e1
a.div(b, 0) # => 0.1333333333333333333e1
a / b # => 0.1333333333333333333e1
a.quo(b) # => 0.1333333333333333333e1
a.div(b) # => 1
1615 1616 1617 1618 1619 1620 1621 1622 1623 |
# File 'ext/bigdecimal/bigdecimal.c', line 1615
static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
VALUE b,n;
rb_scan_args(argc, argv, "11", &b, &n);
return BigDecimal_div2(self, b, n);
}
|
#divmod(r) ⇒ Object
divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal("42")
b = BigDecimal("9")
q, m = a.divmod(b)
c = q * b + m
a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 |
# File 'ext/bigdecimal/bigdecimal.c', line 1529
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
ENTER(5);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return rb_assoc_new(ToValue(div), ToValue(mod));
}
return DoSomeOne(self,r,rb_intern("divmod"));
}
|
#dup ⇒ Object
2557 2558 2559 2560 2561 |
# File 'ext/bigdecimal/bigdecimal.c', line 2557
static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}
|
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1157 1158 1159 1160 1161 |
# File 'ext/bigdecimal/bigdecimal.c', line 1157
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
2144 2145 2146 2147 2148 2149 |
# File 'ext/bigdecimal/bigdecimal.c', line 2144
static VALUE
BigDecimal_exponent(VALUE self)
{
ssize_t e = VpExponent10(GetVpValue(self, 1));
return INT2NUM(e);
}
|
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
703 704 705 706 707 708 709 710 |
# File 'ext/bigdecimal/bigdecimal.c', line 703
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p)) return Qfalse;
if (VpIsInf(p)) return Qfalse;
return Qtrue;
}
|
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 |
# File 'ext/bigdecimal/bigdecimal.c', line 1741
static VALUE
BigDecimal_fix(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
return ToValue(c);
}
|
#floor(*args) ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 |
# File 'ext/bigdecimal/bigdecimal.c', line 1905
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
iLoc = 0;
}
else {
iLoc = NUM2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
VPrint(stderr, "floor: c=%\n", c);
#endif
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 |
# File 'ext/bigdecimal/bigdecimal.c', line 1874
static VALUE
BigDecimal_frac(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpFrac(c, a);
return ToValue(c);
}
|
#hash ⇒ Object
Creates a hash for this BigDecimal.
Two BigDecimals with equal sign, fractional part and exponent have the same hash.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# File 'ext/bigdecimal/bigdecimal.c', line 360
static VALUE
BigDecimal_hash(VALUE self)
{
ENTER(1);
Real *p;
st_index_t hash;
GUARD_OBJ(p, GetVpValue(self, 1));
hash = (st_index_t)p->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash == 2 || hash == (st_index_t)-2) {
hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
hash += p->exponent;
}
return ST2FIX(hash);
}
|
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
693 694 695 696 697 698 699 700 |
# File 'ext/bigdecimal/bigdecimal.c', line 693
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsPosInf(p)) return INT2FIX(1);
if (VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
|
#initialize_copy(other) ⇒ Object
:nodoc:
private method for dup and clone the provided BigDecimal other
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 |
# File 'ext/bigdecimal/bigdecimal.c', line 2545
static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
Real *x = rb_check_typeddata(other, &BigDecimal_data_type);
if (self != other) {
DATA_PTR(self) = VpCopy(pv, x);
}
return self;
}
|
#inspect ⇒ Object
Returns a string representation of self.
BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 |
# File 'ext/bigdecimal/bigdecimal.c', line 2156
static VALUE
BigDecimal_inspect(VALUE self)
{
ENTER(5);
Real *vp;
volatile VALUE str;
size_t nc;
GUARD_OBJ(vp, GetVpValue(self, 1));
nc = VpNumOfChars(vp, "E");
str = rb_str_new(0, nc);
VpToString(vp, RSTRING_PTR(str), 0, 0);
rb_str_resize(str, strlen(RSTRING_PTR(str)));
return str;
}
|
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
# File 'ext/bigdecimal/bigdecimal.c', line 1431
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return ToValue(mod);
}
return DoSomeOne(self, r, '%');
}
|
#mult(b, n) ⇒ Object
call-seq: mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 |
# File 'ext/bigdecimal/bigdecimal.c', line 1673
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_mult(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_mult(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
682 683 684 685 686 687 688 |
# File 'ext/bigdecimal/bigdecimal.c', line 682
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p)) return Qtrue;
return Qfalse;
}
|
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
1131 1132 1133 1134 1135 1136 |
# File 'ext/bigdecimal/bigdecimal.c', line 1131
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qnil : self;
}
|
#power(*args) ⇒ Object
power(n) power(n, prec)
Returns the value raised to the power of n.
Note that n must be an Integer.
Also available as the operator **.
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 |
# File 'ext/bigdecimal/bigdecimal.c', line 2299
static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
ENTER(5);
VALUE vexp, prec;
Real* exp = NULL;
Real *x, *y;
ssize_t mp, ma, n;
SIGNED_VALUE int_exp;
double d;
rb_scan_args(argc, argv, "11", &vexp, &prec);
GUARD_OBJ(x, GetVpValue(self, 1));
n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);
if (VpIsNaN(x)) {
y = VpCreateRbObject(n, "0");
RB_GC_GUARD(y->obj);
VpSetNaN(y);
return ToValue(y);
}
retry:
switch (TYPE(vexp)) {
case T_FIXNUM:
break;
case T_BIGNUM:
break;
case T_FLOAT:
d = RFLOAT_VALUE(vexp);
if (d == round(d)) {
if (FIXABLE(d)) {
vexp = LONG2FIX((long)d);
}
else {
vexp = rb_dbl2big(d);
}
goto retry;
}
exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
break;
case T_RATIONAL:
if (is_zero(rb_rational_num(vexp))) {
if (is_positive(vexp)) {
vexp = INT2FIX(0);
goto retry;
}
}
else if (is_one(rb_rational_den(vexp))) {
vexp = rb_rational_num(vexp);
goto retry;
}
exp = GetVpValueWithPrec(vexp, n, 1);
break;
case T_DATA:
if (is_kind_of_BigDecimal(vexp)) {
VALUE zero = INT2FIX(0);
VALUE rounded = BigDecimal_round(1, &zero, vexp);
if (RTEST(BigDecimal_eq(vexp, rounded))) {
vexp = BigDecimal_to_i(vexp);
goto retry;
}
exp = DATA_PTR(vexp);
break;
}
/* fall through */
default:
rb_raise(rb_eTypeError,
"wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
RB_OBJ_CLASSNAME(vexp));
}
if (VpIsZero(x)) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "#0");
RB_GC_GUARD(y->obj);
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-0) ** (-even_integer) -> Infinity */
VpSetPosInf(y);
}
else {
/* (-0) ** (-odd_integer) -> -Infinity */
VpSetNegInf(y);
}
}
else {
/* (-0) ** (-non_integer) -> Infinity */
VpSetPosInf(y);
}
}
else {
/* (+0) ** (-num) -> Infinity */
VpSetPosInf(y);
}
return ToValue(y);
}
else if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (is_one(vexp)) {
return self;
}
if (VpIsInf(x)) {
if (is_negative(vexp)) {
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-Infinity) ** (-even_integer) -> +0 */
return ToValue(VpCreateRbObject(n, "0"));
}
else {
/* (-Infinity) ** (-odd_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
/* (-Infinity) ** (-non_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
y = VpCreateRbObject(n, "0");
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
VpSetPosInf(y);
}
else {
VpSetNegInf(y);
}
}
else {
/* TODO: support complex */
rb_raise(rb_eMathDomainError,
"a non-integral exponent for a negative base");
}
}
else {
VpSetPosInf(y);
}
return ToValue(y);
}
}
if (exp != NULL) {
return rmpd_power_by_big_decimal(x, exp, n);
}
else if (RB_TYPE_P(vexp, T_BIGNUM)) {
VALUE abs_value = BigDecimal_abs(self);
if (is_one(abs_value)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "0");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
if (is_positive(vexp)) {
y = VpCreateRbObject(n, "0");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
}
int_exp = FIX2LONG(vexp);
ma = int_exp;
if (ma < 0) ma = -ma;
if (ma == 0) ma = 1;
if (VpIsDef(x)) {
mp = x->Prec * (VpBaseFig() + 1);
GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
}
else {
GUARD_OBJ(y, VpCreateRbObject(1, "0"));
}
VpPower(y, x, int_exp);
if (!NIL_P(prec) && VpIsDef(y)) {
VpMidRound(y, VpGetRoundMode(), n);
}
return ToValue(y);
}
|
#precs ⇒ Array
Returns an Array of two Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
BigDecimal('5').precs #=> [9, 18]
339 340 341 342 343 344 345 346 347 348 349 350 |
# File 'ext/bigdecimal/bigdecimal.c', line 339
static VALUE
BigDecimal_prec(VALUE self)
{
ENTER(1);
Real *p;
VALUE obj;
GUARD_OBJ(p, GetVpValue(self, 1));
obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
INT2NUM(p->MaxPrec*VpBaseFig()));
return obj;
}
|
#quo ⇒ Object
For c = self/r: with round operation
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
# File 'ext/bigdecimal/bigdecimal.c', line 1319
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if (!NIL_P(r)) return r; /* coerced by other */
SAVE(c); SAVE(res); SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
}
return ToValue(c);
}
|
#remainder ⇒ Object
remainder
1497 1498 1499 1500 1501 1502 1503 1504 1505 |
# File 'ext/bigdecimal/bigdecimal.c', line 1497
static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
VALUE f;
Real *d, *rv = 0;
f = BigDecimal_divremain(self, r, &d, &rv);
if (!NIL_P(f)) return f;
return ToValue(rv);
}
|
#round(*args) ⇒ Object
round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300.0
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 |
# File 'ext/bigdecimal/bigdecimal.c', line 1777
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc = 0;
VALUE vLoc;
VALUE vRound;
size_t mx, pl;
unsigned short sw = VpGetRoundMode();
switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
case 0:
iLoc = 0;
break;
case 1:
if (RB_TYPE_P(vLoc, T_HASH)) {
sw = check_rounding_mode_option(vLoc);
}
else {
iLoc = NUM2INT(vLoc);
}
break;
case 2:
iLoc = NUM2INT(vLoc);
if (RB_TYPE_P(vRound, T_HASH)) {
sw = check_rounding_mode_option(vRound);
}
else {
sw = check_rounding_mode(vRound);
}
break;
default:
break;
}
pl = VpSetPrecLimit(0);
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, sw, iLoc);
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
2782 2783 2784 2785 2786 2787 |
# File 'ext/bigdecimal/bigdecimal.c', line 2782
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetVpValue(self, 1)->sign;
return INT2FIX(s);
}
|
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 |
# File 'ext/bigdecimal/bigdecimal.c', line 2107
static VALUE
BigDecimal_split(VALUE self)
{
ENTER(5);
Real *vp;
VALUE obj,str;
ssize_t e, s;
char *psz1;
GUARD_OBJ(vp, GetVpValue(self, 1));
str = rb_str_new(0, VpNumOfChars(vp, "E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(vp, psz1);
s = 1;
if(psz1[0] == '-') {
size_t len = strlen(psz1 + 1);
memmove(psz1, psz1 + 1, len);
psz1[len] = '\0';
s = -1;
}
if (psz1[0] == 'N') s = 0; /* NaN */
e = VpExponent10(vp);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, INT2NUM(e));
return obj;
}
|
#sqrt(nFig) ⇒ Object
sqrt(n)
Returns the square root of the value.
Result has at least n significant digits.
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 |
# File 'ext/bigdecimal/bigdecimal.c', line 1722
static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
ENTER(5);
Real *c, *a;
size_t mx, n;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
if (mx <= n) mx = n;
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSqrt(c, a);
return ToValue(c);
}
|
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 |
# File 'ext/bigdecimal/bigdecimal.c', line 1655
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_sub(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_sub(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#to_d ⇒ Object
call-seq:
a.to_d -> bigdecimal
Returns self.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_d # => 0.314e1
104 105 106 |
# File 'lib/bigdecimal/util.rb', line 104 def to_d self end |
#to_digits ⇒ Object
call-seq:
a.to_digits -> string
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_digits # => "3.14"
84 85 86 87 88 89 90 91 92 |
# File 'lib/bigdecimal/util.rb', line 84 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
# File 'ext/bigdecimal/bigdecimal.c', line 779
static VALUE
BigDecimal_to_f(VALUE self)
{
ENTER(1);
Real *p;
double d;
SIGNED_VALUE e;
char *buf;
volatile VALUE str;
GUARD_OBJ(p, GetVpValue(self, 1));
if (VpVtoD(&d, &e, p) != 1)
return rb_float_new(d);
if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
goto overflow;
if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
goto underflow;
str = rb_str_new(0, VpNumOfChars(p, "E"));
buf = RSTRING_PTR(str);
VpToString(p, buf, 0, 0);
errno = 0;
d = strtod(buf, 0);
if (errno == ERANGE) {
if (d == 0.0) goto underflow;
if (fabs(d) >= HUGE_VAL) goto overflow;
}
return rb_float_new(d);
overflow:
VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
if (BIGDECIMAL_NEGATIVE_P(p))
return rb_float_new(VpGetDoubleNegInf());
else
return rb_float_new(VpGetDoublePosInf());
underflow:
VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
if (BIGDECIMAL_NEGATIVE_P(p))
return rb_float_new(-0.0);
else
return rb_float_new(0.0);
}
|
#to_i ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# File 'ext/bigdecimal/bigdecimal.c', line 732
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
ssize_t e, nf;
Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));
BigDecimal_check_num(p);
e = VpExponent10(p);
if (e <= 0) return INT2FIX(0);
nf = VpBaseFig();
if (e <= nf) {
return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
}
else {
VALUE a = BigDecimal_split(self);
VALUE digits = RARRAY_AREF(a, 1);
VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
VALUE ret;
ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
if (BIGDECIMAL_NEGATIVE_P(p)) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (dpower < 0) {
ret = rb_funcall(numerator, rb_intern("div"), 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-dpower)));
}
else {
ret = rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(dpower)));
}
if (RB_TYPE_P(ret, T_FLOAT)) {
rb_raise(rb_eFloatDomainError, "Infinity");
}
return ret;
}
}
|
#to_int ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# File 'ext/bigdecimal/bigdecimal.c', line 732
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
ssize_t e, nf;
Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));
BigDecimal_check_num(p);
e = VpExponent10(p);
if (e <= 0) return INT2FIX(0);
nf = VpBaseFig();
if (e <= nf) {
return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
}
else {
VALUE a = BigDecimal_split(self);
VALUE digits = RARRAY_AREF(a, 1);
VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
VALUE ret;
ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
if (BIGDECIMAL_NEGATIVE_P(p)) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (dpower < 0) {
ret = rb_funcall(numerator, rb_intern("div"), 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-dpower)));
}
else {
ret = rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(dpower)));
}
if (RB_TYPE_P(ret, T_FLOAT)) {
rb_raise(rb_eFloatDomainError, "Infinity");
}
return ret;
}
}
|
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
# File 'ext/bigdecimal/bigdecimal.c', line 826
static VALUE
BigDecimal_to_r(VALUE self)
{
Real *p;
ssize_t sign, power, denomi_power;
VALUE a, digits, numerator;
p = GetVpValue(self, 1);
BigDecimal_check_num(p);
sign = VpGetSign(p);
power = VpExponent10(p);
a = BigDecimal_split(self);
digits = RARRAY_AREF(a, 1);
denomi_power = power - RSTRING_LEN(digits);
numerator = rb_funcall(digits, rb_intern("to_i"), 0);
if (sign < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (denomi_power < 0) {
return rb_Rational(numerator,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-denomi_power)));
}
else {
return rb_Rational1(rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(denomi_power))));
}
}
|
#to_s(*args) ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-123.45678901234567890').to_s('5F')
#=> '-123.45678 90123 45678 9'
BigDecimal('123.45678901234567890').to_s('+8F')
#=> '+123.45678901 23456789'
BigDecimal('123.45678901234567890').to_s(' F')
#=> ' 123.4567890123456789'
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 |
# File 'ext/bigdecimal/bigdecimal.c', line 2011
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
int fmt = 0; /* 0: E format, 1: F format */
int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
Real *vp;
volatile VALUE str;
char *psz;
char ch;
size_t nc, mc = 0;
SIGNED_VALUE m;
VALUE f;
GUARD_OBJ(vp, GetVpValue(self, 1));
if (rb_scan_args(argc, argv, "01", &f) == 1) {
if (RB_TYPE_P(f, T_STRING)) {
psz = StringValueCStr(f);
rb_check_safe_obj(f);
if (*psz == ' ') {
fPlus = 1;
psz++;
}
else if (*psz == '+') {
fPlus = 2;
psz++;
}
while ((ch = *psz++) != 0) {
if (ISSPACE(ch)) {
continue;
}
if (!ISDIGIT(ch)) {
if (ch == 'F' || ch == 'f') {
fmt = 1; /* F format */
}
break;
}
mc = mc*10 + ch - '0';
}
}
else {
m = NUM2INT(f);
if (m <= 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
mc = (size_t)m;
}
}
if (fmt) {
nc = VpNumOfChars(vp, "F");
}
else {
nc = VpNumOfChars(vp, "E");
}
if (mc > 0) {
nc += (nc + mc - 1) / mc + 1;
}
str = rb_str_new(0, nc);
psz = RSTRING_PTR(str);
if (fmt) {
VpToFString(vp, psz, mc, fPlus);
}
else {
VpToString (vp, psz, mc, fPlus);
}
rb_str_resize(str, strlen(psz));
return str;
}
|
#truncate(*args) ⇒ Object
truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 |
# File 'ext/bigdecimal/bigdecimal.c', line 1845
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
}
else {
iLoc = NUM2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#zero? ⇒ Boolean
Returns True if the value is zero.
1123 1124 1125 1126 1127 1128 |
# File 'ext/bigdecimal/bigdecimal.c', line 1123
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qtrue : Qfalse;
}
|