Module: Jacobian
- Included in:
- Newton
- Defined in:
- lib/bigdecimal/jacobian.rb
Class Method Summary collapse
- .dfdxi(f, fx, x, i) ⇒ Object
-
.isEqual(a, b, zero = 0.0, e = 1.0e-8) ⇒ Object
Determines the equality of two numbers by comparing to zero, or using the epsilon value.
-
.jacobian(f, fx, x) ⇒ Object
Computes the Jacobian of f at x.
Class Method Details
.dfdxi(f, fx, x, i) ⇒ Object
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/bigdecimal/jacobian.rb', line 48 def dfdxi(f,fx,x,i) nRetry = 0 n = x.size xSave = x[i] ok = 0 ratio = f.ten*f.ten*f.ten dx = x[i].abs/ratio dx = fx[i].abs/ratio if isEqual(dx,f.zero,f.zero,f.eps) dx = f.one/f.ten if isEqual(dx,f.zero,f.zero,f.eps) until ok>0 do deriv = [] nRetry += 1 if nRetry > 100 raise "Singular Jacobian matrix. No change at x[" + i.to_s + "]" end dx = dx*f.two x[i] += dx fxNew = f.values(x) for j in 0...n do if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then ok += 1 deriv <<= (fxNew[j]-fx[j])/dx else deriv <<= f.zero end end x[i] = xSave end deriv end |
.isEqual(a, b, zero = 0.0, e = 1.0e-8) ⇒ Object
Determines the equality of two numbers by comparing to zero, or using the epsilon value
31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/bigdecimal/jacobian.rb', line 31 def isEqual(a,b,zero=0.0,e=1.0e-8) aa = a.abs bb = b.abs if aa == zero && bb == zero then true else if ((a-b)/(aa+bb)).abs < e then true else false end end end |
.jacobian(f, fx, x) ⇒ Object
Computes the Jacobian of f at x. fx is the value of f at x.
80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/bigdecimal/jacobian.rb', line 80 def jacobian(f,fx,x) n = x.size dfdx = Array.new(n*n) for i in 0...n do df = dfdxi(f,fx,x,i) for j in 0...n do dfdx[j*n+i] = df[j] end end dfdx end |