Class: OpenCV::CvMat

Inherits:
Object
  • Object
show all
Defined in:
ext/opencv/cvmat.cpp,
ext/opencv/iplimage.cpp

Direct Known Subclasses

IplImage

Constant Summary collapse

DRAWING_OPTION =
drawing_option
GOOD_FEATURES_TO_TRACK_OPTION =
good_features_to_track_option
FLOOD_FILL_OPTION =
flood_fill_option
FIND_CONTOURS_OPTION =
find_contours_option
OPTICAL_FLOW_HS_OPTION =
optical_flow_hs_option
OPTICAL_FLOW_BM_OPTION =
optical_flow_bm_option
FIND_FUNDAMENTAL_MAT_OPTION =
find_fundamental_matrix_option
ORB_OPTION =
orb_option
HIST_OPTION =
hist_option

Class Method Summary collapse

Instance Method Summary collapse

Dynamic Method Handling

This class handles dynamic methods through the method_missing method

#method_missing(*args) ⇒ Object

nodoc



338
339
340
341
342
343
344
345
346
347
# File 'ext/opencv/cvmat.cpp', line 338

VALUE
rb_method_missing(int argc, VALUE *argv, VALUE self)
{
  VALUE name, args, method;
  rb_scan_args(argc, argv, "1*", &name, &args);
  method = rb_funcall(name, rb_intern("to_s"), 0);
  if (RARRAY_LEN(args) != 0 || !rb_respond_to(rb_module_opencv(), rb_intern(StringValuePtr(method))))
    return rb_call_super(argc, argv);
  return rb_funcall(rb_module_opencv(), rb_intern(StringValuePtr(method)), 1, self);
}

Class Method Details

.add_weighted(src1, alpha, src2, beta, gamma) ⇒ CvMat

Computes the weighted sum of two arrays. This function calculates the weighted sum of two arrays as follows:

dst(I) = src1(I) * alpha + src2(I) * beta + gamma

Parameters:

  • src1 (CvMat)

    The first source array.

  • alpha (Number)

    Weight for the first array elements.

  • src2 (CvMat)

    The second source array.

  • beta (Number)

    Weight for the second array elements.

  • gamma (Number)

    Scalar added to each sum.

Returns:

  • (CvMat)

    Result array



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
# File 'ext/opencv/cvmat.cpp', line 1944

VALUE
rb_add_weighted(VALUE klass, VALUE src1, VALUE alpha, VALUE src2, VALUE beta, VALUE gamma)
{
  CvArr* src1_ptr = CVARR_WITH_CHECK(src1);
  VALUE dst = new_mat_kind_object(cvGetSize(src1_ptr), src1);
  try {
    cvAddWeighted(src1_ptr, NUM2DBL(alpha),
		  CVARR_WITH_CHECK(src2), NUM2DBL(beta),
		  NUM2DBL(gamma), CVARR(dst));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dst;
}

.compute_correspond_epilines(points, which_image, fundamental_matrix) ⇒ Object

For points in one image of stereo pair computes the corresponding epilines in the other image. Finds equation of a line that contains the corresponding point (i.e. projection of the same 3D point) in the other image. Each line is encoded by a vector of 3 elements l=T, so that:

lT*[x, y, 1]T=0,

or

a*x + b*y + c = 0

From the fundamental matrix definition (see cvFindFundamentalMatrix discussion), line l2 for a point p1 in the first image (which_image=1) can be computed as:

l2=F*p1

and the line l1 for a point p2 in the second image (which_image=1) can be computed as:

l1=FT*p2

Line coefficients are defined up to a scale. They are normalized (a2+b2=1) are stored into correspondent_lines.



6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
# File 'ext/opencv/cvmat.cpp', line 6325

VALUE
rb_compute_correspond_epilines(VALUE klass, VALUE points, VALUE which_image, VALUE fundamental_matrix)
{
  VALUE correspondent_lines;
  CvMat* points_ptr = CVMAT_WITH_CHECK(points);
  int n;
  if (points_ptr->cols <= 3 && points_ptr->rows >= 7)
    n = points_ptr->rows;
  else if (points_ptr->rows <= 3 && points_ptr->cols >= 7)
    n = points_ptr->cols;
  else
    rb_raise(rb_eArgError, "input points should 2xN, Nx2 or 3xN, Nx3 matrix(N >= 7).");
  
  correspondent_lines = cCvMat::new_object(n, 3, CV_MAT_DEPTH(points_ptr->type));
  try {
    cvComputeCorrespondEpilines(points_ptr, NUM2INT(which_image), CVMAT_WITH_CHECK(fundamental_matrix),
				CVMAT(correspondent_lines));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return correspondent_lines;
}

.decode_image(buf, iscolor = 1) ⇒ CvMat

Reads an image from a buffer in memory.

Parameters:

  • buf (CvMat, Array, String)

    Input array of bytes

  • iscolor (Integer)

    Flags specifying the color type of a decoded image (the same flags as CvMat#load)

Returns:

  • (CvMat)

    Loaded matrix



316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# File 'ext/opencv/cvmat.cpp', line 316

VALUE
rb_decode_imageM(int argc, VALUE *argv, VALUE self)
{
  int iscolor, need_release;
  CvMat* buff = prepare_decoding(argc, argv, &iscolor, &need_release);
  CvMat* mat_ptr = NULL;
  try {
    mat_ptr = cvDecodeImageM(buff, iscolor);
    if (need_release) {
      cvReleaseMat(&buff);
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return OPENCV_OBJECT(rb_klass, mat_ptr);
}

.decode_image(buf, iscolor = 1) ⇒ CvMat

Reads an image from a buffer in memory.

Parameters:

  • buf (CvMat, Array, String)

    Input array of bytes

  • iscolor (Integer)

    Flags specifying the color type of a decoded image (the same flags as CvMat#load)

Returns:

  • (CvMat)

    Loaded matrix



316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# File 'ext/opencv/cvmat.cpp', line 316

VALUE
rb_decode_imageM(int argc, VALUE *argv, VALUE self)
{
  int iscolor, need_release;
  CvMat* buff = prepare_decoding(argc, argv, &iscolor, &need_release);
  CvMat* mat_ptr = NULL;
  try {
    mat_ptr = cvDecodeImageM(buff, iscolor);
    if (need_release) {
      cvReleaseMat(&buff);
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return OPENCV_OBJECT(rb_klass, mat_ptr);
}

.find_fundamental_mat(points1, points2[,options = {}]) ⇒ nil

Calculates fundamental matrix from corresponding points. Size of the output fundamental matrix is 3x3 or 9x3 (7-point method may return up to 3 matrices)

points1 and points2 should be 2xN, Nx2, 3xN or Nx3 1-channel, or 1xN or Nx1 multi-channel matrix. <i>method<i> is method for computing the fundamental matrix

- CV_FM_7POINT for a 7-point algorithm. (N = 7)
- CV_FM_8POINT for an 8-point algorithm. (N >= 8)
- CV_FM_RANSAC for the RANSAC algorithm. (N >= 8)
- CV_FM_LMEDS for the LMedS algorithm. (N >= 8)

option should be Hash include these keys.

:with_status (true or false)
   If set true, return fundamental_matrix and status. [fundamental_matrix, status]
   Otherwise return fundamental matrix only(default).
:maximum_distance
   The parameter is used for RANSAC.  It is the maximum distance from point to epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution and the image noise.
:desirable_level
   The optional output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in RANSAC and LMedS methods. For other methods it is set to all 1's.

note: option’s default value is CvMat::FIND_FUNDAMENTAL_MAT_OPTION.

Returns:

  • (nil)


6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
# File 'ext/opencv/cvmat.cpp', line 6269

VALUE
rb_find_fundamental_mat(int argc, VALUE *argv, VALUE klass)
{
  VALUE points1, points2, method, option, fundamental_matrix, status;
  int num = 0;
  rb_scan_args(argc, argv, "31", &points1, &points2, &method, &option);
  option = FIND_FUNDAMENTAL_MAT_OPTION(option);
  int fm_method = FIX2INT(method);
  CvMat *points1_ptr = CVMAT_WITH_CHECK(points1);
  if (fm_method == CV_FM_7POINT)
    fundamental_matrix = cCvMat::new_object(9, 3, CV_MAT_DEPTH(points1_ptr->type));
  else
    fundamental_matrix = cCvMat::new_object(3, 3, CV_MAT_DEPTH(points1_ptr->type));

  if (FFM_WITH_STATUS(option)) {
    int status_len = (points1_ptr->rows > points1_ptr->cols) ? points1_ptr->rows : points1_ptr->cols;
    status = cCvMat::new_object(1, status_len, CV_8UC1);
    try {
      num = cvFindFundamentalMat(points1_ptr, CVMAT_WITH_CHECK(points2), CVMAT(fundamental_matrix), fm_method,
				 FFM_MAXIMUM_DISTANCE(option), FFM_DESIRABLE_LEVEL(option), CVMAT(status));
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
    return num == 0 ? Qnil : rb_ary_new3(2, fundamental_matrix, status);
  }
  else {
    try {
      num = cvFindFundamentalMat(points1_ptr, CVMAT_WITH_CHECK(points2), CVMAT(fundamental_matrix), fm_method,
				 FFM_MAXIMUM_DISTANCE(option), FFM_DESIRABLE_LEVEL(option), NULL);
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
    return num == 0 ? Qnil : fundamental_matrix;
  }
}

.find_homography(src_points, dst_points, method = :all, ransac_reproj_threshold = 3, get_mask = false) ⇒ CvMat+

Finds a perspective transformation between two planes.

Parameters:

  • src_points (CvMat)

    Coordinates of the points in the original plane.

  • dst_points (CvMat)

    Coordinates of the points in the target plane.

  • method (Symbol) (defaults to: :all)

    Method used to computed a homography matrix. The following methods are possible:

    • :all - a regular method using all the points

    • :ransac - RANSAC-based robust method

    • :lmeds - Least-Median robust method

  • ransac_reproj_threshold (Number) (defaults to: 3)

    Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC method only).

  • get_mask (Boolean) (defaults to: false)

    If true, the optional output mask set by a robust method (:ransac or :lmeds) is returned additionally.

Returns:

  • (CvMat, Array<CvMat>)

    The perspective transformation H between the source and the destination planes in CvMat. If method is :ransac or :lmeds and get_mask is true, the output mask is also returned in the form of an array [H, output_mask].



4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
# File 'ext/opencv/cvmat.cpp', line 4256

VALUE
rb_find_homography(int argc, VALUE *argv, VALUE self)
{
  VALUE src_points, dst_points, method, ransac_reproj_threshold, get_status;
  rb_scan_args(argc, argv, "23", &src_points, &dst_points, &method, &ransac_reproj_threshold, &get_status);

  VALUE homography = new_object(cvSize(3, 3), CV_32FC1);
  int _method = CVMETHOD("HOMOGRAPHY_CALC_METHOD", method, 0);
  double _ransac_reproj_threshold = NIL_P(ransac_reproj_threshold) ? 0.0 : NUM2DBL(ransac_reproj_threshold);

  if ((_method != 0) && (!NIL_P(get_status)) && IF_BOOL(get_status, 1, 0, 0)) {
    CvMat *src = CVMAT_WITH_CHECK(src_points);
    int num_points = MAX(src->rows, src->cols);
    VALUE status = new_object(cvSize(num_points, 1), CV_8UC1);
    try {
      cvFindHomography(src, CVMAT_WITH_CHECK(dst_points), CVMAT(homography),
		       _method, _ransac_reproj_threshold, CVMAT(status));
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
    return rb_assoc_new(homography, status);
  }
  else {
    try {
      cvFindHomography(CVMAT(src_points), CVMAT(dst_points), CVMAT(homography),
		       _method, _ransac_reproj_threshold, NULL);
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
    return homography;
  }
}

.get_perspective_transform(src, dst) ⇒ CvMat

Calculates a perspective transform from four pairs of the corresponding points.

Parameters:

  • src (Array<CvPoint>)

    Coordinates of quadrangle vertices in the source image.

  • dst (Array<CvPoint>)

    Coordinates of the corresponding quadrangle vertices in the destination image.

Returns:



4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
# File 'ext/opencv/cvmat.cpp', line 4326

VALUE
rb_get_perspective_transform(VALUE self, VALUE source, VALUE dest)
{
  Check_Type(source, T_ARRAY);
  Check_Type(dest, T_ARRAY);

  int count = RARRAY_LEN(source);

  CvPoint2D32f* source_buff = RB_ALLOC_N(CvPoint2D32f, count);
  CvPoint2D32f* dest_buff = RB_ALLOC_N(CvPoint2D32f, count);

  for (int i = 0; i < count; i++) {
    source_buff[i] = *(CVPOINT2D32F(RARRAY_PTR(source)[i]));
    dest_buff[i] = *(CVPOINT2D32F(RARRAY_PTR(dest)[i]));
  }

  VALUE map_matrix = new_object(cvSize(3, 3), CV_MAKETYPE(CV_32F, 1));

  try {
    cvGetPerspectiveTransform(source_buff, dest_buff, CVMAT(map_matrix));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return map_matrix;
}

.load(filename, iscolor = 1) ⇒ CvMat

Load an image from the specified file

Parameters:

  • filename (String)

    Name of file to be loaded

  • iscolor (Integer)

    Flags specifying the color type of a loaded image:

    • > 0 Return a 3-channel color image.

    • = 0 Return a grayscale image.

    • < 0 Return the loaded image as is.

Returns:

  • (CvMat)

    Loaded image



172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# File 'ext/opencv/cvmat.cpp', line 172

VALUE
rb_load_imageM(int argc, VALUE *argv, VALUE self)
{
  VALUE filename, iscolor;
  rb_scan_args(argc, argv, "11", &filename, &iscolor);
  Check_Type(filename, T_STRING);

  int _iscolor;
  if (NIL_P(iscolor)) {
    _iscolor = CV_LOAD_IMAGE_COLOR;
  }
  else {
    Check_Type(iscolor, T_FIXNUM);
    _iscolor = FIX2INT(iscolor);
  }

  CvMat *mat = NULL;
  try {
    mat = cvLoadImageM(StringValueCStr(filename), _iscolor);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  if (mat == NULL) {
    rb_raise(rb_eStandardError, "file does not exist or invalid format image.");
  }
  return OPENCV_OBJECT(rb_klass, mat);
}

.merge(src1 = nil, src2 = nil, src3 = nil, src4 = nil) ⇒ CvMat

Composes a multi-channel array from several single-channel arrays.

Parameters:

  • src-n (CvMat)

    Source arrays to be merged. All arrays must have the same size and the same depth.

Returns:

  • (CvMat)

    Merged array

See Also:



1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
# File 'ext/opencv/cvmat.cpp', line 1582

VALUE
rb_merge(VALUE klass, VALUE args)
{
  int len = RARRAY_LEN(args);
  if (len <= 0 || len > 4) {
    rb_raise(rb_eArgError, "wrong number of argument (%d for 1..4)", len);
  }
  CvMat *src[] = { NULL, NULL, NULL, NULL }, *prev_src = NULL;
  for (int i = 0; i < len; ++i) {
    VALUE object = rb_ary_entry(args, i);
    if (NIL_P(object))
      src[i] = NULL;
    else {
      src[i] = CVMAT_WITH_CHECK(object);
      if (CV_MAT_CN(src[i]->type) != 1)
        rb_raise(rb_eArgError, "image should be single-channel CvMat.");
      if (prev_src == NULL)
        prev_src = src[i];
      else {
        if (!CV_ARE_SIZES_EQ(prev_src, src[i]))
          rb_raise(rb_eArgError, "image size should be same.");
        if (!CV_ARE_DEPTHS_EQ(prev_src, src[i]))
          rb_raise(rb_eArgError, "image depth should be same.");
      }
    }
  }
  // TODO: adapt IplImage
  VALUE dest = Qnil;
  try {
    dest = new_object(cvGetSize(src[0]), CV_MAKETYPE(CV_MAT_DEPTH(src[0]->type), len));
    cvMerge(src[0], src[1], src[2], src[3], CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

.rotation_matrix2D(center, angle, scale) ⇒ CvMat

Calculates an affine matrix of 2D rotation.

Parameters:

  • center (CvPoint2D32f)

    Center of the rotation in the source image.

  • angle (Number)

    Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).

  • scale (Number)

    Isotropic scale factor.

Returns:

  • (CvMat)

    The output affine transformation, 2x3 floating-point matrix.



4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
# File 'ext/opencv/cvmat.cpp', line 4303

VALUE
rb_rotation_matrix2D(VALUE self, VALUE center, VALUE angle, VALUE scale)
{
  VALUE map_matrix = new_object(cvSize(3, 2), CV_MAKETYPE(CV_32F, 1));
  try {
    cv2DRotationMatrix(VALUE_TO_CVPOINT2D32F(center), NUM2DBL(angle), NUM2DBL(scale), CVMAT(map_matrix));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return map_matrix;
}

.solve(src1, src2, inversion_method = :lu) ⇒ Number

Solves one or more linear systems or least-squares problems.

Parameters:

  • src1 (CvMat)

    Input matrix on the left-hand side of the system.

  • src2 (CvMat)

    Input matrix on the right-hand side of the system.

  • inversion_method (Symbol)

    Inversion method.

    • :lu - Gaussian elimincation with optimal pivot element chose.

    • :svd - Singular value decomposition(SVD) method.

    • :svd_sym - SVD method for a symmetric positively-defined matrix.

Returns:

  • (Number)

    Output solution.



2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
# File 'ext/opencv/cvmat.cpp', line 2849

VALUE
rb_solve(int argc, VALUE *argv, VALUE self)
{
  VALUE src1, src2, symbol;
  rb_scan_args(argc, argv, "21", &src1, &src2, &symbol);
  VALUE dest = Qnil;
  CvArr* src2_ptr = CVARR_WITH_CHECK(src2);
  try {
    dest = new_mat_kind_object(cvGetSize(src2_ptr), src2);
    cvSolve(CVARR_WITH_CHECK(src1), src2_ptr, CVARR(dest), CVMETHOD("INVERSION_METHOD", symbol, CV_LU));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

Instance Method Details

#[](idx0) ⇒ CvScalar #[](idx0, idx1) ⇒ CvScalar #[](idx0, idx1, idx2) ⇒ CvScalar #[](idx0, idx1, idx2, ...) ⇒ CvScalar Also known as: at

Returns a specific array element.

Parameters:

  • idx-n (Integer)

    Zero-based component of the element index

Returns:



1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
# File 'ext/opencv/cvmat.cpp', line 1008

VALUE
rb_aref(VALUE self, VALUE args)
{
  int index[CV_MAX_DIM];
  for (int i = 0; i < RARRAY_LEN(args); ++i)
    index[i] = NUM2INT(rb_ary_entry(args, i));
  
  CvScalar scalar = cvScalarAll(0);
  try {
    switch (RARRAY_LEN(args)) {
    case 1:
      scalar = cvGet1D(CVARR(self), index[0]);
      break;
    case 2:
      scalar = cvGet2D(CVARR(self), index[0], index[1]);
      break;
    default:
      scalar = cvGetND(CVARR(self), index);
      break;      
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvScalar::new_object(scalar);
}

#[]=(idx0, value) ⇒ CvMat #[]=(idx0, idx1, value) ⇒ CvMat #[]=(idx0, idx1, idx2, value) ⇒ CvMat #[]=(idx0, idx1, idx2, ..., value) ⇒ CvMat

Changes the particular array element

Parameters:

  • idx-n (Integer)

    Zero-based component of the element index

  • value (CvScalar)

    The assigned value

Returns:



1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
# File 'ext/opencv/cvmat.cpp', line 1099

VALUE
rb_aset(VALUE self, VALUE args)
{
  CvScalar scalar = VALUE_TO_CVSCALAR(rb_ary_pop(args));
  int index[CV_MAX_DIM];
  for (int i = 0; i < RARRAY_LEN(args); ++i)
    index[i] = NUM2INT(rb_ary_entry(args, i));

  try {
    switch (RARRAY_LEN(args)) {
    case 1:
      cvSet1D(CVARR(self), index[0], scalar);
      break;
    case 2:
      cvSet2D(CVARR(self), index[0], index[1], scalar);
      break;
    default:
      cvSetND(CVARR(self), index, scalar);
      break;
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#abs_diff(val) ⇒ CvMat

Computes the per-element absolute difference between two arrays or between an array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to compute absolute difference

Returns:

  • (CvMat)

    Result array



2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
# File 'ext/opencv/cvmat.cpp', line 2270

VALUE
rb_abs_diff(VALUE self, VALUE val)
{
  CvArr* self_ptr = CVARR(self);
  VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvAbsDiff(self_ptr, CVARR(val), CVARR(dest));
    else
      cvAbsDiffS(self_ptr, CVARR(dest), VALUE_TO_CVSCALAR(val));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#adaptive_threshold(max_value, options) ⇒ CvMat

Applies an adaptive threshold to an array.

Examples:

mat = CvMat.new(3, 3, CV_8U, 1)
mat.set_data([1, 2, 3, 4, 5, 6, 7, 8, 9])
mat #=> [1, 2, 3,
         4, 5, 6,
         7, 8, 9]
result = mat.adaptive_threshold(7, threshold_type: CV_THRESH_BINARY,
                                adaptive_method: CV_ADAPTIVE_THRESH_MEAN_C,
                                block_size: 3, param1: 1)
result #=> [0, 0, 0,
            7, 7, 7,
            7, 7, 7]

Returns Destination image of the same size and the same type as self.

Parameters:

  • max_value (Number)

    Non-zero value assigned to the pixels for which the condition is satisfied.

  • options (Hash)

    Threshold option

Options Hash (options):

  • :threshold_type (Integer, Symbol) — default: CV_THRESH_BINARY

    Thresholding type; must be one of CV_THRESH_BINARY or :binary, CV_THRESH_BINARY_INV or :binary_inv.

  • :adaptive_method (Integer, Symbol) — default: CV_ADAPTIVE_THRESH_MEAN_C

    Adaptive thresholding algorithm to use: CV_ADAPTIVE_THRESH_MEAN_C or :mean_c, CV_ADAPTIVE_THRESH_GAUSSIAN_C or :gaussian_c.

  • :block_size (Integer) — default: 3

    The size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.

  • :param1 (Number) — default: 5

    The method-dependent parameter. For the methods CV_ADAPTIVE_THRESH_MEAN_C and CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a constant subtracted from the mean or weighted mean, though it may be negative

Returns:

  • (CvMat)

    Destination image of the same size and the same type as self.



4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
# File 'ext/opencv/cvmat.cpp', line 4981

VALUE
rb_adaptive_threshold(int argc, VALUE *argv, VALUE self)
{
  VALUE dest, max_value, adaptive_method, threshold_type, block_size, constant;
  rb_scan_args(argc, argv, "5", &max_value, &adaptive_method, &threshold_type, &block_size, &constant);

  CvMat* self_ptr = CVMAT(self);
  // Create our destination pixels
  dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_MAT_DEPTH(self_ptr->type), 1);

  try {
    const cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
    cv::Mat destMat(CVMAT(dest));

		cv::adaptiveThreshold(selfMat, destMat, max_value, adaptive_method, threshold_type, block_size, constant);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#add(val, mask = nil) ⇒ CvMat Also known as: +

Computes the per-element sum of two arrays or an array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to add

  • mask (CvMat)

    Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Result array



1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
# File 'ext/opencv/cvmat.cpp', line 1762

VALUE
rb_add(int argc, VALUE *argv, VALUE self)
{
  VALUE val, mask, dest;
  rb_scan_args(argc, argv, "11", &val, &mask);
  dest = copy(self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvAdd(CVARR(self), CVARR(val), CVARR(dest), MASK(mask));
    else
      cvAddS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#and(val, mask = nil) ⇒ CvMat Also known as: &

Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to calculate bit-wise conjunction

  • mask (CvMat)

    Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Result array



1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
# File 'ext/opencv/cvmat.cpp', line 1971

VALUE
rb_and(int argc, VALUE *argv, VALUE self)
{
  VALUE val, mask, dest;
  rb_scan_args(argc, argv, "11", &val, &mask);
  dest = copy(self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvAnd(CVARR(self), CVARR(val), CVARR(dest), MASK(mask));
    else
      cvAndS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#and_into(other, dest) ⇒ Object



1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
# File 'ext/opencv/cvmat.cpp', line 1989

VALUE
rb_and_into(VALUE self, VALUE other, VALUE dest)
{
  try {
    cvAnd(CVARR(self), CVARR(other), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#apply_color_map(colormap) ⇒ Object

Applies a GNU Octave/MATLAB equivalent colormap on a given image.

Parameters:

colormap - The colormap to apply.


5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
# File 'ext/opencv/cvmat.cpp', line 5870

VALUE
rb_apply_color_map(VALUE self, VALUE colormap)
{
  VALUE dst;
  try {
    cv::Mat dst_mat;
    cv::Mat self_mat(CVMAT(self));

    cv::applyColorMap(self_mat, dst_mat, NUM2INT(colormap));
    CvMat tmp = dst_mat;
    dst = new_object(tmp.rows, tmp.cols, tmp.type);
    cvCopy(&tmp, CVMAT(dst));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dst;
}

#avg(mask = nil) ⇒ CvScalar

Calculates an average (mean) of array elements.

Parameters:

  • mask (CvMat)

    Optional operation mask.

Returns:

  • (CvScalar)

    The average of array elements.



2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
# File 'ext/opencv/cvmat.cpp', line 2429

VALUE
rb_avg(int argc, VALUE *argv, VALUE self)
{
  VALUE mask;
  rb_scan_args(argc, argv, "01", &mask);
  CvScalar avg;
  try {
    avg = cvAvg(CVARR(self), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvScalar::new_object(avg);
}

#avg_sdv(mask = nil) ⇒ Array<CvScalar>

Calculates a mean and standard deviation of array elements.

Parameters:

  • mask (CvMat)

    Optional operation mask.

Returns:

  • (Array<CvScalar>)

    [mean, stddev], where mean is the computed mean value and stddev is the computed standard deviation.



2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
# File 'ext/opencv/cvmat.cpp', line 2465

VALUE
rb_avg_sdv(int argc, VALUE *argv, VALUE self)
{
  VALUE mask, mean, std_dev;
  rb_scan_args(argc, argv, "01", &mask);
  mean = cCvScalar::new_object();
  std_dev = cCvScalar::new_object();
  try {
    cvAvgSdv(CVARR(self), CVSCALAR(mean), CVSCALAR(std_dev), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, mean, std_dev);
}

#avg_value(mask) ⇒ Object



2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
# File 'ext/opencv/cvmat.cpp', line 2444

VALUE
rb_avg_value(VALUE self, VALUE mask)
{
  CvScalar avg;
  try {
    avg = cvAvg(CVARR(self), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_float_new(avg.val[0]);
}

#calc_hist(<i>[hist_options]) ⇒ Object

# Return

hist_options should be Hash include these keys.

:bins
   Number of bins to create per-channel. Defaults to -1, which will use the depth of the image as the bin count.
:mask
   Optional Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as arrays[i] .
   The non-zero mask elements mark the array elements counted in the histogram.


5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
# File 'ext/opencv/cvmat.cpp', line 5799

VALUE
rb_calc_hist(int argc, VALUE *argv, VALUE self)
{
  VALUE hist_options;
  rb_scan_args(argc, argv, "01", &hist_options);

  const cv::Mat src(CVMAT(self));

  hist_options = HIST_OPTION(hist_options);

  VALUE minVal = DO_HIST_MIN(hist_options);
  const float rangeMin = minVal != Qnil ? NUM2DBL(minVal) : 0;

  VALUE maxVal = DO_HIST_MAX(hist_options);
  const float rangeMax = maxVal != Qnil ? NUM2DBL(maxVal) : std::pow(2.0, (float)src.elemSize1() * 8.0);

  const float channelRanges[] = { rangeMin, rangeMax };
  const float* ranges[] = { channelRanges, channelRanges, channelRanges, channelRanges };

  int binCount = DO_HIST_BINS(hist_options);
  if (binCount < 0) {
    binCount = int(channelRanges[1]);
  }

  const int histSize[] = { binCount, binCount, binCount, binCount };
  const int channels[] = { 0, 1, 2, 3 };

  cv::Mat maskMat;
  VALUE maskVal = DO_HIST_MASK(hist_options);
  if (maskVal != Qnil) {
     if (!(rb_obj_is_kind_of(maskVal, cCvMat::rb_class())) || cvGetElemType(CVARR(maskVal)) != CV_8UC1)
       rb_raise(rb_eTypeError, "mask should be mask image.");
     maskMat = CVMAT(maskVal);
  }

  // Commented by WBH until we have time to re-implement MatND (removed by rebase, dunno if it needs to be changed)
  /*
  try {
    cv::MatND histMat;

    cv::calcHist(
      &src, 1,
      channels,
      maskMat,
      histMat, src.channels(),
      histSize, ranges,
      true,
      false
    );

    const CvMatND histmatnd(histMat);
    return cCvMatND::new_object(&histmatnd);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  */

  return Qnil;
}

#cam_shift(window, criteria) ⇒ Array

Implements CAMSHIFT object tracking algrorithm. First, it finds an object center using cvMeanShift and, after that, calculates the object size and orientation. The function returns number of iterations made within cvMeanShift.

Returns:

  • (Array)


5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
# File 'ext/opencv/cvmat.cpp', line 5998

VALUE
rb_cam_shift(VALUE self, VALUE window, VALUE criteria)
{
  VALUE comp = cCvConnectedComp::new_object();
  VALUE box = cCvBox2D::new_object();
  try {
    cvCamShift(CVARR(self), VALUE_TO_CVRECT(window), VALUE_TO_CVTERMCRITERIA(criteria),
	       CVCONNECTEDCOMP(comp), CVBOX2D(box));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, comp, box);
}

#canny(thresh1, thresh2, aperture_size = 3) ⇒ CvMat

Finds edges in an image using the [Canny86] algorithm.

Canny86: J. Canny. A Computational Approach to Edge Detection, IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698 (1986).

Parameters:

  • thresh1 (Number)

    First threshold for the hysteresis procedure.

  • thresh2 (Number)

    Second threshold for the hysteresis procedure.

  • aperture_size (Integer)

    Aperture size for the sobel operator.

Returns:

  • (CvMat)

    Output edge map



3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
# File 'ext/opencv/cvmat.cpp', line 3814

VALUE
rb_canny(int argc, VALUE *argv, VALUE self)
{
  VALUE dest, thresh1, thresh2, aperture_size, l2_gradient;
  int args_given = rb_scan_args(argc, argv, "22", &thresh1, &thresh2, &aperture_size, &l2_gradient);
  switch(args_given) {
  	case 2: aperture_size = 3; // intentional fallthrough, params applied cumulatively
  	case 1: l2_gradient = false;
  }

  CvMat* self_ptr = CVMAT(self);
  // Create our destination pixels
  dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_MAT_DEPTH(self_ptr->type), 1);

  try {
    const cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
    cv::Mat destMat(CVMAT(dest));

		cv::Canny(selfMat, destMat, NUM2INT(thresh1), NUM2INT(thresh2), NUM2INT(aperture_size), l2_gradient);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#channelInteger

Returns number of channels of the matrix

Returns:

  • (Integer)

    Number of channels of the matrix



473
474
475
476
477
# File 'ext/opencv/cvmat.cpp', line 473

VALUE
rb_channel(VALUE self)
{
  return INT2FIX(CV_MAT_CN(CVMAT(self)->type));
}

#circle(center, radius, options = nil) ⇒ CvMat

Returns an image that is drawn a circle

Parameters:

  • center (CvPoint)

    Center of the circle.

  • radius (Integer)

    Radius of the circle.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3204
3205
3206
3207
3208
# File 'ext/opencv/cvmat.cpp', line 3204

VALUE
rb_circle(int argc, VALUE *argv, VALUE self)
{
  return rb_circle_bang(argc, argv, rb_rcv_clone(self));
}

#circle!(center, radius, options = nil) ⇒ CvMat

Draws a circle

Parameters:

  • center (CvPoint)

    Center of the circle.

  • radius (Integer)

    Radius of the circle.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
# File 'ext/opencv/cvmat.cpp', line 3227

VALUE
rb_circle_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE center, radius, drawing_option;
  rb_scan_args(argc, argv, "21", &center, &radius, &drawing_option);
  drawing_option = DRAWING_OPTION(drawing_option);
  try {
    cvCircle(CVARR(self), VALUE_TO_CVPOINT(center), NUM2INT(radius),
	     DO_COLOR(drawing_option),
	     DO_THICKNESS(drawing_option),
	     DO_LINE_TYPE(drawing_option),
	     DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#cmp(val, dest, operand) ⇒ Object



2091
2092
2093
2094
2095
# File 'ext/opencv/cvmat.cpp', line 2091

VALUE
rb_cmp(VALUE self, VALUE val, VALUE dest, VALUE operand)
{
  return rb_cmp_internal(self, val, dest, NUM2INT(operand));
}

#convert_scale(params) ⇒ CvMat

Converts one array to another with optional linear transformation.

Parameters:

  • params (Hash)

    Transform parameters

Options Hash (params):

  • :depth (Integer) — default: same as self

    Depth of the destination array

  • :scale (Number) — default: 1.0

    Scale factor

  • :shift (Number) — default: 0.0

    Value added to the scaled source array elements

Returns:

  • (CvMat)

    Converted array



1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
# File 'ext/opencv/cvmat.cpp', line 1701

VALUE
rb_convert_scale(VALUE self, VALUE hash)
{
  Check_Type(hash, T_HASH);
  CvMat* self_ptr = CVMAT(self);
  VALUE depth = LOOKUP_HASH(hash, "depth");
  VALUE scale = LOOKUP_HASH(hash, "scale");
  VALUE shift = LOOKUP_HASH(hash, "shift");

  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self,
			       CVMETHOD("DEPTH", depth, CV_MAT_DEPTH(self_ptr->type)),
			       CV_MAT_CN(self_ptr->type));
    cvConvertScale(self_ptr, CVARR(dest), IF_DBL(scale, 1.0), IF_DBL(shift, 0.0));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#convert_scale_abs(params) ⇒ CvMat

Scales, computes absolute values, and converts the result to 8-bit.

Parameters:

  • params (Hash)

    Transform parameters

Options Hash (params):

  • :scale (Number) — default: 1.0

    Scale factor

  • :shift (Number) — default: 0.0

    Value added to the scaled source array elements

Returns:

  • (CvMat)

    Converted array



1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
# File 'ext/opencv/cvmat.cpp', line 1733

VALUE
rb_convert_scale_abs(VALUE self, VALUE hash)
{
  Check_Type(hash, T_HASH);
  CvMat* self_ptr = CVMAT(self);
  VALUE scale = LOOKUP_HASH(hash, "scale");
  VALUE shift = LOOKUP_HASH(hash, "shift");
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_8U, CV_MAT_CN(CVMAT(self)->type));
    cvConvertScaleAbs(self_ptr, CVARR(dest), IF_DBL(scale, 1.0), IF_DBL(shift, 0.0));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#copy(dst = nil, mask = nil) ⇒ CvMat

Copies one array to another.

The function copies selected elements from an input array to an output array:

dst(I) = src(I) if mask(I) != 0

Parameters:

  • dst (CvMat)

    The destination array.

  • mask (CvMat)

    Operation mask, 8-bit single channel array; specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Copy of the array



522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# File 'ext/opencv/cvmat.cpp', line 522

VALUE
rb_copy(int argc, VALUE *argv, VALUE self)
{
  VALUE _dst, _mask;
  rb_scan_args(argc, argv, "02", &_dst, &_mask);

  CvMat* mask = MASK(_mask);
  CvArr *src = CVARR(self);
  if (NIL_P(_dst)) {
    CvSize size = cvGetSize(src);
    _dst = new_mat_kind_object(size, self);
  }

  try {
    cvCopy(src, CVARR_WITH_CHECK(_dst), mask);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return _dst;
}

#copy_make_border(border_type, size, offset[,value = CvScalar.new(0)]) ⇒ Object

Copies image and makes border around it. border_type:

  • IPL_BORDER_CONSTANT, :constant

    border is filled with the fixed value, passed as last parameter of the function.
    
  • IPL_BORDER_REPLICATE, :replicate

    the pixels from the top and bottom rows, the left-most and right-most columns are replicated to fill the border
    

size: The destination image size offset: Coordinates of the top-left corner (or bottom-left in the case of images with bottom-left origin) of the destination image rectangle. value: Value of the border pixels if bordertype is IPL_BORDER_CONSTANT or :constant.



4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
# File 'ext/opencv/cvmat.cpp', line 4799

VALUE
rb_copy_make_border(int argc, VALUE *argv, VALUE self)
{
  VALUE border_type, size, offset, value, dest;
  rb_scan_args(argc, argv, "31", &border_type, &size, &offset, &value);
  dest = new_mat_kind_object(VALUE_TO_CVSIZE(size), self);

  int type = 0;
  if (SYMBOL_P(border_type)) {
    ID type_id = rb_to_id(border_type);
    if (type_id == rb_intern("constant"))
      type = IPL_BORDER_CONSTANT;
    else if (type_id == rb_intern("replicate"))
      type = IPL_BORDER_REPLICATE;
    else
      rb_raise(rb_eArgError, "Invalid border_type (should be :constant or :replicate)");
  }
  else
    type = NUM2INT(border_type);

  try {
    cvCopyMakeBorder(CVARR(self), CVARR(dest), VALUE_TO_CVPOINT(offset), type,
		     NIL_P(value) ? cvScalar(0) : VALUE_TO_CVSCALAR(value));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#corner_eigenvv(block_size, aperture_size = 3) ⇒ CvMat

Calculates eigenvalues and eigenvectors of image blocks for corner detection.

Parameters:

  • block_size (Integer)

    Neighborhood size.

  • aperture_size (Integer)

    Aperture parameter for the sobel operator.

Returns:

  • (CvMat)

    Result array.



3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
# File 'ext/opencv/cvmat.cpp', line 3876

VALUE
rb_corner_eigenvv(int argc, VALUE *argv, VALUE self)
{
  VALUE block_size, aperture_size, dest;
  if (rb_scan_args(argc, argv, "11", &block_size, &aperture_size) < 2)
    aperture_size = INT2FIX(3);
  CvMat* self_ptr = CVMAT(self);
  dest = new_object(cvSize(self_ptr->cols * 6, self_ptr->rows), CV_MAKETYPE(CV_32F, 1));
  try {
    cvCornerEigenValsAndVecs(self_ptr, CVARR(dest), NUM2INT(block_size), NUM2INT(aperture_size));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#corner_harris(block_size, aperture_size = 3, k = 0.04) ⇒ CvMat

Harris edge detector.

Parameters:

  • block_size (Integer)

    Neighborhood size.

  • aperture_size (Integer)

    Aperture parameter for the sobel operator.

  • k (Number)

    Harris detector free parameter.

Returns:

  • (CvMat)

    The Harris detector responses.



3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
# File 'ext/opencv/cvmat.cpp', line 3929

VALUE
rb_corner_harris(int argc, VALUE *argv, VALUE self)
{
  VALUE block_size, aperture_size, k, dest;
  rb_scan_args(argc, argv, "12", &block_size, &aperture_size, &k);
  CvArr* self_ptr = CVARR(self);
  dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1));
  try {
    cvCornerHarris(self_ptr, CVARR(dest), NUM2INT(block_size), IF_INT(aperture_size, 3), IF_DBL(k, 0.04));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#corner_min_eigen_val(block_size, aperture_size = 3) ⇒ CvMat

Calculates the minimal eigenvalue of gradient matrices for corner detection.

Parameters:

  • block_size (Integer)

    Neighborhood size.

  • aperture_size (Integer)

    Aperture parameter for the sobel operator.

Returns:

  • (CvMat)

    Result array.



3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
# File 'ext/opencv/cvmat.cpp', line 3902

VALUE
rb_corner_min_eigen_val(int argc, VALUE *argv, VALUE self)
{
  VALUE block_size, aperture_size, dest;
  if (rb_scan_args(argc, argv, "11", &block_size, &aperture_size) < 2)
    aperture_size = INT2FIX(3);
  CvArr* self_ptr = CVARR(self);
  dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1));
  try {
    cvCornerMinEigenVal(self_ptr, CVARR(dest), NUM2INT(block_size), NUM2INT(aperture_size));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#count_non_zeroInteger

Counts non-zero array elements.

Returns:

  • (Integer)

    The number of non-zero elements.



2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
# File 'ext/opencv/cvmat.cpp', line 2389

VALUE
rb_count_non_zero(VALUE self)
{
  int n = 0;
  try {
    n = cvCountNonZero(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return INT2NUM(n);
}

#create_maskCvMat

Creates a mask (1-channel 8bit unsinged image whose elements are 0) from the matrix. The size of the mask is the same as source matrix.

Returns:

  • (CvMat)

    Created mask



420
421
422
423
424
425
426
427
428
429
430
431
# File 'ext/opencv/cvmat.cpp', line 420

VALUE
rb_create_mask(VALUE self)
{
  VALUE mask = cCvMat::new_object(cvGetSize(CVARR(self)), CV_8UC1);
  try {
    cvZero(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return mask;
}

#cross_product(mat) ⇒ CvMat

Calculates the cross product of two 3D vectors.

Parameters:

  • mat (CvMat)

    A vector to calculate the cross product.

Returns:

  • (CvMat)

    The cross product of two vectors.



2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
# File 'ext/opencv/cvmat.cpp', line 2634

VALUE
rb_cross_product(VALUE self, VALUE mat)
{
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvCrossProduct(self_ptr, CVARR_WITH_CHECK(mat), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#dataObject

Deprecated.

This method will be removed.



483
484
485
486
487
488
# File 'ext/opencv/cvmat.cpp', line 483

VALUE
rb_data(VALUE self)
{
  IplImage *image = IPLIMAGE(self);
  return rb_str_new((char *)image->imageData, image->imageSize);
}

#set_data(data) ⇒ CvMat

Assigns user data to the array header

Parameters:

  • data (Array<Integer>)

    User data

Returns:



1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# File 'ext/opencv/cvmat.cpp', line 1133

VALUE
rb_set_data(VALUE self, VALUE data)
{
  CvMat *self_ptr = CVMAT(self);
  int depth = CV_MAT_DEPTH(self_ptr->type);

  if (TYPE(data) == T_STRING) {
    if (!CV_IS_MAT_CONT(self_ptr->type))
      rb_raise(rb_eArgError, "CvMat must be continuous");
      
    const int dataLength = RSTRING_LEN(data);
    if (dataLength != self_ptr->width * self_ptr->height * CV_ELEM_SIZE(self_ptr->type))
      rb_raise(rb_eArgError, "Invalid data string length");
    
    memcpy(self_ptr->data.ptr, RSTRING_PTR(data), dataLength);
    
  } else {
    data = rb_funcall(data, rb_intern("flatten"), 0);
    
    const int DATA_LEN = RARRAY_LEN(data);
   
    void* array = NULL;
  
    switch (depth) {
    case CV_8U:
      array = rb_cvAlloc(sizeof(uchar) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((uchar*)array)[i] = (uchar)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_8S:
      array = rb_cvAlloc(sizeof(char) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((char*)array)[i] = (char)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_16U:
      array = rb_cvAlloc(sizeof(ushort) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((ushort*)array)[i] = (ushort)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_16S:
      array = rb_cvAlloc(sizeof(short) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((short*)array)[i] = (short)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_32S:
      array = rb_cvAlloc(sizeof(int) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((int*)array)[i] = NUM2INT(rb_ary_entry(data, i));
      break;
    case CV_32F:
      array = rb_cvAlloc(sizeof(float) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((float*)array)[i] = (float)NUM2DBL(rb_ary_entry(data, i));
      break;
    case CV_64F:
      array = rb_cvAlloc(sizeof(double) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((double*)array)[i] = NUM2DBL(rb_ary_entry(data, i));
      break;
    default:
      rb_raise(rb_eArgError, "Invalid CvMat depth");
      break;
    }

    try {
      cvSetData(self_ptr, array, self_ptr->step);    
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
  }

  return self;
}

#dct(flags = CV_DXT_FORWARD) ⇒ CvMat

Performs forward or inverse Discrete Cosine Transform(DCT) of 1D or 2D floating-point array.

Parameters:

  • flags (Integer) (defaults to: CV_DXT_FORWARD)

    transformation flags, representing a combination of the following values:

    • CV_DXT_FORWARD - Performs a 1D or 2D transform.

    • CV_DXT_INVERSE - Performs an inverse 1D or 2D transform instead of the default forward transform.

    • CV_DXT_ROWS - Performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.

Returns:

  • (CvMat)

    Output array



3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
# File 'ext/opencv/cvmat.cpp', line 3050

VALUE
rb_dct(int argc, VALUE *argv, VALUE self)
{
  VALUE flag_value;
  rb_scan_args(argc, argv, "01", &flag_value);

  int flags = NIL_P(flag_value) ? CV_DXT_FORWARD : NUM2INT(flag_value);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvDCT(self_ptr, CVARR(dest), flags);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#depthSymbol

Returns depth type of the matrix

Returns:

  • (Symbol)

    Depth type in the form of symbol :cv<bit depth><s|u|f>, where s=signed, u=unsigned, f=float.



461
462
463
464
465
466
# File 'ext/opencv/cvmat.cpp', line 461

VALUE
rb_depth(VALUE self)
{
  return rb_hash_lookup(rb_funcall(rb_const_get(rb_module_opencv(), rb_intern("DEPTH")), rb_intern("invert"), 0),
			INT2FIX(CV_MAT_DEPTH(CVMAT(self)->type)));
}

#detNumber Also known as: determinant

Returns the determinant of a square floating-point matrix.

Returns:

  • (Number)

    The determinant of the matrix.



2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
# File 'ext/opencv/cvmat.cpp', line 2793

VALUE
rb_det(VALUE self)
{
  double det = 0.0;
  try {
    det = cvDet(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_float_new(det);
}

#dft(flags = CV_DXT_FORWARD, nonzero_rows = 0) ⇒ CvMat

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

Parameters:

  • flags (Integer) (defaults to: CV_DXT_FORWARD)

    transformation flags, representing a combination of the following values:

    • CV_DXT_FORWARD - Performs a 1D or 2D transform.

    • CV_DXT_INVERSE - Performs an inverse 1D or 2D transform instead of the default forward transform.

    • CV_DXT_SCALE - Scales the result: divide it by the number of array elements. Normally, it is combined with CV_DXT_INVERSE.

    • CV_DXT_INV_SCALE - CV_DXT_INVERSE + CV_DXT_SCALE

  • nonzero_rows (Integer) (defaults to: 0)

    when the parameter is not zero, the function assumes that only the first nonzero_rows rows of the input array (CV_DXT_INVERSE is not set) or only the first nonzero_rows of the output array (CV_DXT_INVERSE is set) contain non-zeros.

Returns:

  • (CvMat)

    Output array



3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
# File 'ext/opencv/cvmat.cpp', line 3016

VALUE
rb_dft(int argc, VALUE *argv, VALUE self)
{
  VALUE flag_value, nonzero_row_value;
  rb_scan_args(argc, argv, "02", &flag_value, &nonzero_row_value);

  int flags = NIL_P(flag_value) ? CV_DXT_FORWARD : NUM2INT(flag_value);
  int nonzero_rows = NIL_P(nonzero_row_value) ? 0 : NUM2INT(nonzero_row_value);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvDFT(self_ptr, CVARR(dest), flags, nonzero_rows);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#diag(val = 0) ⇒ CvMat Also known as: diagonal

Returns a specified diagonal of the matrix

Parameters:

  • val (Integer)

    Index of the array diagonal. Zero value corresponds to the main diagonal, -1 corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and so forth.

Returns:

  • (CvMat)

    Specified diagonal



912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# File 'ext/opencv/cvmat.cpp', line 912

VALUE
rb_diag(int argc, VALUE *argv, VALUE self)
{
  VALUE val;
  if (rb_scan_args(argc, argv, "01", &val) < 1)
    val = INT2FIX(0);
  CvMat* diag = NULL;
  try {
    diag = cvGetDiag(CVARR(self), RB_CVALLOC(CvMat), NUM2INT(val));
  }
  catch (cv::Exception& e) {
    cvReleaseMat(&diag);
    raise_cverror(e);
  }
  return DEPEND_OBJECT(rb_klass, diag, self);
}

#dilate([element = nil][,iteration = 1]) ⇒ Object

Create dilates image by using arbitrary structuring element. element is structuring element used for erosion. element should be IplConvKernel. If it is nil, a 3x3 rectangular structuring element is used. iterations is number of times erosion is applied.



4494
4495
4496
4497
4498
# File 'ext/opencv/cvmat.cpp', line 4494

VALUE
rb_dilate(int argc, VALUE *argv, VALUE self)
{
  return rb_dilate_bang(argc, argv, rb_rcv_clone(self));
}

#dilate!([element = nil][,iteration = 1]) ⇒ self

Dilate image by using arbitrary structuring element. see also #dilate.

Returns:

  • (self)


4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
# File 'ext/opencv/cvmat.cpp', line 4507

VALUE
rb_dilate_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE element, iteration;
  rb_scan_args(argc, argv, "02", &element, &iteration);
  IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element);
  try {
    cvDilate(CVARR(self), CVARR(self), kernel, IF_INT(iteration, 1));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#dilate_into(dest, element, iteration) ⇒ Object



4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
# File 'ext/opencv/cvmat.cpp', line 4522

VALUE
rb_dilate_into(VALUE self, VALUE dest, VALUE element, VALUE iteration)
{
  IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element);
  try {
    cvDilate(CVARR(self), CVARR(dest), kernel, NUM2INT(iteration));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#dim_size(index) ⇒ Integer

Returns array size along the specified dimension.

Parameters:

  • index (Intger)

    Zero-based dimension index (for matrices 0 means number of rows, 1 means number of columns; for images 0 means height, 1 means width)

Returns:

  • (Integer)

    Array size



982
983
984
985
986
987
988
989
990
991
992
993
# File 'ext/opencv/cvmat.cpp', line 982

VALUE
rb_dim_size(VALUE self, VALUE index)
{
  int dimsize = 0;
  try {
    dimsize = cvGetDimSize(CVARR(self), NUM2INT(index));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return INT2NUM(dimsize);
}

#dimsArray<Integer>

Returns array dimensions sizes

Returns:

  • (Array<Integer>)

    Array dimensions sizes. For 2d arrays the number of rows (height) goes first, number of columns (width) next.



955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# File 'ext/opencv/cvmat.cpp', line 955

VALUE
rb_dims(VALUE self)
{
  int size[CV_MAX_DIM];
  int dims = 0;
  try {
    dims = cvGetDims(CVARR(self), size);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  VALUE ary = rb_ary_new2(dims);
  for (int i = 0; i < dims; ++i) {
    rb_ary_store(ary, i, INT2NUM(size[i]));
  }
  return ary;
}

#distance_transform(<i>labels, distance_type, mask_size</i>)) ⇒ Object



5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
# File 'ext/opencv/cvmat.cpp', line 5009

VALUE
rb_distance_transform(VALUE self, VALUE labels, VALUE distance_type, VALUE mask_size)
{
  if (!(rb_obj_is_kind_of(self, cCvMat::rb_class())) || cvGetElemType(CVARR(self)) != CV_8UC1)
    rb_raise(rb_eTypeError, "self should be 8-bit single-channel CvMat.");

  if (labels != Qnil) {
    if (!(rb_obj_is_kind_of(labels, cCvMat::rb_class())) || cvGetElemType(CVARR(labels)) != CV_32S)
      rb_raise(rb_eTypeError, "labels should be 32-bit signed single-channel CvMat.");
  }

  CvMat* self_ptr = CVMAT(self);
  VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1);

  try {
    const cv::Mat selfMat(CVMAT(self));
    cv::Mat destMat(CVMAT(dest));

    if (labels != Qnil) {
      cv::Mat labelsMat(CVMAT(labels));
      cv::distanceTransform(selfMat, destMat, labelsMat, NUM2INT(distance_type), NUM2INT(mask_size));
    } else {
      cv::distanceTransform(selfMat, destMat, NUM2INT(distance_type), NUM2INT(mask_size));
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#div(val, scale = 1.0) ⇒ CvMat Also known as: /

Performs per-element division of two arrays or a scalar by an array.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to divide

  • scale (Number)

    Scale factor

Returns:

  • (CvMat)

    Result array



1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
# File 'ext/opencv/cvmat.cpp', line 1904

VALUE
rb_div(int argc, VALUE *argv, VALUE self)
{
  VALUE val, scale;
  if (rb_scan_args(argc, argv, "11", &val, &scale) < 2)
    scale = rb_float_new(1.0);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    if (rb_obj_is_kind_of(val, rb_klass))
      cvDiv(self_ptr, CVARR(val), CVARR(dest), NUM2DBL(scale));
    else {
      CvScalar scl = VALUE_TO_CVSCALAR(val);
      VALUE mat = new_mat_kind_object(cvGetSize(self_ptr), self);
      CvArr* mat_ptr = CVARR(mat);
      cvSet(mat_ptr, scl);
      cvDiv(self_ptr, mat_ptr, CVARR(dest), NUM2DBL(scale));
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#dot_product(mat) ⇒ Number

WBH started this but didn’t end up needing it, so didn’t complete debugging (used bounding_rect instead) Note that WBH of 11/2014 tried to revisit this method and was beset with 3 hours of frustration based around the fact that the ROI can only be set via a constructor, but constructing a new object means allocating and returning memory associated with that new object. GL with debugging that, future self.

VALUE rb_set_roi(int argc, VALUE *argv, VALUE self) {

VALUE dest, newMat, delta, ksize, rect, scale;
rb_scan_args(argc, argv, "1", &rect);

CvMat* self_ptr = CVMAT(self);
dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_MAT_DEPTH(self_ptr->type), 1);

cv::Rect cppCvRect; cppCvRect.x = CVRECT(rect)->x; cppCvRect.y = CVRECT(rect)->y;

try {
  cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
  cv::Mat destMat(CVMAT(dest));
  destMat(selfMat(cppCvRect));
}
catch (cv::Exception& e) {
  raise_cverror(e);
}
return newMat;

}

Calculates the dot product of two arrays in Euclidean metrics.

Parameters:

  • mat (CvMat)

    An array to calculate the dot product.

Returns:

  • (Number)

    The dot product of two arrays.



2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
# File 'ext/opencv/cvmat.cpp', line 2613

VALUE
rb_dot_product(VALUE self, VALUE mat)
{
  double result = 0.0;
  try {
    result = cvDotProduct(CVARR(self), CVARR_WITH_CHECK(mat));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_float_new(result);
}

#draw_chessboard_corners(pattern_size, corners, pattern_was_found) ⇒ nil

Returns an image which is rendered the detected chessboard corners.

pattern_size (CvSize) - Number of inner corners per a chessboard row and column. corners (Array<CvPoint2D32f>) - Array of detected corners, the output of CvMat#find_chessboard_corners. pattern_was_found (Boolean)- Parameter indicating whether the complete board was found or not.

Returns:

  • (nil)


5357
5358
5359
5360
5361
# File 'ext/opencv/cvmat.cpp', line 5357

VALUE
rb_draw_chessboard_corners(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found)
{
  return rb_draw_chessboard_corners_bang(copy(self), pattern_size, corners, pattern_was_found);
}

#draw_chessboard_corners!(pattern_size, corners, pattern_was_found) ⇒ self

Renders the detected chessboard corners.

pattern_size (CvSize) - Number of inner corners per a chessboard row and column. corners (Array<CvPoint2D32f>) - Array of detected corners, the output of CvMat#find_chessboard_corners. pattern_was_found (Boolean)- Parameter indicating whether the complete board was found or not.

Returns:

  • (self)


5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
# File 'ext/opencv/cvmat.cpp', line 5373

VALUE
rb_draw_chessboard_corners_bang(VALUE self, VALUE pattern_size, VALUE corners, VALUE pattern_was_found)
{
  Check_Type(corners, T_ARRAY);
  int count = RARRAY_LEN(corners);
  CvPoint2D32f* corners_buff = RB_ALLOC_N(CvPoint2D32f, count);
  VALUE* corners_ptr = RARRAY_PTR(corners);
  for (int i = 0; i < count; i++) {
    corners_buff[i] = *(CVPOINT2D32F(corners_ptr[i]));
  }

  try {
    int found = (pattern_was_found == Qtrue);
    cvDrawChessboardCorners(CVARR(self), VALUE_TO_CVSIZE(pattern_size), corners_buff, count, found);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return self;
}

#draw_contours(contour, external_color, hole_color, max_level, options) ⇒ Object

Draws contour outlines or interiors in an image.

  • contour (CvContour) - Pointer to the first contour

  • external_color (CvScalar) - Color of the external contours

  • hole_color (CvScalar) - Color of internal contours (holes)

  • max_level (Integer) - Maximal level for drawn contours. If 0, only contour is drawn. If 1, the contour and all contours following it on the same level are drawn. If 2, all contours following and all contours one level below the contours are drawn, and so forth. If the value is negative, the function does not draw the contours following after contour but draws the child contours of contour up to the |max_level| - 1 level.

  • options (Hash) - Drawing options.

    • :thickness (Integer) - Thickness of lines the contours are drawn with. If it is negative, the contour interiors are drawn (default: 1).

    • :line_type (Integer or Symbol) - Type of the contour segments, see CvMat#line description (default: 8).



5316
5317
5318
5319
5320
# File 'ext/opencv/cvmat.cpp', line 5316

VALUE
rb_draw_contours(int argc, VALUE *argv, VALUE self)
{
  return rb_draw_contours_bang(argc, argv, copy(self));
}

#draw_contours!(contour, external_color, hole_color, max_level, options) ⇒ Object

Draws contour outlines or interiors in an image.

see CvMat#draw_contours



5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
# File 'ext/opencv/cvmat.cpp', line 5330

VALUE
rb_draw_contours_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE contour, external_color, hole_color, max_level, options;
  rb_scan_args(argc, argv, "41", &contour, &external_color, &hole_color, &max_level, &options);
  options = DRAWING_OPTION(options);
  try {
    cvDrawContours(CVARR(self), CVSEQ_WITH_CHECK(contour), VALUE_TO_CVSCALAR(external_color),
		   VALUE_TO_CVSCALAR(hole_color), NUM2INT(max_level),
		   DO_THICKNESS(options), DO_LINE_TYPE(options));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#each_col {|col| ... } ⇒ CvMat Also known as: each_column

TODO:

To return an enumerator if no block is given

Calls block once for each column in the matrix, passing that column as a parameter.

Yields:

  • (col)

    Each column in the matrix

Returns:



884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
# File 'ext/opencv/cvmat.cpp', line 884

VALUE
rb_each_col(VALUE self)
{
  int cols = CVMAT(self)->cols;
  CvMat *col = NULL;
  for (int i = 0; i < cols; ++i) {
    try {
      col = cvGetCol(CVARR(self), RB_CVALLOC(CvMat), i);
    }
    catch (cv::Exception& e) {
      if (col != NULL)
	cvReleaseMat(&col);
      raise_cverror(e);
    }
    rb_yield(DEPEND_OBJECT(rb_klass, col, self));
  }
  return self;
}

#each_row {|row| ... } ⇒ CvMat

TODO:

To return an enumerator if no block is given

Calls block once for each row in the matrix, passing that row as a parameter.

Yields:

  • (row)

    Each row in the matrix

Returns:



857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# File 'ext/opencv/cvmat.cpp', line 857

VALUE
rb_each_row(VALUE self)
{
  int rows = CVMAT(self)->rows;
  CvMat* row = NULL;
  for (int i = 0; i < rows; ++i) {
    try {
      row = cvGetRow(CVARR(self), RB_CVALLOC(CvMat), i);
    }
    catch (cv::Exception& e) {
      if (row != NULL)
	cvReleaseMat(&row);
      raise_cverror(e);
    }
    rb_yield(DEPEND_OBJECT(rb_klass, row, self));
  }
  return self;
}

#eigenvvArray<CvMat>

Computes eigenvalues and eigenvectors of symmetric matrix. self should be symmetric square matrix. self is modified during the processing.

Returns:

  • (Array<CvMat>)

    Array of [eigenvalues, eigenvectors]



2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
# File 'ext/opencv/cvmat.cpp', line 2926

VALUE
rb_eigenvv(int argc, VALUE *argv, VALUE self)
{
  VALUE epsilon, lowindex, highindex;
  rb_scan_args(argc, argv, "03", &epsilon, &lowindex, &highindex);
  double eps = (NIL_P(epsilon)) ? 0.0 : NUM2DBL(epsilon);
  int lowidx = (NIL_P(lowindex)) ? -1 : NUM2INT(lowindex);
  int highidx = (NIL_P(highindex)) ? -1 : NUM2INT(highindex);
  VALUE eigen_vectors = Qnil, eigen_values = Qnil;
  CvArr* self_ptr = CVARR(self);
  try {
    CvSize size = cvGetSize(self_ptr);
    int type = cvGetElemType(self_ptr);
    eigen_vectors = new_object(size, type);
    eigen_values = new_object(size.height, 1, type);
    // NOTE: eps, lowidx, highidx are ignored in the current OpenCV implementation.
    cvEigenVV(self_ptr, CVARR(eigen_vectors), CVARR(eigen_values), eps, lowidx, highidx);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, eigen_vectors, eigen_values);
}

#ellipse(center, axes, angle, start_angle, end_angle, options = nil) ⇒ CvMat

Returns an image that is drawn a simple or thick elliptic arc or fills an ellipse sector.

Parameters:

  • center (CvPoint)

    Center of the ellipse.

  • axes (CvSize)

    Length of the ellipse axes.

  • angle (Number)

    Ellipse rotation angle in degrees.

  • start_angle (Number)

    Starting angle of the elliptic arc in degrees.

  • end_angle (Number)

    Ending angle of the elliptic arc in degrees.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3266
3267
3268
3269
3270
# File 'ext/opencv/cvmat.cpp', line 3266

VALUE
rb_ellipse(int argc, VALUE *argv, VALUE self)
{
  return rb_ellipse_bang(argc, argv, rb_rcv_clone(self));
}

#ellipse!(center, axes, angle, start_angle, end_angle, options = nil) ⇒ CvMat

Draws a simple or thick elliptic arc or fills an ellipse sector.

Parameters:

  • center (CvPoint)

    Center of the ellipse.

  • axes (CvSize)

    Length of the ellipse axes.

  • angle (Number)

    Ellipse rotation angle in degrees.

  • start_angle (Number)

    Starting angle of the elliptic arc in degrees.

  • end_angle (Number)

    Ending angle of the elliptic arc in degrees.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
# File 'ext/opencv/cvmat.cpp', line 3292

VALUE
rb_ellipse_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE center, axis, angle, start_angle, end_angle, drawing_option;
  rb_scan_args(argc, argv, "51", &center, &axis, &angle, &start_angle, &end_angle, &drawing_option);
  drawing_option = DRAWING_OPTION(drawing_option);
  try {
    cvEllipse(CVARR(self), VALUE_TO_CVPOINT(center),
	      VALUE_TO_CVSIZE(axis),
	      NUM2DBL(angle), NUM2DBL(start_angle), NUM2DBL(end_angle),
	      DO_COLOR(drawing_option),
	      DO_THICKNESS(drawing_option),
	      DO_LINE_TYPE(drawing_option),
	      DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#ellipse_box(box, options = nil) ⇒ CvMat

Returns an image that is drawn a simple or thick elliptic arc or fills an ellipse sector.

Parameters:

  • box (CvBox2D)

    Alternative ellipse representation via CvBox2D. This means that the function draws an ellipse inscribed in the rotated rectangle.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3330
3331
3332
3333
3334
# File 'ext/opencv/cvmat.cpp', line 3330

VALUE
rb_ellipse_box(int argc, VALUE *argv, VALUE self)
{
  return rb_ellipse_box_bang(argc, argv, rb_rcv_clone(self));
}

#ellipse_box!(box, options = nil) ⇒ CvMat

Draws a simple or thick elliptic arc or fills an ellipse sector.

Parameters:

  • box (CvBox2D)

    Alternative ellipse representation via CvBox2D. This means that the function draws an ellipse inscribed in the rotated rectangle.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
# File 'ext/opencv/cvmat.cpp', line 3353

VALUE
rb_ellipse_box_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE box, drawing_option;
  rb_scan_args(argc, argv, "11", &box, &drawing_option);
  drawing_option = DRAWING_OPTION(drawing_option);
  try {
    cvEllipseBox(CVARR(self), VALUE_TO_CVBOX2D(box),
		 DO_COLOR(drawing_option),
		 DO_THICKNESS(drawing_option),
		 DO_LINE_TYPE(drawing_option),
		 DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#encode_image(ext, params = nil) ⇒ Array<Integer> Also known as: encode

Encodes an image into a memory buffer.

Examples:

jpg = CvMat.load('image.jpg')
bytes1 = jpg.encode_image('.jpg') # Encodes a JPEG image which quality is 95
bytes2 = jpg.encode_image('.jpg', CV_IMWRITE_JPEG_QUALITY => 10) # Encodes a JPEG image which quality is 10

png = CvMat.load('image.png')
bytes3 = mat.encode_image('.png', CV_IMWRITE_PNG_COMPRESSION => 1)  # Encodes a PNG image which compression level is 1

Parameters:

  • ext (String)

    File extension that defines the output format (‘.jpg’, ‘.png’, …)

  • params (Hash) (defaults to: nil)
    • Format-specific parameters.

Options Hash (params):

  • CV_IMWRITE_JPEG_QUALITY (Integer) — default: 95

    For JPEG, it can be a quality ( CV_IMWRITE_JPEG_QUALITY ) from 0 to 100 (the higher is the better).

  • CV_IMWRITE_PNG_COMPRESSION (Integer) — default: 3

    For PNG, it can be the compression level ( CV_IMWRITE_PNG_COMPRESSION ) from 0 to 9. A higher value means a smaller size and longer compression time.

  • CV_IMWRITE_PXM_BINARY (Integer) — default: 1

    For PPM, PGM, or PBM, it can be a binary format flag ( CV_IMWRITE_PXM_BINARY ), 0 or 1.

Returns:

  • (Array<Integer>)

    Encoded image as array of bytes.



224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# File 'ext/opencv/cvmat.cpp', line 224

VALUE
rb_encode_imageM(int argc, VALUE *argv, VALUE self)
{
  VALUE _ext, _params;
  rb_scan_args(argc, argv, "11", &_ext, &_params);
  Check_Type(_ext, T_STRING);
  const char* ext = RSTRING_PTR(_ext);
  CvMat* buff = NULL;
  int* params = NULL;

  if (!NIL_P(_params)) {
    params = hash_to_format_specific_param(_params);
  }

  try {
    buff = cvEncodeImage(ext, CVARR(self), params);
  }
  catch (cv::Exception& e) {
    if (params != NULL) {
      free(params);
      params = NULL;
    }
    raise_cverror(e);
  }
  if (params != NULL) {
    free(params);
    params = NULL;
  }

  const int size = buff->rows * buff->cols;
  VALUE array = rb_ary_new2(size);
  for (int i = 0; i < size; i++) {
    rb_ary_store(array, i, CHR2FIX(CV_MAT_ELEM(*buff, char, 0, i)));
  }

  try {
    cvReleaseMat(&buff);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return array;
}

#eq(val) ⇒ CvMat

Performs the per-element comparison “equal” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2136
2137
2138
2139
2140
2141
# File 'ext/opencv/cvmat.cpp', line 2136

VALUE
rb_eq(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_EQ);
}

#equalize_histObject

Equalize histgram of grayscale of image.

equalizes histogram of the input image using the following algorithm:

  1. calculate histogram H for src.

  2. normalize histogram, so that the sum of histogram bins is 255.

  3. compute integral of the histogram: H’(i) = sum0≤j≤iH(j)

  4. transform the image using H’ as a look-up table: dst(x,y)=H’(src(x,y))

The algorithm normalizes brightness and increases contrast of the image.

support single-channel 8bit image (grayscale) only.



5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
# File 'ext/opencv/cvmat.cpp', line 5770

VALUE
rb_equalize_hist(VALUE self)
{
  VALUE dest = Qnil;
  try {
    CvArr* self_ptr = CVARR(self);
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvEqualizeHist(self_ptr, CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#erode([element = nil, iteration = 1]) ⇒ Object

Create erodes image by using arbitrary structuring element. element is structuring element used for erosion. element should be IplConvKernel. If it is nil, a 3x3 rectangular structuring element is used. iterations is number of times erosion is applied.



4457
4458
4459
4460
4461
# File 'ext/opencv/cvmat.cpp', line 4457

VALUE
rb_erode(int argc, VALUE *argv, VALUE self)
{
  return rb_erode_bang(argc, argv, rb_rcv_clone(self));
}

#erode!([element = nil][,iteration = 1]) ⇒ self

Erodes image by using arbitrary structuring element. see also #erode.

Returns:

  • (self)


4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
# File 'ext/opencv/cvmat.cpp', line 4470

VALUE
rb_erode_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE element, iteration;
  rb_scan_args(argc, argv, "02", &element, &iteration);
  IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element);
  try {
    cvErode(CVARR(self), CVARR(self), kernel, IF_INT(iteration, 1));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#rb_extract_orb(params[,mask]) ⇒ Array

Extracts ORB Features from an image

params (hash) - Various algorithm parameters, allowing the following keys:

:scale_factor   - Scale factor used to transform scale level n into scale level n-1. Defaults to 1.2
:n_levels       - Number of pyramid levels to consider when generating keypoints. Defaults to 3
:edge_threshold - Defaults to 31
:first_level    - The pyramid level of the image this function is being called on - level 0 is the largest level
                  of the pyramid, so any value > 0 will generate pyramid levels larger than the original image.
                  Defaults to 0
:keypoints      - If given, should be an array of tuples of [ x, y, size ] describing keypoints to generate
                  descriptors for. Defaults to nil
:keypoints_only - If true, descriptors will not be generated. Returned value will only be array(hash) containing
                  keypoints (given keypoints will be ignored). Defaults to false.
:num_keypoints  - If given, maximum number of desired keypoints to find. Defaults to 500

mask (CvMat) - The optional input 8-bit mask. The features are only found in the areas that contain more than 50% of non-zero mask pixels.

Returns array of keypoints (array of hashes) and descriptors (cvmat). Keypoints array contains entries with the following keys: ‘point’ => CvPoint, ‘size’ => float, ‘angle’ => float, ‘response’ => float, ‘octave’ => float

Returns:

  • (Array)


6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
# File 'ext/opencv/cvmat.cpp', line 6421

VALUE
rb_extract_orb(int argc, VALUE *argv, VALUE self)
{
  // Commented by WBH until we can research the replacement for cv::ORB::CommonParams (which no longer exists)
  /*
  VALUE mask, orb_option;
  rb_scan_args(argc, argv, "02", &mask, &orb_option);

  orb_option = ORB_OPTION(orb_option);

  const cv::Mat selfMat(CVMAT(self));
  const CvSize size = cvGetSize(CVARR(self));

  cv::Mat descriptorsMat;

  if (mask == Qnil) {
    mask = new_object(cvSize(size.width, size.height), CV_MAKETYPE(CV_8U, 1));
    cvSet(CVARR(mask), cvScalarAll(255));
  }
  const cv::Mat maskMat(CVMAT(mask));

  std::vector<cv::KeyPoint> keypoints;
  VALUE inputKeypoints = DO_ORB_KEYPOINTS(orb_option);
  const bool descriptorsOnly = inputKeypoints != Qnil;
  if (descriptorsOnly) {
    const int inputKeypointsLength = RARRAY_LEN(inputKeypoints);
    for (int i = 0; i < inputKeypointsLength; ++i) {
      VALUE inputKeypoint = rb_ary_entry(inputKeypoints, i);
      keypoints.push_back(cv::KeyPoint(
        (float)NUM2DBL(rb_ary_entry(inputKeypoint, 0)),
        (float)NUM2DBL(rb_ary_entry(inputKeypoint, 1)),
        (float)NUM2DBL(rb_ary_entry(inputKeypoint, 2))
      ));
    }
  }

  try {
    cv::ORB::CommonParams params(DO_ORB_SCALE_FACTOR(orb_option),
                                 DO_ORB_N_LEVELS(orb_option),
                                 DO_ORB_EDGE_THRESHOLD(orb_option),
                                 DO_ORB_FIRST_LEVEL(orb_option));
    cv::ORB featuresFinder(DO_ORB_NUM_KEYPOINTS(orb_option), params);

    if (DO_ORB_KEYPOINTS_ONLY(orb_option)) {
      featuresFinder(selfMat, maskMat, keypoints);
    } else {
      featuresFinder(selfMat, maskMat, keypoints, descriptorsMat, descriptorsOnly);
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  VALUE keypointsList = rb_ary_new2(keypoints.size());
  for (size_t i = 0; i < keypoints.size(); ++i) {
    const cv::KeyPoint& keypoint = keypoints[i];

    VALUE keypointData = rb_hash_new();

    rb_hash_aset(keypointData, rb_str_new2("point"), cCvPoint::new_object(cvPoint(keypoint.pt.x, keypoint.pt.y)));
    rb_hash_aset(keypointData, rb_str_new2("size"), rb_float_new(keypoint.size));
    rb_hash_aset(keypointData, rb_str_new2("angle"), rb_float_new(keypoint.angle));
    rb_hash_aset(keypointData, rb_str_new2("response"), rb_float_new(keypoint.response));
    rb_hash_aset(keypointData, rb_str_new2("octave"), rb_float_new(keypoint.octave));

    rb_ary_store(keypointsList, i, keypointData);
  }

  VALUE result = Qnil;
  if (DO_ORB_KEYPOINTS_ONLY(orb_option)) {
    result = keypointsList;
  } else {
    CvMat descriptorsCvMat = descriptorsMat;
    VALUE descriptors = new_mat_kind_object(cvGetSize(&descriptorsCvMat), self, CV_8U, 1);
    cvCopy(&descriptorsCvMat, CVMAT(descriptors));

    if (descriptorsOnly) {
      result = descriptors;
    } else {
      result = rb_ary_new2(2);
      rb_ary_store(result, 0, keypointsList);
      rb_ary_store(result, 1, descriptors);
    }
  }

  return result;
  */
}

#extract_surf(params, mask = nil) ⇒ Array<CvSeq<CvSURFPoint>, Array<float>>

Extracts Speeded Up Robust Features from an image

Parameters:

  • params (CvSURFParams)

    Various algorithm parameters put to the structure CvSURFParams.

  • mask (CvMat) (defaults to: nil)

    The optional input 8-bit mask. The features are only found in the areas that contain more than 50% of non-zero mask pixels.

Returns:

  • (Array<CvSeq<CvSURFPoint>, Array<float>>)

    Output vector of keypoints and descriptors.



6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
# File 'ext/opencv/cvmat.cpp', line 6359

VALUE
rb_extract_surf(int argc, VALUE *argv, VALUE self)
{
  VALUE _params, _mask;
  rb_scan_args(argc, argv, "11", &_params, &_mask);

  // Prepare arguments
  CvSURFParams params = *CVSURFPARAMS_WITH_CHECK(_params);
  CvMat* mask = MASK(_mask);
  VALUE storage = cCvMemStorage::new_object();
  CvSeq* keypoints = NULL;
  CvSeq* descriptors = NULL;

  // Compute SURF keypoints and descriptors
  try {
    cvExtractSURF(CVARR(self), mask, &keypoints, &descriptors, CVMEMSTORAGE(storage),
		  params, 0);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  VALUE _keypoints = cCvSeq::new_sequence(cCvSeq::rb_class(), keypoints, cCvSURFPoint::rb_class(), storage);
  
  // Create descriptor array
  const int DIM_SIZE = (params.extended) ? 128 : 64;
  const int NUM_KEYPOINTS = keypoints->total;
  VALUE _descriptors = rb_ary_new2(NUM_KEYPOINTS);
  for (int m = 0; m < NUM_KEYPOINTS; ++m) {
    VALUE elem = rb_ary_new2(DIM_SIZE);
    float *descriptor = (float*)cvGetSeqElem(descriptors, m);
    for (int n = 0; n < DIM_SIZE; ++n) {
      rb_ary_store(elem, n, rb_float_new(descriptor[n]));
    }
    rb_ary_store(_descriptors, m, elem);
  }
  
  return rb_assoc_new(_keypoints, _descriptors);
}

#fill_convex_poly(points, options = nil) ⇒ CvMat

Returns an image that is filled a convex polygon.

Parameters:

  • points (Array<CvPoint>)

    Polygon vertices.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3464
3465
3466
3467
3468
# File 'ext/opencv/cvmat.cpp', line 3464

VALUE
rb_fill_convex_poly(int argc, VALUE *argv, VALUE self)
{
  return rb_fill_convex_poly_bang(argc, argv, rb_rcv_clone(self));
}

#fill_convex_poly!(points, options = nil) ⇒ CvMat

Fills a convex polygon.

Parameters:

  • points (Array<CvPoint>)

    Polygon vertices.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
# File 'ext/opencv/cvmat.cpp', line 3486

VALUE
rb_fill_convex_poly_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE points, drawing_option;
  int i, num_points;
  CvPoint *p;

  rb_scan_args(argc, argv, "11", &points, &drawing_option);
  Check_Type(points, T_ARRAY);
  drawing_option = DRAWING_OPTION(drawing_option);
  num_points = RARRAY_LEN(points);
  p = RB_ALLOC_N(CvPoint, num_points);
  for (i = 0; i < num_points; ++i)
    p[i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i));

  try {
    cvFillConvexPoly(CVARR(self), p, num_points,
		     DO_COLOR(drawing_option),
		     DO_LINE_TYPE(drawing_option),
		     DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#fill_poly(points, options = nil) ⇒ CvMat

Returns an image that is filled the area bounded by one or more polygons.

Parameters:

  • points (Array<CvPoint>)

    Array of polygons where each polygon is represented as an array of points.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3388
3389
3390
3391
3392
# File 'ext/opencv/cvmat.cpp', line 3388

VALUE
rb_fill_poly(int argc, VALUE *argv, VALUE self)
{
  return rb_fill_poly_bang(argc, argv, self);
}

#fill_poly!(points, options = nil) ⇒ CvMat

Fills the area bounded by one or more polygons.

Parameters:

  • points (Array<CvPoint>)

    Array of polygons where each polygon is represented as an array of points.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
# File 'ext/opencv/cvmat.cpp', line 3410

VALUE
rb_fill_poly_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE polygons, drawing_option;
  VALUE points;
  int i, j;
  int num_polygons;
  int *num_points;
  CvPoint **p;

  rb_scan_args(argc, argv, "11", &polygons, &drawing_option);
  Check_Type(polygons, T_ARRAY);
  drawing_option = DRAWING_OPTION(drawing_option);
  num_polygons = RARRAY_LEN(polygons);
  num_points = RB_ALLOC_N(int, num_polygons);

  p = RB_ALLOC_N(CvPoint*, num_polygons);
  for (j = 0; j < num_polygons; ++j) {
    points = rb_ary_entry(polygons, j);
    Check_Type(points, T_ARRAY);
    num_points[j] = RARRAY_LEN(points);
    p[j] = RB_ALLOC_N(CvPoint, num_points[j]);
    for (i = 0; i < num_points[j]; ++i) {
      p[j][i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i));
    }
  }
  try {
    cvFillPoly(CVARR(self), p, num_points, num_polygons,
	       DO_COLOR(drawing_option),
	       DO_LINE_TYPE(drawing_option),
	       DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#filter2d(kernel[,anchor]) ⇒ Object

Convolves image with the kernel. Convolution kernel, single-channel floating point matrix (or same depth of self’s). If you want to apply different kernels to different channels, split the image using CvMat#split into separate color planes and process them individually.



4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
# File 'ext/opencv/cvmat.cpp', line 4767

VALUE
rb_filter2d(int argc, VALUE *argv, VALUE self)
{
  VALUE _kernel, _anchor;
  rb_scan_args(argc, argv, "11", &_kernel, &_anchor);
  CvMat* kernel = CVMAT_WITH_CHECK(_kernel);
  CvArr* self_ptr = CVARR(self);
  VALUE _dest = Qnil;
  try {
    _dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvFilter2D(self_ptr, CVARR(_dest), kernel, NIL_P(_anchor) ? cvPoint(-1,-1) : VALUE_TO_CVPOINT(_anchor));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return _dest;
}

#find_chessboard_corners(pattern_size, flag = CV_CALIB_CB_ADAPTIVE_THRESH) ⇒ Array<Array<CvPoint2D32f>, Boolean>

Finds the positions of internal corners of the chessboard.

Examples:

mat = CvMat.load('chessboard.jpg', 1)
gray = mat.BGR2GRAY
pattern_size = CvSize.new(4, 4)
corners, found = gray.find_chessboard_corners(pattern_size, CV_CALIB_CB_ADAPTIVE_THRESH)

if found
  corners = gray.find_corner_sub_pix(corners, CvSize.new(3, 3), CvSize.new(-1, -1), CvTermCriteria.new(20, 0.03))
end

result = mat.draw_chessboard_corners(pattern_size, corners, found)
w = GUI::Window.new('Result')
w.show result
GUI::wait_key

Parameters:

  • pattern_size (CvSize)

    Number of inner corners per a chessboard row and column.

  • flags (Integer)

    Various operation flags that can be zero or a combination of the following values.

    • CV_CALIB_CB_ADAPTIVE_THRESH

      • Use adaptive thresholding to convert the image to black and white, rather than a fixed threshold level (computed from the average image brightness).

    • CV_CALIB_CB_NORMALIZE_IMAGE

      • Normalize the image gamma with CvMat#equalize_hist() before applying fixed or adaptive thresholding.

    • CV_CALIB_CB_FILTER_QUADS

      • Use additional criteria (like contour area, perimeter, square-like shape) to filter out false quads extracted at the contour retrieval stage.

    • CALIB_CB_FAST_CHECK

      • Run a fast check on the image that looks for chessboard corners, and shortcut the call if none is found. This can drastically speed up the call in the degenerate condition when no chessboard is observed.

Returns:

  • (Array<Array<CvPoint2D32f>, Boolean>)

    An array which includes the positions of internal corners of the chessboard, and a parameter indicating whether the complete board was found or not.



3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
# File 'ext/opencv/cvmat.cpp', line 3981

VALUE
rb_find_chessboard_corners(int argc, VALUE *argv, VALUE self)
{
  VALUE pattern_size_val, flag_val;
  rb_scan_args(argc, argv, "11", &pattern_size_val, &flag_val);

  int flag = NIL_P(flag_val) ? CV_CALIB_CB_ADAPTIVE_THRESH : NUM2INT(flag_val);
  CvSize pattern_size = VALUE_TO_CVSIZE(pattern_size_val);
  CvPoint2D32f* corners = RB_ALLOC_N(CvPoint2D32f, pattern_size.width * pattern_size.height);
  int num_found_corners = 0;
  int pattern_was_found = 0;
  try {
    pattern_was_found = cvFindChessboardCorners(CVARR(self), pattern_size, corners, &num_found_corners, flag);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  VALUE found_corners = rb_ary_new2(num_found_corners);
  for (int i = 0; i < num_found_corners; i++) {
    rb_ary_store(found_corners, i, cCvPoint2D32f::new_object(corners[i]));
  }

  VALUE found = (pattern_was_found > 0) ? Qtrue : Qfalse;
  return rb_assoc_new(found_corners, found);
}

#find_contours(find_contours_options) ⇒ CvContour, CvChain

Finds contours in binary image.

Parameters:

  • find_contours_options (Hash)

    Options

Options Hash (find_contours_options):

  • :mode (Symbol) — default: :list

    Retrieval mode.

    • :external - retrive only the extreme outer contours

    • :list - retrieve all the contours and puts them in the list.

    • :ccomp - retrieve all the contours and organizes them into two-level hierarchy: top level are external boundaries of the components, second level are bounda boundaries of the holes

    • :tree - retrieve all the contours and reconstructs the full hierarchy of nested contours Connectivity determines which neighbors of a pixel are considered.

  • :method (Symbol) — default: :approx_simple

    Approximation method.

    • :code - output contours in the Freeman chain code. All other methods output polygons (sequences of vertices).

    • :approx_none - translate all the points from the chain code into points;

    • :approx_simple - compress horizontal, vertical, and diagonal segments, that is, the function leaves only their ending points;

    • :approx_tc89_l1, :approx_tc89_kcos - apply one of the flavors of Teh-Chin chain approximation algorithm.

  • :offset (CvPoint) — default: CvPoint.new(0, 0)

    Offset, by which every contour point is shifted.

Returns:

  • (CvContour, CvChain)

    Detected contours. If :method is :code, returns as CvChain, otherwise CvContour.



5252
5253
5254
5255
5256
# File 'ext/opencv/cvmat.cpp', line 5252

VALUE
rb_find_contours(int argc, VALUE *argv, VALUE self)
{
  return rb_find_contours_bang(argc, argv, copy(self));
}

#find_contours!(find_contours_options) ⇒ CvContour, CvChain

Finds contours in binary image.

Returns:

  • (CvContour, CvChain)

    Detected contours. If :method is :code, returns as CvChain, otherwise CvContour.



5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
# File 'ext/opencv/cvmat.cpp', line 5266

VALUE
rb_find_contours_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE find_contours_option, klass, element_klass, storage;
  rb_scan_args(argc, argv, "01", &find_contours_option);
  CvSeq *contour = NULL;
  find_contours_option = FIND_CONTOURS_OPTION(find_contours_option);
  int mode = FC_MODE(find_contours_option);
  int method = FC_METHOD(find_contours_option);
  int header_size;
  if (method == CV_CHAIN_CODE) {
    klass = cCvChain::rb_class();
    element_klass = T_FIXNUM;
    header_size = sizeof(CvChain);
  }
  else {
    klass = cCvContour::rb_class();
    element_klass = cCvPoint::rb_class();
    header_size = sizeof(CvContour);
  }
  storage = cCvMemStorage::new_object();

  int count = 0;
  try {
    count = cvFindContours(CVARR(self), CVMEMSTORAGE(storage), &contour, header_size,
			   mode, method, FC_OFFSET(find_contours_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  if (count == 0)
    return Qnil;
  else
    return cCvSeq::new_sequence(klass, contour, element_klass, storage);
}

#find_corner_sub_pix(corners, win_size, zero_zone, criteria) ⇒ Array<CvPoint2D32f>

Refines the corner locations.

Parameters:

  • corners (Array<CvPoint>)

    Initial coordinates of the input corners.

  • win_size (CvSize)

    Half of the side length of the search window.

  • zero_zone (CvSize)

    Half of the size of the dead region in the middle of the search zone over which the summation in the formula below is not done.

  • criteria (CvTermCriteria)

    Criteria for termination of the iterative process of corner refinement.

Returns:



4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
# File 'ext/opencv/cvmat.cpp', line 4020

VALUE
rb_find_corner_sub_pix(VALUE self, VALUE corners, VALUE win_size, VALUE zero_zone, VALUE criteria)
{
  Check_Type(corners, T_ARRAY);
  int count = RARRAY_LEN(corners);
  CvPoint2D32f* corners_buff = RB_ALLOC_N(CvPoint2D32f, count);
  VALUE* corners_ptr = RARRAY_PTR(corners);

  for (int i = 0; i < count; i++) {
    corners_buff[i] = *(CVPOINT2D32F(corners_ptr[i]));
  }

  try {
    cvFindCornerSubPix(CVARR(self), corners_buff, count, VALUE_TO_CVSIZE(win_size),
		       VALUE_TO_CVSIZE(zero_zone), VALUE_TO_CVTERMCRITERIA(criteria));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  VALUE refined_corners = rb_ary_new2(count);
  for (int i = 0; i < count; i++) {
    rb_ary_store(refined_corners, i, cCvPoint2D32f::new_object(corners_buff[i]));
  }

  return refined_corners;
}

#fit_ellipseCvBox2D

Returns:



1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
# File 'ext/opencv/cvmat.cpp', line 1313

VALUE
rb_fit_ellipse(VALUE self)
{
  VALUE box = cCvBox2D::new_object();
  try {
    const cv::Mat selfMat(CVMAT(self));
    *CVBOX2D(box) = cv::fitEllipse(selfMat);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return box;
}

#fit_lineObject

self should be 2-channel or 3-channel mat (where channels are [x,y] or [x,y,z])



1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
# File 'ext/opencv/cvmat.cpp', line 1294

VALUE
rb_fit_line(VALUE self, VALUE dest, VALUE distType, VALUE param, VALUE reps, VALUE aeps)
{
  try {
    const cv::Mat selfMat(CVMAT(self));
    cv::Mat destMat(CVMAT(dest));
    cv::fitLine(selfMat, destMat, NUM2INT(distType), NUM2DBL(param), NUM2DBL(reps), NUM2DBL(aeps));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#flip(flip_mode) ⇒ CvMat

Returns a fliped 2D array around vertical, horizontal, or both axes.

Parameters:

  • flip_mode (Symbol)

    Flag to specify how to flip the array.

    • :x - Flipping around the x-axis.

    • :y - Flipping around the y-axis.

    • :xy - Flipping around both axes.

Returns:

  • (CvMat)

    Flipped array



1495
1496
1497
1498
1499
# File 'ext/opencv/cvmat.cpp', line 1495

VALUE
rb_flip(int argc, VALUE *argv, VALUE self)
{
  return rb_flip_bang(argc, argv, copy(self));
}

#flip!(flip_mode) ⇒ CvMat

Flips a 2D array around vertical, horizontal, or both axes.

Parameters:

  • flip_mode (Symbol)

    Flag to specify how to flip the array.

    • :x - Flipping around the x-axis.

    • :y - Flipping around the y-axis.

    • :xy - Flipping around both axes.

Returns:

  • (CvMat)

    Flipped array



1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
# File 'ext/opencv/cvmat.cpp', line 1509

VALUE
rb_flip_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE format;
  int mode = 1;
  if (rb_scan_args(argc, argv, "01", &format) > 0) {
    Check_Type(format, T_SYMBOL);
    ID flip_mode = rb_to_id(format);
    if (flip_mode == rb_intern("x")) {
      mode = 1;
    }
    else if (flip_mode == rb_intern("y")) {
      mode = 0;
    }
    else if (flip_mode == rb_intern("xy")) {
      mode = -1;
    }
  }
  try {
    cvFlip(CVARR(self), NULL, mode);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#flood_fill(seed_point, new_val, lo_diff = CvScalar.new(0), up_diff = CvScalar.new(0), flood_fill_option = nil) ⇒ Array<CvMat, CvConnectedComp>

Fills a connected component with the given color.

Parameters:

  • seed_point (CvPoint)

    Starting point.

  • new_val (CvScalar)

    New value of the repainted domain pixels.

  • lo_diff (CvScalar) (defaults to: CvScalar.new(0))

    Maximal lower brightness/color difference between the currently observed pixel and one of its neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color images it is packed value.

  • up_diff (CvScalar) (defaults to: CvScalar.new(0))

    Maximal upper brightness/color difference between the currently observed pixel and one of its neighbor belong to the component or seed pixel to add the pixel to component. In case of 8-bit color images it is packed value.

  • flood_fill_option (Hash) (defaults to: nil)

Options Hash (flood_fill_option):

  • :connectivity (Integer) — default: 4

    Connectivity determines which neighbors of a pixel are considered (4 or 8).

  • :fixed_range (Boolean) — default: false

    If set the difference between the current pixel and seed pixel is considered, otherwise difference between neighbor pixels is considered (the range is floating).

  • :mask_only (Boolean) — default: false

    If set, the function does not fill the image(new_val is ignored), but the fills mask.

Returns:



5146
5147
5148
5149
5150
# File 'ext/opencv/cvmat.cpp', line 5146

VALUE
rb_flood_fill(int argc, VALUE *argv, VALUE self)
{
  return rb_flood_fill_bang(argc, argv, copy(self));
}

#flood_fill!(seed_point, new_val, lo_diff = CvScalar.new(0), up_diff = CvScalar.new(0), flood_fill_option = nil) ⇒ Object

Fills a connected component with the given color.



5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
# File 'ext/opencv/cvmat.cpp', line 5160

VALUE
rb_flood_fill_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE seed_point, new_val, lo_diff, up_diff, flood_fill_option;
  rb_scan_args(argc, argv, "23", &seed_point, &new_val, &lo_diff, &up_diff, &flood_fill_option);
  flood_fill_option = FLOOD_FILL_OPTION(flood_fill_option);
  int flags = FF_CONNECTIVITY(flood_fill_option);
  if (FF_FIXED_RANGE(flood_fill_option)) {
    flags |= CV_FLOODFILL_FIXED_RANGE;
  }
  if (FF_MASK_ONLY(flood_fill_option)) {
    flags |= CV_FLOODFILL_MASK_ONLY;
  }
  cv::Rect rect;
  VALUE mask = FF_MASK(flood_fill_option);
  try {
    if (mask == Qnil) {
      CvSize size = cvGetSize(CVARR(self));
      mask = new_object(cvSize(size.width + 2, size.height + 2), CV_MAKETYPE(CV_8U, 1));
      cvSetZero(CVARR(mask));
    }

    cv::Mat selfMat(CVMAT(self));
    cv::Mat maskMat(CVMAT(mask));

    cv::floodFill(
      selfMat,
      maskMat,
      cv::Point(VALUE_TO_CVPOINT(seed_point)),
      cv::Scalar(VALUE_TO_CVSCALAR(new_val)),
      &rect,
      cv::Scalar(NIL_P(lo_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(lo_diff)),
      cv::Scalar(NIL_P(up_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(up_diff)),
      flags);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(3, self, cCvRect::new_object(cvRect(rect.x, rect.y, rect.width, rect.height)), mask);
}

#flood_fill_mask(seed_point, mask, lo_diff, up_diff, connectivity, fixed_range) ⇒ Object



5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
# File 'ext/opencv/cvmat.cpp', line 5201

VALUE
rb_flood_fill_mask(VALUE self, VALUE seed_point, VALUE mask, VALUE lo_diff, VALUE up_diff, VALUE connectivity, VALUE fixed_range)
{
  int flags = NUM2INT(connectivity);
  if (RTEST(fixed_range)) {
    flags |= CV_FLOODFILL_FIXED_RANGE;
  }
  flags |= CV_FLOODFILL_MASK_ONLY;
  cv::Rect rect;
  try {
    cv::Mat selfMat(CVMAT(self));
    cv::Mat maskMat(CVMAT(mask));

    cv::floodFill(
      selfMat,
      maskMat,
      cv::Point(VALUE_TO_CVPOINT(seed_point)),
      cv::Scalar(cvScalar(0)),
      &rect,
      cv::Scalar(NIL_P(lo_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(lo_diff)),
      cv::Scalar(NIL_P(up_diff) ? cvScalar(0) : VALUE_TO_CVSCALAR(up_diff)),
      flags);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvRect::new_object(cvRect(rect.x, rect.y, rect.width, rect.height));
}

#ge(val) ⇒ CvMat

Performs the per-element comparison “greater than or equal” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2168
2169
2170
2171
2172
2173
# File 'ext/opencv/cvmat.cpp', line 2168

VALUE
rb_ge(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_GE);
}

#get_cols(<i>n</i>)) ⇒ Return column #get_cols(<i>n1, n2, ...</i>)) ⇒ Return Array of columns

Return column(or columns) of matrix. argument should be Fixnum or CvSlice compatible object.

Overloads:

  • #get_cols(<i>n</i>)) ⇒ Return column

    Returns:

    • (Return column)
  • #get_cols(<i>n1, n2, ...</i>)) ⇒ Return Array of columns

    Returns:



821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# File 'ext/opencv/cvmat.cpp', line 821

VALUE
rb_get_cols(VALUE self, VALUE args)
{
  int len = RARRAY_LEN(args);
  if (len < 1)
    rb_raise(rb_eArgError, "wrong number of argument.(more than 1)");
  VALUE ary = rb_ary_new2(len);
  for (int i = 0; i < len; ++i) {
    VALUE value = rb_ary_entry(args, i);
    CvMat* col = NULL;
    try {
      if (FIXNUM_P(value))
	col = cvGetCol(CVARR(self), RB_CVALLOC(CvMat), FIX2INT(value));
      else {
	CvSlice slice = VALUE_TO_CVSLICE(value);
	col = cvGetCols(CVARR(self), RB_CVALLOC(CvMat), slice.start_index, slice.end_index);
      }
    }
    catch (cv::Exception& e) {
      if (col != NULL)
	cvReleaseMat(&col);
      raise_cverror(e);
    }
    rb_ary_store(ary, i, DEPEND_OBJECT(rb_klass, col, self));
  }
  return RARRAY_LEN(ary) > 1 ? ary : rb_ary_entry(ary, 0);
}

#get_rows(<i>n</i>)) ⇒ Return row #get_rows(<i>n1, n2, ...</i>)) ⇒ Return Array of row

Return row(or rows) of matrix. argument should be Fixnum or CvSlice compatible object.

Overloads:

  • #get_rows(<i>n</i>)) ⇒ Return row

    Returns:

    • (Return row)
  • #get_rows(<i>n1, n2, ...</i>)) ⇒ Return Array of row

    Returns:

    • (Return Array of row)


783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
# File 'ext/opencv/cvmat.cpp', line 783

VALUE
rb_get_rows(VALUE self, VALUE args)
{
  int len = RARRAY_LEN(args);
  if (len < 1)
    rb_raise(rb_eArgError, "wrong number of argument.(more than 1)");
  VALUE ary = rb_ary_new2(len);
  for (int i = 0; i < len; ++i) {
    VALUE value = rb_ary_entry(args, i);

    CvMat* row = NULL;
    try {
      if (FIXNUM_P(value))
	row = cvGetRow(CVARR(self), RB_CVALLOC(CvMat), FIX2INT(value));
      else {
	CvSlice slice = VALUE_TO_CVSLICE(value);
	row = cvGetRows(CVARR(self), RB_CVALLOC(CvMat), slice.start_index, slice.end_index);
      }
    }
    catch (cv::Exception& e) {
      if (row != NULL)
	cvReleaseMat(&row);
      raise_cverror(e);
    }
    rb_ary_store(ary, i, DEPEND_OBJECT(rb_klass, row, self));
  }
  return RARRAY_LEN(ary) > 1 ? ary : rb_ary_entry(ary, 0);
}

#good_features_to_track(quality_level, min_distance, good_features_to_track_option = {}) ⇒ Array<CvPoint2D32f>

Determines strong corners on an image.

Parameters:

  • quality_level (Number)

    Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue or the Harris function response.

  • min_distance (Number)

    Minimum possible Euclidean distance between the returned corners.

  • good_features_to_track_option (Hash) (defaults to: {})

    Options.

Options Hash (good_features_to_track_option):

  • :mask (CvMat) — default: nil

    Optional region of interest. If the image is not empty (it needs to have the type CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

  • :block_size (Integer) — default: 3

    Size of an average block for computing a derivative covariation matrix over each pixel neighborhood.

  • :use_harris (Boolean) — default: false

    Parameter indicating whether to use a Harris detector.

  • :k (Number) — default: 0.04

    Free parameter of the Harris detector.

Returns:

  • (Array<CvPoint2D32f>)

    Output vector of detected corners.



4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
# File 'ext/opencv/cvmat.cpp', line 4068

VALUE
rb_good_features_to_track(int argc, VALUE *argv, VALUE self)
{
  VALUE quality_level, min_distance, good_features_to_track_option;
  rb_scan_args(argc, argv, "21", &quality_level, &min_distance, &good_features_to_track_option);
  good_features_to_track_option = GOOD_FEATURES_TO_TRACK_OPTION(good_features_to_track_option);
  int np = GF_MAX(good_features_to_track_option);
  if (np <= 0)
    rb_raise(rb_eArgError, "option :max should be positive value.");

  CvMat *self_ptr = CVMAT(self);
  CvPoint2D32f *p32 = (CvPoint2D32f*)rb_cvAlloc(sizeof(CvPoint2D32f) * np);
  int type = CV_MAKETYPE(CV_32F, 1);
  CvMat* eigen = rb_cvCreateMat(self_ptr->rows, self_ptr->cols, type);
  CvMat* tmp = rb_cvCreateMat(self_ptr->rows, self_ptr->cols, type);
  try {
    cvGoodFeaturesToTrack(self_ptr, &eigen, &tmp, p32, &np, NUM2DBL(quality_level), NUM2DBL(min_distance),
			  GF_MASK(good_features_to_track_option),
			  GF_BLOCK_SIZE(good_features_to_track_option),
			  GF_USE_HARRIS(good_features_to_track_option),
			  GF_K(good_features_to_track_option));
  }
  catch (cv::Exception& e) {
    if (eigen != NULL)
      cvReleaseMat(&eigen);
    if (tmp != NULL)
      cvReleaseMat(&tmp);
    if (p32 != NULL)
      cvFree(&p32);
    raise_cverror(e);
  }
  VALUE corners = rb_ary_new2(np);
  for (int i = 0; i < np; ++i)
    rb_ary_store(corners, i, cCvPoint2D32f::new_object(p32[i]));
  cvFree(&p32);
  cvReleaseMat(&eigen);
  cvReleaseMat(&tmp);
  return corners;
}

#grab_cutObject

Does grab cut segmentation.



5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
# File 'ext/opencv/cvmat.cpp', line 5489

VALUE
rb_grab_cut(VALUE self, VALUE mask, VALUE rect, VALUE bgdModel, VALUE fgdModel, VALUE iterCount, VALUE mode)
{
  if (!(rb_obj_is_kind_of(self, cCvMat::rb_class())) || cvGetElemType(CVARR(self)) != CV_8UC3)
    rb_raise(rb_eTypeError, "image (self) should be 8-bit 3-channel image.");

  if (!(rb_obj_is_kind_of(mask, cCvMat::rb_class())) || cvGetElemType(CVARR(mask)) != CV_8UC1)
    rb_raise(rb_eTypeError, "argument 1 (mask) should be mask image.");

  const int INVALID_TYPE = -1;
  int valid_mode = CVMETHOD("GRAB_CUT_MODE", mode, INVALID_TYPE);

  try {
    const cv::Mat selfMat(CVMAT(self));
    cv::Mat maskMat(CVMAT(mask));
    cv::Mat bgMat(CVMAT(bgdModel));
    cv::Mat fgMat(CVMAT(fgdModel));

    cv::grabCut(selfMat, maskMat, VALUE_TO_CVRECT(rect), bgMat, fgMat, NUM2INT(iterCount), valid_mode);
  } catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return mask;
}

#grab_cut2Array, ...

Does grab cut segmentation.

Returns ].

Returns:

  • (Array, cvmat(bgdCenters:cv32fc1), cvmat(fgdCenters:cv32fc1))

    ]



5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
# File 'ext/opencv/cvmat.cpp', line 5520

VALUE
rb_grab_cut2(VALUE self, VALUE mask, VALUE rect, VALUE bgdModel, VALUE fgdModel, VALUE iterCount, VALUE mode,
             VALUE bgdLabels, VALUE fgdLabels, VALUE bgdCenters, VALUE fgdCenters)
{
  if (!(rb_obj_is_kind_of(self, cCvMat::rb_class())) || cvGetElemType(CVARR(self)) != CV_8UC3)
    rb_raise(rb_eTypeError, "image (self) should be 8-bit 3-channel image.");

  if (!(rb_obj_is_kind_of(mask, cCvMat::rb_class())) || cvGetElemType(CVARR(mask)) != CV_8UC1)
    rb_raise(rb_eTypeError, "argument 1 (mask) should be mask image.");

  const int INVALID_TYPE = -1;
  int valid_mode = CVMETHOD("GRAB_CUT_MODE", mode, INVALID_TYPE);

  try {
    const cv::Mat selfMat(CVMAT(self));
    cv::Mat maskMat(CVMAT(mask));
    cv::Mat bgMat(CVMAT(bgdModel));
    cv::Mat fgMat(CVMAT(fgdModel));
    
    int labelsMode = cv::GC_LABELS_INIT_KMEANS;

    if (bgdLabels == Qnil) {
      bgdLabels = new_object(cvSize(1, 1), CV_MAKETYPE(CV_32F, 2));
      cvSetZero(CVARR(bgdLabels));
    } else {
      labelsMode = cv::GC_LABELS_USE_INITIAL;
    }
    cv::Mat bgdLabelsMat(CVMAT(bgdLabels));

    if (fgdLabels == Qnil) {
      fgdLabels = new_object(cvSize(1, 1), CV_MAKETYPE(CV_32F, 2));
      cvSetZero(CVARR(fgdLabels));
    } else {
      labelsMode = cv::GC_LABELS_USE_INITIAL;
    }
    cv::Mat fgdLabelsMat(CVMAT(fgdLabels));

    int centersMode = cv::GC_CENTERS_MODE_INIT_RANDOM;

    if (bgdCenters == Qnil) {
      // K=5 (# of clusters) for 3-dimensions (RGB)
      bgdCenters = new_object(cvSize(3, 5), CV_MAKETYPE(CV_32F, 2));
      cvSetZero(CVARR(bgdCenters));
    } else {
      centersMode = cv::GC_CENTERS_MODE_USE_INITIAL;
    }
    cv::Mat bgdCentersMat(CVMAT(bgdCenters));

    if (fgdCenters == Qnil) {
      // K=5 (# of clusters) for 3-dimensions (RGB)
      fgdCenters = new_object(cvSize(3, 5), CV_MAKETYPE(CV_32F, 2));
      cvSetZero(CVARR(fgdCenters));
    } else {
      centersMode = cv::GC_CENTERS_MODE_USE_INITIAL;
    }
    cv::Mat fgdCentersMat(CVMAT(fgdCenters));

    cv::grabCut2(selfMat, maskMat, VALUE_TO_CVRECT(rect), bgMat, fgMat, bgdLabelsMat, fgdLabelsMat, bgdCentersMat, fgdCentersMat, NUM2INT(iterCount), valid_mode, labelsMode, centersMode);

    CvMat bgdLabelsTmp = bgdLabelsMat;
    bgdLabels = new_object(bgdLabelsTmp.rows, bgdLabelsTmp.cols, bgdLabelsTmp.type);
    cvCopy(&bgdLabelsTmp, CVMAT(bgdLabels));
    
    CvMat fgdLabelsTmp = fgdLabelsMat;
    fgdLabels = new_object(fgdLabelsTmp.rows, fgdLabelsTmp.cols, fgdLabelsTmp.type);
    cvCopy(&fgdLabelsTmp, CVMAT(fgdLabels));
    
    CvMat bgdCentersTmp = bgdCentersMat;
    bgdCenters = new_object(bgdCentersTmp.rows, bgdCentersTmp.cols, bgdCentersTmp.type);
    cvCopy(&bgdCentersTmp, CVMAT(bgdCenters));
    
    CvMat fgdCentersTmp = fgdCentersMat;
    fgdCenters = new_object(fgdCentersTmp.rows, fgdCentersTmp.cols, fgdCentersTmp.type);
    cvCopy(&fgdCentersTmp, CVMAT(fgdCenters));
  } catch (cv::Exception& e) {
    raise_cverror(e);
  }
    
  return rb_ary_new3(5, mask, bgdLabels, fgdLabels, bgdCenters, fgdCenters);
}

#gt(val) ⇒ CvMat

Performs the per-element comparison “greater than” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2152
2153
2154
2155
2156
2157
# File 'ext/opencv/cvmat.cpp', line 2152

VALUE
rb_gt(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_GT);
}

#rowsInteger Also known as: rows

Returns number of rows of the matrix.

Returns:

  • (Integer)

    Number of rows of the matrix



449
450
451
452
453
# File 'ext/opencv/cvmat.cpp', line 449

VALUE
rb_height(VALUE self)
{
  return INT2NUM(CVMAT(self)->height);
}

#hough_circles(method, dp, min_dist, param1, param2, min_radius = 0, max_radius = 0) ⇒ CvSeq<CvCircle32f>

Finds circles in a grayscale image using the Hough transform.

Parameters:

  • method (Integer)

    Detection method to use. Currently, the only implemented method is CV_HOUGH_GRADIENT.

  • dp (Number)

    Inverse ratio of the accumulator resolution to the image resolution. For example, if dp=1, the accumulator has the same resolution as the input image. If dp=2, the accumulator has half as big width and height.

  • min_dist (Number)

    Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed.

  • param1 (Number)

    First method-specific parameter. In case of CV_HOUGH_GRADIENT, it is the higher threshold of the two passed to the #canny detector (the lower one is twice smaller).

  • param2 (Number)

    Second method-specific parameter. In case of CV_HOUGH_GRADIENT, it is the accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the larger accumulator values, will be returned first.

Returns:



5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
# File 'ext/opencv/cvmat.cpp', line 5704

VALUE
rb_hough_circles(int argc, VALUE *argv, VALUE self)
{
  const int INVALID_TYPE = -1;
  VALUE method, dp, min_dist, param1, param2, min_radius, max_radius, storage;
  rb_scan_args(argc, argv, "52", &method, &dp, &min_dist, &param1, &param2, 
	       &min_radius, &max_radius);
  storage = cCvMemStorage::new_object();
  int method_flag = CVMETHOD("HOUGH_TRANSFORM_METHOD", method, INVALID_TYPE);
  if (method_flag == INVALID_TYPE)
    rb_raise(rb_eArgError, "Invalid method: %d", method_flag);
  CvSeq *seq = NULL;
  try {
    seq = cvHoughCircles(CVARR(self), CVMEMSTORAGE(storage),
			 method_flag, NUM2DBL(dp), NUM2DBL(min_dist),
			 NUM2DBL(param1), NUM2DBL(param2),
			 IF_INT(min_radius, 0), IF_INT(max_radius, 0));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvCircle32f::rb_class(), storage);
}

#hough_lines(method, rho, theta, threshold, param1, param2) ⇒ CvSeq<CvLine, CvTwoPoints>

Finds lines in binary image using a Hough transform.

Parameters:

  • method (Integer)

    The Hough transform variant, one of the following:

    • CV_HOUGH_STANDARD - classical or standard Hough transform.

    • CV_HOUGH_PROBABILISTIC - probabilistic Hough transform (more efficient in case if picture contains a few long linear segments).

    • CV_HOUGH_MULTI_SCALE - multi-scale variant of the classical Hough transform. The lines are encoded the same way as CV_HOUGH_STANDARD.

  • rho (Number)

    Distance resolution in pixel-related units.

  • theta (Number)

    Angle resolution measured in radians.

  • threshold (Number)

    Threshold parameter. A line is returned by the function if the corresponding accumulator value is greater than threshold.

  • param1 (Number)

    The first method-dependent parameter:

    • For the classical Hough transform it is not used (0).

    • For the probabilistic Hough transform it is the minimum line length.

    • For the multi-scale Hough transform it is the divisor for the distance resolution. (The coarse distance resolution will be rho and the accurate resolution will be (rho / param1)).

  • param2 (Number)

    The second method-dependent parameter:

    • For the classical Hough transform it is not used (0).

    • For the probabilistic Hough transform it is the maximum gap between line segments lying on the same line to treat them as a single line segment (i.e. to join them).

    • For the multi-scale Hough transform it is the divisor for the angle resolution. (The coarse angle resolution will be theta and the accurate resolution will be (theta / param2).)

Returns:

  • (CvSeq<CvLine, CvTwoPoints>)

    Output lines. If method is CV_HOUGH_STANDARD or CV_HOUGH_MULTI_SCALE, the class of elements is CvLine, otherwise CvTwoPoints.



5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
# File 'ext/opencv/cvmat.cpp', line 5650

VALUE
rb_hough_lines(int argc, VALUE *argv, VALUE self)
{
  const int INVALID_TYPE = -1;
  VALUE method, rho, theta, threshold, p1, p2;
  rb_scan_args(argc, argv, "42", &method, &rho, &theta, &threshold, &p1, &p2);
  int method_flag = CVMETHOD("HOUGH_TRANSFORM_METHOD", method, INVALID_TYPE);
  if (method_flag == INVALID_TYPE)
    rb_raise(rb_eArgError, "Invalid method: %d", method_flag);
  VALUE storage = cCvMemStorage::new_object();
  CvSeq *seq = NULL;
  try {
    seq = cvHoughLines2(CVARR(copy(self)), CVMEMSTORAGE(storage),
			method_flag, NUM2DBL(rho), NUM2DBL(theta), NUM2INT(threshold),
			IF_DBL(p1, 0), IF_DBL(p2, 0));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  switch (method_flag) {
  case CV_HOUGH_STANDARD:
  case CV_HOUGH_MULTI_SCALE:
    return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvLine::rb_class(), storage);
    break;
  case CV_HOUGH_PROBABILISTIC:
    return cCvSeq::new_sequence(cCvSeq::rb_class(), seq, cCvTwoPoints::rb_class(), storage);
    break;
  default:
    break;
  }

  return Qnil;
}

#identity(value) ⇒ CvMat

Returns a scaled identity matrix.

arr(i, j) = value if i = j, 0 otherwise

Parameters:

  • value (CvScalar)

    Value to assign to diagonal elements.

Returns:

  • (CvMat)

    Scaled identity matrix.



1365
1366
1367
1368
1369
# File 'ext/opencv/cvmat.cpp', line 1365

VALUE
rb_set_identity(int argc, VALUE *argv, VALUE self)
{
  return rb_set_identity_bang(argc, argv, copy(self));
}

#identity!(value) ⇒ CvMat

Initializes a scaled identity matrix.

arr(i, j) = value if i = j, 0 otherwise

Parameters:

  • value (CvScalar)

    Value to assign to diagonal elements.

Returns:



1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
# File 'ext/opencv/cvmat.cpp', line 1379

VALUE
rb_set_identity_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE val;
  CvScalar value;
  if (rb_scan_args(argc, argv, "01",  &val) < 1)
    value = cvRealScalar(1);
  else
    value = VALUE_TO_CVSCALAR(val);

  try {
    cvSetIdentity(CVARR(self), value);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#in_range(min, max) ⇒ CvMat

Checks if array elements lie between the elements of two other arrays.

Parameters:

  • min (CvMat, CvScalar)

    Inclusive lower boundary array or a scalar.

  • max (CvMat, CvScalar)

    Inclusive upper boundary array or a scalar.

Returns:

  • (CvMat)

    Result array



2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
# File 'ext/opencv/cvmat.cpp', line 2233

VALUE
rb_in_range(VALUE self, VALUE min, VALUE max)
{
  CvArr* self_ptr = CVARR(self);
  CvSize size = cvGetSize(self_ptr);
  VALUE dest = new_object(size, CV_8UC1);
  try {
    if (rb_obj_is_kind_of(min, rb_klass) && rb_obj_is_kind_of(max, rb_klass))
      cvInRange(self_ptr, CVARR(min), CVARR(max), CVARR(dest));
    else if (rb_obj_is_kind_of(min, rb_klass)) {
      VALUE tmp = new_object(size, cvGetElemType(self_ptr));
      cvSet(CVARR(tmp), VALUE_TO_CVSCALAR(max));
      cvInRange(self_ptr, CVARR(min), CVARR(tmp), CVARR(dest));
    }
    else if (rb_obj_is_kind_of(max, rb_klass)) {
      VALUE tmp = new_object(size, cvGetElemType(self_ptr));
      cvSet(CVARR(tmp), VALUE_TO_CVSCALAR(min));
      cvInRange(self_ptr, CVARR(tmp), CVARR(max), CVARR(dest));
    }
    else
      cvInRangeS(self_ptr, VALUE_TO_CVSCALAR(min), VALUE_TO_CVSCALAR(max), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#inpaint(inpaint_method, mask, radius) ⇒ Object

Inpaints the selected region in the image The radius of circlular neighborhood of each point inpainted that is considered by the algorithm.



5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
# File 'ext/opencv/cvmat.cpp', line 5735

VALUE
rb_inpaint(VALUE self, VALUE inpaint_method, VALUE mask, VALUE radius)
{
  const int INVALID_TYPE = -1;
  VALUE dest = Qnil;
  int method = CVMETHOD("INPAINT_METHOD", inpaint_method, INVALID_TYPE);
  if (method == INVALID_TYPE)
    rb_raise(rb_eArgError, "Invalid method");
  try {
    CvArr* self_ptr = CVARR(self);
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvInpaint(self_ptr, MASK(mask), CVARR(dest), NUM2DBL(radius), method);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#inside?(point) ⇒ Boolean #inside?(rect) ⇒ Boolean

Tests whether a coordinate or rectangle is inside of the matrix

Overloads:

  • #inside?(point) ⇒ Boolean

    Parameters:

    • obj (#x, #y)

      Tested coordinate

  • #inside?(rect) ⇒ Boolean

    Parameters:

Returns:

  • (Boolean)

    If the point or rectangle is inside of the matrix, return true. If not, return false.



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# File 'ext/opencv/cvmat.cpp', line 376

VALUE
rb_inside_q(VALUE self, VALUE object)
{
  if (cCvPoint::rb_compatible_q(cCvPoint::rb_class(), object)) {
    CvMat *mat = CVMAT(self);
    int x = NUM2INT(rb_funcall(object, rb_intern("x"), 0));
    int y = NUM2INT(rb_funcall(object, rb_intern("y"), 0));
    if (cCvRect::rb_compatible_q(cCvRect::rb_class(), object)) {
      int width = NUM2INT(rb_funcall(object, rb_intern("width"), 0));
      int height = NUM2INT(rb_funcall(object, rb_intern("height"), 0));
      return (x >= 0) && (y >= 0) && (x < mat->width) && ((x + width) < mat->width)
	&& (y < mat->height) && ((y + height) < mat->height) ? Qtrue : Qfalse;
    }
    else {
      return (x >= 0) && (y >= 0) && (x < mat->width) && (y < mat->height) ? Qtrue : Qfalse;
    }
  }
  rb_raise(rb_eArgError, "argument 1 should have method \"x\", \"y\"");
  return Qnil;
}

#integral(need_sqsum = false, need_tilted_sum = false) ⇒ Array?

Calculates integral images. If need_sqsum = true, calculate the integral image for squared pixel values. If need_tilted_sum = true, calculate the integral for the image rotated by 45 degrees.

sum(X,Y)=sumx<X,y<Yimage(x,y)
sqsum(X,Y)=sumx<X,y<Yimage(x,y)2
tilted_sum(X,Y)=sumy<Y,abs(x-X)<yimage(x,y)

Using these integral images, one may calculate sum, mean, standard deviation over arbitrary up-right or rotated rectangular region of the image in a constant time.

Returns:

  • (Array, nil)


4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
# File 'ext/opencv/cvmat.cpp', line 4843

VALUE
rb_integral(int argc, VALUE *argv, VALUE self)
{
  VALUE need_sqsum = Qfalse, need_tiled_sum = Qfalse;
  rb_scan_args(argc, argv, "02", &need_sqsum, &need_tiled_sum);

  VALUE sum = Qnil;
  VALUE sqsum = Qnil;
  VALUE tiled_sum = Qnil;
  CvArr* self_ptr = CVARR(self);
  try {
    CvSize self_size = cvGetSize(self_ptr);
    CvSize size = cvSize(self_size.width + 1, self_size.height + 1);
    int type_cv64fcn = CV_MAKETYPE(CV_64F, CV_MAT_CN(cvGetElemType(self_ptr)));
    sum = cCvMat::new_object(size, type_cv64fcn);
    sqsum = (need_sqsum == Qtrue ? cCvMat::new_object(size, type_cv64fcn) : Qnil);
    tiled_sum = (need_tiled_sum == Qtrue ? cCvMat::new_object(size, type_cv64fcn) : Qnil);
    cvIntegral(self_ptr, CVARR(sum), (need_sqsum == Qtrue) ? CVARR(sqsum) : NULL,
	       (need_tiled_sum == Qtrue) ? CVARR(tiled_sum) : NULL);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  
  if ((need_sqsum != Qtrue) && (need_tiled_sum != Qtrue))
    return sum;
  else {
    VALUE dest = rb_ary_new3(1, sum);
    if (need_sqsum == Qtrue)
      rb_ary_push(dest, sqsum);
    if (need_tiled_sum == Qtrue)
      rb_ary_push(dest, tiled_sum);
    return dest;
  }
}

#invert(inversion_method = :lu) ⇒ Number

Finds inverse or pseudo-inverse of matrix.

Parameters:

  • inversion_method (Symbol)

    Inversion method.

    • :lu - Gaussian elimincation with optimal pivot element chose.

    • :svd - Singular value decomposition(SVD) method.

    • :svd_sym - SVD method for a symmetric positively-defined matrix.

Returns:

  • (Number)

    Inverse or pseudo-inverse of matrix.



2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
# File 'ext/opencv/cvmat.cpp', line 2817

VALUE
rb_invert(int argc, VALUE *argv, VALUE self)
{
  VALUE symbol;
  rb_scan_args(argc, argv, "01", &symbol);
  int method = CVMETHOD("INVERSION_METHOD", symbol, CV_LU);
  VALUE dest = Qnil;
  CvArr* self_ptr = CVARR(self);
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvInvert(self_ptr, CVARR(dest), method);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#kmeans(k, termcrit) ⇒ Object



5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
# File 'ext/opencv/cvmat.cpp', line 5470

VALUE
rb_kmeans(VALUE self, VALUE k, VALUE termcrit)
{
  VALUE labels = new_object(CVMAT(self)->height, 1, CV_32SC1);
  try {
    cvKMeans2(CVARR(self), NUM2INT(k), CVARR(labels), *CVTERMCRITERIA(termcrit));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return labels;
}

#laplace(aperture_size = 3) ⇒ Object

Calculates the Laplacian of an image.

Parameters:

  • aperture_size (Integer)

    Aperture size used to compute the second-derivative filters. The size must be positive and odd.

Returns:

  • Output image.



3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
# File 'ext/opencv/cvmat.cpp', line 3734

VALUE
rb_laplace(int argc, VALUE *argv, VALUE self)
{
  VALUE aperture_size, dest;
  if (rb_scan_args(argc, argv, "01", &aperture_size) < 1)
    aperture_size = INT2FIX(3);
  CvMat* self_ptr = CVMAT(self);
  switch(CV_MAT_DEPTH(self_ptr->type)) {
  case CV_8U:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_8U, 1);
    break;
  case CV_32F:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1);
    break;
  default:
    rb_raise(rb_eArgError, "source depth should be CV_8U or CV_32F.");
  }

  try {
    cvLaplace(self_ptr, CVARR(dest), NUM2INT(aperture_size));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#laplace2(<i>ksize = 1, scale = 1, delta = 0</i>)) ⇒ Object

Calculates first, second, third or mixed image derivatives using extended Sobel operator. self should be single-channel 8bit unsigned or 32bit floating-point.



3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
# File 'ext/opencv/cvmat.cpp', line 3770

VALUE
rb_laplace2(int argc, VALUE *argv, VALUE self)
{
  VALUE dest, delta, ksize, scale;
  int ddepth;
  rb_scan_args(argc, argv, "03", &ksize, &scale, &delta);

  CvMat* self_ptr = CVMAT(self);
  if(CV_MAT_DEPTH(self_ptr->type) == CV_8U) {
  	ddepth = CV_16S; // An 8U datatype would overflow due to negative derivative values
  } else {
  	ddepth = CV_MAT_DEPTH(self_ptr->type);
  }

	dest = new_mat_kind_object(cvGetSize(self_ptr), self, ddepth, 1);

	if(NIL_P(ksize)) ksize = INT2FIX(1);
	if(NIL_P(scale)) scale = 1.0;
	if(NIL_P(delta)) delta = 0.0;

  try {
    const cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
    cv::Mat destMat(CVMAT(dest));
    cv::Laplacian(selfMat, destMat, ddepth, ksize, scale, delta);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#le(val) ⇒ CvMat

Performs the per-element comparison “less than or equal” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2200
2201
2202
2203
2204
2205
# File 'ext/opencv/cvmat.cpp', line 2200

VALUE
rb_le(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_LE);
}

#line(p1, p2, options = nil) ⇒ CvMat

Returns an image that is drawn a line segment connecting two points.

Parameters:

  • p1 (CvPoint)

    First point of the line segment.

  • p2 (CvPoint)

    Second point of the line segment.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3086
3087
3088
3089
3090
# File 'ext/opencv/cvmat.cpp', line 3086

VALUE
rb_line(int argc, VALUE *argv, VALUE self)
{
  return rb_line_bang(argc, argv, rb_rcv_clone(self));
}

#line!(p1, p2, options = nil) ⇒ CvMat

Draws a line segment connecting two points.

Parameters:

  • p1 (CvPoint)

    First point of the line segment.

  • p2 (CvPoint)

    Second point of the line segment.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
# File 'ext/opencv/cvmat.cpp', line 3109

VALUE
rb_line_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE p1, p2, drawing_option;
  rb_scan_args(argc, argv, "21", &p1, &p2, &drawing_option);
  drawing_option = DRAWING_OPTION(drawing_option);
  try {
    cvLine(CVARR(self), VALUE_TO_CVPOINT(p1), VALUE_TO_CVPOINT(p2),
	   DO_COLOR(drawing_option),
	   DO_THICKNESS(drawing_option),
	   DO_LINE_TYPE(drawing_option),
	   DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#logObject

Calculates the natural logarithm of every array element



2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
# File 'ext/opencv/cvmat.cpp', line 2343

VALUE
rb_log(VALUE self)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self);
  try {
    const cv::Mat selfMat(CVMAT(self));
    cv::Mat destMat(CVMAT(dest));

    cv::log(selfMat, destMat);

  } catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#log_polar(size, center, magnitude, flags = CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS) ⇒ CvMat

Remaps an image to log-polar space.

Parameters:

  • size (CvSize)

    Size of the destination image.

  • center (CvPoint2D32f)

    The transformation center; where the output precision is maximal.

  • magnitude (Number)

    Magnitude scale parameter.

  • flags (Integer) (defaults to: CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS)

    A combination of interpolation methods and the following optional flags:

    • CV_WARP_FILL_OUTLIERS - fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero.

    • CV_WARP_INVERSE_MAP - performs inverse transformation.

Returns:

  • (CvMat)

    Destination image.



4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
# File 'ext/opencv/cvmat.cpp', line 4432

VALUE
rb_log_polar(int argc, VALUE *argv, VALUE self)
{
  VALUE dst_size, center, m, flags;
  rb_scan_args(argc, argv, "31", &dst_size, &center, &m, &flags);
  int _flags = NIL_P(flags) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags);
  VALUE dest = new_mat_kind_object(VALUE_TO_CVSIZE(dst_size), self);
  try {
    cvLogPolar(CVARR(self), CVARR(dest), VALUE_TO_CVPOINT2D32F(center), NUM2DBL(m), _flags);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#lt(val) ⇒ CvMat

Performs the per-element comparison “less than” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2184
2185
2186
2187
2188
2189
# File 'ext/opencv/cvmat.cpp', line 2184

VALUE
rb_lt(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_LT);
}

#lut(lut) ⇒ CvMat

Performs a look-up table transform of an array.

Parameters:

  • lut (CvMat)

    Look-up table of 256 elements. In case of multi-channel source array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the source array.

Returns:

  • (CvMat)

    Transformed array



1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
# File 'ext/opencv/cvmat.cpp', line 1677

VALUE
rb_lut(VALUE self, VALUE lut)
{
  VALUE dest = copy(self);
  try {
    cvLUT(CVARR(self), CVARR(dest), CVARR_WITH_CHECK(lut));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#magnitude(y) ⇒ Object

Calculates the magnitude of 2D vectors



2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
# File 'ext/opencv/cvmat.cpp', line 2365

VALUE
rb_magnitude(VALUE self, VALUE y)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self);
  try {
    const cv::Mat selfMat(CVMAT(self));
    const cv::Mat yMat(CVMAT(y));
    cv::Mat destMat(CVMAT(dest));

    cv::magnitude(selfMat, yMat, destMat);

  } catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#mat_mul(val, shiftvec = nil) ⇒ CvMat Also known as: *

Calculates the product of two arrays.

dst = self * val + shiftvec

Parameters:

  • val (CvMat)

    Array to multiply

  • shiftvec (CvMat)

    Optional translation vector

Returns:

  • (CvMat)

    Result array



1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
# File 'ext/opencv/cvmat.cpp', line 1876

VALUE
rb_mat_mul(int argc, VALUE *argv, VALUE self)
{
  VALUE val, shiftvec, dest;
  rb_scan_args(argc, argv, "11", &val, &shiftvec);
  CvArr* self_ptr = CVARR(self);  
  dest = new_mat_kind_object(cvGetSize(self_ptr), self);
  try {
    if (NIL_P(shiftvec))
      cvMatMul(self_ptr, CVARR_WITH_CHECK(val), CVARR(dest));
    else
      cvMatMulAdd(self_ptr, CVARR_WITH_CHECK(val), CVARR_WITH_CHECK(shiftvec), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#match_shapes(object, method) ⇒ Float

Compares two shapes(self and object). object should be CvMat or CvContour.

A - object1, B - object2:

  • method=CV_CONTOURS_MATCH_I1

    I1(A,B)=sumi=1..7abs(1/mAi - 1/mBi)
    
  • method=CV_CONTOURS_MATCH_I2

    I2(A,B)=sumi=1..7abs(mAi - mBi)
    
  • method=CV_CONTOURS_MATCH_I3

    I3(A,B)=sumi=1..7abs(mAi - mBi)/abs(mAi)
    

Returns:

  • (Float)


5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
# File 'ext/opencv/cvmat.cpp', line 5950

VALUE
rb_match_shapes(int argc, VALUE *argv, VALUE self)
{
  VALUE object, method, param;
  rb_scan_args(argc, argv, "21", &object, &method, &param);
  int method_flag = CVMETHOD("COMPARISON_METHOD", method);
  if (!(rb_obj_is_kind_of(object, cCvMat::rb_class()) || rb_obj_is_kind_of(object, cCvContour::rb_class())))
    rb_raise(rb_eTypeError, "argument 1 (shape) should be %s or %s",
	     rb_class2name(cCvMat::rb_class()), rb_class2name(cCvContour::rb_class()));
  double result = 0;
  try {
    result = cvMatchShapes(CVARR(self), CVARR(object), method_flag);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_float_new(result);
}

#match_template(template, method = CV_TM_SQDIFF) ⇒ Object

Compares template against overlapped image regions.

After the match_template finishes comparison, the best matches can be found as global minimums (CV_TM_SQDIFF) or maximums(CV_TM_CCORR or CV_TM_CCOEFF) using CvMat#min_max_loc. In case of color image and template summation in both numerator and each sum in denominator is done over all the channels (and separate mean values are used for each channel).

Parameters:

  • template (CvMat)

    Searched template. It must be not greater than the source image and have the same data type.

  • method (Integer) (defaults to: CV_TM_SQDIFF)

    Parameter specifying the comparison method.

    • CV_TM_SQDIFF

    • CV_TM_SQDIFF_NORMED

    • CV_TM_CCORR

    • CV_TM_CCORR_NORMED

    • CV_TM_CCOEFF

    • CV_TM_CCOEFF_NORMED



5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
# File 'ext/opencv/cvmat.cpp', line 5909

VALUE
rb_match_template(int argc, VALUE *argv, VALUE self)
{
  VALUE templ, method;
  int method_flag;
  if (rb_scan_args(argc, argv, "11", &templ, &method) == 1)
    method_flag = CV_TM_SQDIFF;
  else
    method_flag = CVMETHOD("MATCH_TEMPLATE_METHOD", method);

  CvArr* self_ptr = CVARR(self);
  CvArr* templ_ptr = CVARR_WITH_CHECK(templ);
  VALUE result = Qnil;
  try {
    CvSize src_size = cvGetSize(self_ptr);
    CvSize template_size = cvGetSize(templ_ptr);
    result = cCvMat::new_object(src_size.height - template_size.height + 1,
				src_size.width - template_size.width + 1,
				CV_32FC1);
    cvMatchTemplate(self_ptr, templ_ptr, CVARR(result), method_flag);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return result;
}

#max(anothermat) ⇒ Object



2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
# File 'ext/opencv/cvmat.cpp', line 2555

VALUE
rb_max(int argc, VALUE *argv, VALUE self)
{
  VALUE second_mat, dest;
  rb_scan_args(argc, argv, "1", &second_mat);
  dest = copy(self);
  try {
    cvMax(CVARR(self), CVARR(second_mat), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#mean_shift(window, criteria) ⇒ Object

Implements CAMSHIFT object tracking algrorithm. First, it finds an object center using mean_shift and, after that, calculates the object size and orientation.



5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
# File 'ext/opencv/cvmat.cpp', line 5977

VALUE
rb_mean_shift(VALUE self, VALUE window, VALUE criteria)
{
  VALUE comp = cCvConnectedComp::new_object();
  try {
    cvMeanShift(CVARR(self), VALUE_TO_CVRECT(window), VALUE_TO_CVTERMCRITERIA(criteria), CVCONNECTEDCOMP(comp));    
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return comp;
}

#min(anothermat) ⇒ Object



2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
# File 'ext/opencv/cvmat.cpp', line 2535

VALUE
rb_min(int argc, VALUE *argv, VALUE self)
{
  VALUE second_mat, dest;
  rb_scan_args(argc, argv, "1", &second_mat);
  dest = copy(self);
  try {
    cvMin(CVARR(self), CVARR(second_mat), CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#min_max_loc(mask = nil) ⇒ Array<Number, CvPoint>

Finds the global minimum and maximum in an array.

Parameters:

  • mask (CvMat)

    Optional mask used to select a sub-array.

Returns:

  • (Array<Number, CvPoint>)

    [min_val, max_val, min_loc, max_loc], where min_val, max_val are minimum, maximum values as Number and min_loc, max_loc are minimum, maximum locations as CvPoint, respectively.



2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
# File 'ext/opencv/cvmat.cpp', line 2513

VALUE
rb_min_max_loc(int argc, VALUE *argv, VALUE self)
{
  VALUE mask, min_loc, max_loc;
  double min_val = 0.0, max_val = 0.0;
  rb_scan_args(argc, argv, "01", &mask);
  min_loc = cCvPoint::new_object();
  max_loc = cCvPoint::new_object();
  try {
    cvMinMaxLoc(CVARR(self), &min_val, &max_val, CVPOINT(min_loc), CVPOINT(max_loc), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(4, rb_float_new(min_val), rb_float_new(max_val), min_loc, max_loc);
}

#momentsObject

Calculates moments.



5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
# File 'ext/opencv/cvmat.cpp', line 5607

VALUE
rb_moments(int argc, VALUE *argv, VALUE self)
{
  VALUE is_binary;
  rb_scan_args(argc, argv, "01", &is_binary);
  CvArr *self_ptr = CVARR(self);
  VALUE moments = Qnil;
  try {
    moments = cCvMoments::new_object(self_ptr, TRUE_OR_FALSE(is_binary, 0));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(1, moments);
}

#morphology(operation, element = nil, iteration = 1) ⇒ CvMat

Performs advanced morphological transformations using erosion and dilation as basic operations.

Parameters:

  • operation (Integer)

    Type of morphological operation.

    • CV_MOP_OPEN - Opening

    • CV_MOP_CLOSE - Closing

    • CV_MOP_GRADIENT - Morphological gradient

    • CV_MOP_TOPHAT - Top hat

    • CV_MOP_BLACKHAT - Black hat

  • element (IplConvKernel)

    Structuring element.

  • iteration (Integer)

    Number of times erosion and dilation are applied.

Returns:

  • (CvMat)

    Result array



4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
# File 'ext/opencv/cvmat.cpp', line 4550

VALUE
rb_morphology(int argc, VALUE *argv, VALUE self)
{
  VALUE element, iteration, operation_val;
  rb_scan_args(argc, argv, "12", &operation_val, &element, &iteration);

  int operation = CVMETHOD("MORPHOLOGICAL_OPERATION", operation_val, -1);
  CvArr* self_ptr = CVARR(self);
  CvSize size = cvGetSize(self_ptr);
  VALUE dest = new_mat_kind_object(size, self);
  IplConvKernel* kernel = NIL_P(element) ? NULL : IPLCONVKERNEL_WITH_CHECK(element);
  try {
    if (operation == CV_MOP_GRADIENT) {
      CvMat* temp = rb_cvCreateMat(size.height, size.width, cvGetElemType(self_ptr));
      cvMorphologyEx(self_ptr, CVARR(dest), temp, kernel, CV_MOP_GRADIENT, IF_INT(iteration, 1));
      cvReleaseMat(&temp);
    }
    else {
      cvMorphologyEx(self_ptr, CVARR(dest), 0, kernel, operation, IF_INT(iteration, 1));
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#mul(val, scale = 1.0) ⇒ CvMat

Calculates the per-element scaled product of two arrays.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to multiply

  • scale (Number)

    Optional scale factor.

Returns:

  • (CvMat)

    Result array



1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
# File 'ext/opencv/cvmat.cpp', line 1818

VALUE
rb_mul(int argc, VALUE *argv, VALUE self)
{
  VALUE val, scale, dest;
  if (rb_scan_args(argc, argv, "11", &val, &scale) < 2)
    scale = rb_float_new(1.0);
  dest = new_mat_kind_object(cvGetSize(CVARR(self)), self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvMul(CVARR(self), CVARR(val), CVARR(dest), NUM2DBL(scale));
    else {
      CvScalar scl = VALUE_TO_CVSCALAR(val);
      VALUE mat = new_object(cvGetSize(CVARR(self)), cvGetElemType(CVARR(self)));
      cvSet(CVARR(mat), scl);
      cvMul(CVARR(self), CVARR(mat), CVARR(dest), NUM2DBL(scale));
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#mul_transposed(options) ⇒ CvMat

Calculates the product of a matrix and its transposition.

This function calculates the product of self and its transposition:

if :order = 0
  dst = scale * (self - delta) * (self - delta)T
otherwise
  dst = scale * (self - delta)T * (self - delta)

Parameters:

  • options (Hash)

    Options

Options Hash (options):

  • :order (Integer) — default: 0

    Flag specifying the multiplication ordering, should be 0 or 1.

  • :delta (CvMat) — default: nil

    Optional delta matrix subtracted from source before the multiplication.

  • :scale (Number) — default: 1.0

    Optional scale factor for the matrix product.

Returns:

  • (CvMat)

    Result array.



2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
# File 'ext/opencv/cvmat.cpp', line 2716

VALUE
rb_mul_transposed(int argc, VALUE *argv, VALUE self)
{
  VALUE options = Qnil;
  VALUE _delta = Qnil, _scale = Qnil, _order = Qnil;

  if (rb_scan_args(argc, argv, "01", &options) > 0) {
    Check_Type(options, T_HASH);
    _delta = LOOKUP_HASH(options, "delta");
    _scale = LOOKUP_HASH(options, "scale");
    _order = LOOKUP_HASH(options, "order");
  }

  CvArr* delta = NIL_P(_delta) ? NULL : CVARR_WITH_CHECK(_delta);
  double scale = NIL_P(_scale) ? 1.0 : NUM2DBL(_scale);
  int order = NIL_P(_order) ? 0 : NUM2INT(_order);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self);
  try {
    cvMulTransposed(self_ptr, CVARR(dest), order, delta, scale);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#ne(val) ⇒ CvMat

Performs the per-element comparison “not equal” of two arrays or an array and scalar value.

Parameters:

  • val (CvMat, CvScalar, Number)

    Array, scalar or number to compare

Returns:

  • (CvMat)

    Result array



2216
2217
2218
2219
2220
2221
# File 'ext/opencv/cvmat.cpp', line 2216

VALUE
rb_ne(VALUE self, VALUE val)
{
  VALUE dest = new_mat_kind_object(cvGetSize(CVARR(self)), self, CV_8U, 1);
  return rb_cmp_internal(self, val, dest, CV_CMP_NE);
}

#normalize(alpha = 1.0, beta = 0.0, norm_type = NORM_L2, dtype = -1, mask = nil) ⇒ CvMat

Normalizes the norm or value range of an array.

Parameters:

  • alpha (Number) (defaults to: 1.0)

    Norm value to normalize to or the lower range boundary in case of the range normalization.

  • beta (Number) (defaults to: 0.0)

    Upper range boundary in case of the range normalization. It is not used for the norm normalization.

  • norm_type (Integer) (defaults to: NORM_L2)

    Normalization type.

  • dtype (Integer) (defaults to: -1)

    when negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth

  • mask (CvMat) (defaults to: nil)

    Optional operation mask.

Returns:

  • (CvMat)

    Normalized array.



2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
# File 'ext/opencv/cvmat.cpp', line 2302

VALUE
rb_normalize(int argc, VALUE *argv, VALUE self)
{
  VALUE alpha_val, beta_val, norm_type_val, dtype_val, mask_val;
  rb_scan_args(argc, argv, "05", &alpha_val, &beta_val, &norm_type_val, &dtype_val, &mask_val);

  double alpha = NIL_P(alpha_val) ? 1.0 : NUM2DBL(alpha_val);
  double beta = NIL_P(beta_val) ? 0.0 : NUM2DBL(beta_val);
  int norm_type = NIL_P(norm_type_val) ? cv::NORM_L2 : NUM2INT(norm_type_val);
  int dtype = NIL_P(dtype_val) ? -1 : NUM2INT(dtype_val);
  VALUE dst;

  try {
    cv::Mat self_mat(CVMAT(self));
    cv::Mat dst_mat;

    if (NIL_P(mask_val)) {
      cv::normalize(self_mat, dst_mat, alpha, beta, norm_type, dtype);
    }
    else {
      cv::Mat mask(MASK(mask_val));
      cv::normalize(self_mat, dst_mat, alpha, beta, norm_type, dtype, mask);
    }
    dst = new_mat_kind_object(cvGetSize(CVARR(self)), self, dst_mat.depth(), dst_mat.channels());

    CvMat tmp = dst_mat;
    cvCopy(&tmp, CVMAT(dst));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dst;
}

#notCvMat

Returns an array which elements are bit-wise invertion of source array.

Returns:

  • (CvMat)

    Result array



2066
2067
2068
2069
2070
# File 'ext/opencv/cvmat.cpp', line 2066

VALUE
rb_not(VALUE self)
{
  return rb_not_bang(copy(self));
}

#not!CvMat

Inverts every bit of an array.

Returns:

  • (CvMat)

    Result array



2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
# File 'ext/opencv/cvmat.cpp', line 2079

VALUE
rb_not_bang(VALUE self)
{
  try {
    cvNot(CVARR(self), CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#optical_flow_bm(prev[,velx = nil][,vely = nil][,option]) ⇒ Array

Calculates optical flow for two images (previous -> self) using block matching method. Return horizontal component of the optical flow and vertical component of the optical flow. prev is previous image. velx is previous velocity field of x-axis, and vely is previous velocity field of y-axis.

options

  • :block_size -> should be CvSize (default is CvSize(4,4))

    Size of basic blocks that are compared.
    
  • :shift_size -> should be CvSize (default is CvSize(1,1))

    Block coordinate increments.
    
  • :max_range -> should be CvSize (default is CVSize(4,4))

    Size of the scanned neighborhood in pixels around block.
    

note: option’s default value is CvMat::OPTICAL_FLOW_BM_OPTION.

Velocity is computed for every block, but not for every pixel, so velocity image pixels correspond to input image blocks. input/output velocity field’s size should be (self.width / block_size.width)x(self.height / block_size.height). e.g. image.size is 320x240 and block_size is 4x4, velocity field’s size is 80x60.

Returns:

  • (Array)


6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
# File 'ext/opencv/cvmat.cpp', line 6206

VALUE
rb_optical_flow_bm(int argc, VALUE *argv, VALUE self)
{
  VALUE prev, velx, vely, options;
  rb_scan_args(argc, argv, "13", &prev, &velx, &vely, &options);
  options = OPTICAL_FLOW_BM_OPTION(options);
  CvArr* self_ptr = CVARR(self);
  CvSize block_size = BM_BLOCK_SIZE(options);
  CvSize shift_size = BM_SHIFT_SIZE(options);
  CvSize max_range  = BM_MAX_RANGE(options);

  int use_previous = 0;
  try {
    CvSize image_size = cvGetSize(self_ptr);
    CvSize velocity_size = cvSize((image_size.width - block_size.width + shift_size.width) / shift_size.width,
				  (image_size.height - block_size.height + shift_size.height) / shift_size.height);
    CvMat *velx_ptr, *vely_ptr;
    if (NIL_P(velx) && NIL_P(vely)) {
      int type = CV_MAKETYPE(CV_32F, 1);
      velx = cCvMat::new_object(velocity_size, type);
      vely = cCvMat::new_object(velocity_size, type);
      velx_ptr = CVMAT(velx);
      vely_ptr = CVMAT(vely);
    }
    else {
      use_previous = 1;
      velx_ptr = CVMAT_WITH_CHECK(velx);
      vely_ptr = CVMAT_WITH_CHECK(vely);
    }
    cvCalcOpticalFlowBM(CVMAT_WITH_CHECK(prev), self_ptr,
			block_size, shift_size, max_range, use_previous,
			velx_ptr, vely_ptr);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, velx, vely);
}

#optical_flow_hs(prev[,velx = nil][,vely = nil][,options]) ⇒ Array

Calculates optical flow for two images (previous -> self) using Horn & Schunck algorithm. Return horizontal component of the optical flow and vertical component of the optical flow. prev is previous image velx is previous velocity field of x-axis, and vely is previous velocity field of y-axis.

options

  • :lambda -> should be Float (default is 0.0005)

    Lagrangian multiplier.
    
  • :criteria -> should be CvTermCriteria object (default is CvTermCriteria(1, 0.001))

    Criteria of termination of velocity computing.
    

note: option’s default value is CvMat::OPTICAL_FLOW_HS_OPTION.

sample code

velx, vely = nil, nil
while true
  current = capture.query
  velx, vely = current.optical_flow_hs(prev, velx, vely) if prev
  prev = current
end

Returns:

  • (Array)


6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
# File 'ext/opencv/cvmat.cpp', line 6121

VALUE
rb_optical_flow_hs(int argc, VALUE *argv, VALUE self)
{
  VALUE prev, velx, vely, options;
  int use_previous = 0;
  rb_scan_args(argc, argv, "13", &prev, &velx, &vely, &options);
  options = OPTICAL_FLOW_HS_OPTION(options);
  CvMat *velx_ptr, *vely_ptr;
  CvArr* self_ptr = CVARR(self);
  try {
    if (NIL_P(velx) && NIL_P(vely)) {
      CvSize size = cvGetSize(self_ptr);
      int type = CV_MAKETYPE(CV_32F, 1);
      velx = cCvMat::new_object(size, type);
      vely = cCvMat::new_object(size, type);
      velx_ptr = CVMAT(velx);
      vely_ptr = CVMAT(vely);
    }
    else {
      use_previous = 1;
      velx_ptr = CVMAT_WITH_CHECK(velx);
      vely_ptr = CVMAT_WITH_CHECK(vely);
    }
    cvCalcOpticalFlowHS(CVMAT_WITH_CHECK(prev), self_ptr, use_previous, velx_ptr, vely_ptr,
			HS_LAMBDA(options), HS_CRITERIA(options));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, velx, vely);
}

#optical_flow_lk(prev, win_size) ⇒ Array

Calculates optical flow for two images (previous -> self) using Lucas & Kanade algorithm Return horizontal component of the optical flow and vertical component of the optical flow.

win_size is size of the averaging window used for grouping pixels.

Returns:

  • (Array)


6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
# File 'ext/opencv/cvmat.cpp', line 6162

VALUE
rb_optical_flow_lk(VALUE self, VALUE prev, VALUE win_size)
{
  VALUE velx = Qnil;
  VALUE vely = Qnil;
  try {
    CvArr* self_ptr = CVARR(self);
    CvSize size = cvGetSize(self_ptr);
    int type = CV_MAKETYPE(CV_32F, 1);
    velx = cCvMat::new_object(size, type);
    vely = cCvMat::new_object(size, type);
    cvCalcOpticalFlowLK(CVMAT_WITH_CHECK(prev), self_ptr, VALUE_TO_CVSIZE(win_size),
			CVARR(velx), CVARR(vely));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return rb_ary_new3(2, velx, vely);
}

#or(val, mask = nil) ⇒ CvMat Also known as: |

Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to calculate bit-wise disjunction

  • mask (CvMat)

    Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Result array



2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
# File 'ext/opencv/cvmat.cpp', line 2012

VALUE
rb_or(int argc, VALUE *argv, VALUE self)
{
  VALUE val, mask, dest;
  rb_scan_args(argc, argv, "11", &val, &mask);
  dest = copy(self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvOr(CVARR(self), CVARR(val), CVARR(dest), MASK(mask));
    else
      cvOrS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#perspective_transform(mat) ⇒ CvMat

Performs the perspective matrix transformation of vectors.

Parameters:

  • mat (CvMat)

    3x3 or 4x4 floating-point transformation matrix.

Returns:

  • (CvMat)

    Transformed vector.



2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
# File 'ext/opencv/cvmat.cpp', line 2684

VALUE
rb_perspective_transform(VALUE self, VALUE mat)
{
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvPerspectiveTransform(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(mat));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#pixel_value(index) ⇒ Object



1041
1042
1043
1044
1045
1046
# File 'ext/opencv/cvmat.cpp', line 1041

VALUE
rb_pixel_value(VALUE self, VALUE index)
{
  CvScalar scalar = cvGet1D(CVARR(self), NUM2INT(index));
	return rb_float_new(scalar.val[0]);
}

#poly_line(points, options = nil) ⇒ CvMat

Returns an image that is drawn several polygonal curves.

Parameters:

  • points (Array<CvPoint>)

    Array of polygonal curves.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :is_closed (Boolean)

    Indicates whether the polylines must be drawn closed. If closed, the method draws the line from the last vertex of every contour to the first vertex.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3533
3534
3535
3536
3537
# File 'ext/opencv/cvmat.cpp', line 3533

VALUE
rb_poly_line(int argc, VALUE *argv, VALUE self)
{
  return rb_poly_line_bang(argc, argv, rb_rcv_clone(self));
}

#poly_line!(points, options = nil) ⇒ CvMat

Draws several polygonal curves.

Parameters:

  • points (Array<CvPoint>)

    Array of polygonal curves.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :is_closed (Boolean)

    Indicates whether the polylines must be drawn closed. If closed, the method draws the line from the last vertex of every contour to the first vertex.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
# File 'ext/opencv/cvmat.cpp', line 3559

VALUE
rb_poly_line_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE polygons, drawing_option;
  VALUE points;
  int i, j;
  int num_polygons;
  int *num_points;
  CvPoint **p;

  rb_scan_args(argc, argv, "11", &polygons, &drawing_option);
  Check_Type(polygons, T_ARRAY);
  drawing_option = DRAWING_OPTION(drawing_option);
  num_polygons = RARRAY_LEN(polygons);
  num_points = RB_ALLOC_N(int, num_polygons);
  p = RB_ALLOC_N(CvPoint*, num_polygons);

  for (j = 0; j < num_polygons; ++j) {
    points = rb_ary_entry(polygons, j);
    Check_Type(points, T_ARRAY);
    num_points[j] = RARRAY_LEN(points);
    p[j] = RB_ALLOC_N(CvPoint, num_points[j]);
    for (i = 0; i < num_points[j]; ++i) {
      p[j][i] = VALUE_TO_CVPOINT(rb_ary_entry(points, i));
    }
  }

  try {
    cvPolyLine(CVARR(self), p, num_points, num_polygons,
	       DO_IS_CLOSED(drawing_option),
	       DO_COLOR(drawing_option),
	       DO_THICKNESS(drawing_option),
	       DO_LINE_TYPE(drawing_option),
	       DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return self;
}

#pre_corner_detect(aperture_size = 3) ⇒ CvMat

Calculates a feature map for corner detection.

Parameters:

  • aperture_size (Integer)

    Aperture size for the sobel operator.

Returns:

  • (CvMat)

    Output image



3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
# File 'ext/opencv/cvmat.cpp', line 3849

VALUE
rb_pre_corner_detect(int argc, VALUE *argv, VALUE self)
{
  VALUE aperture_size, dest = Qnil;
  if (rb_scan_args(argc, argv, "01", &aperture_size) < 1)
    aperture_size = INT2FIX(3);

  CvArr *self_ptr = CVARR(self);
  try {
    dest = new_object(cvGetSize(self_ptr), CV_MAKETYPE(CV_32F, 1));
    cvPreCornerDetect(self_ptr, CVARR(dest), NUM2INT(aperture_size));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#put_text(text, org, font, color = CvColor::Black) ⇒ CvMat

Returns an image which is drawn a text string.

Parameters:

  • text (String)

    Text string to be drawn.

  • org (CvPoint)

    Bottom-left corner of the text string in the image.

  • font (CvFont)

    CvFont object.

  • color (CvScalar)

    Text color.

Returns:

  • (CvMat)

    Output image



3613
3614
3615
3616
3617
# File 'ext/opencv/cvmat.cpp', line 3613

VALUE
rb_put_text(int argc, VALUE* argv, VALUE self)
{
  return rb_put_text_bang(argc, argv, rb_rcv_clone(self));
}

#put_text!(text, org, font, color = CvColor::Black) ⇒ CvMat

Draws a text string.

Parameters:

  • text (String)

    Text string to be drawn.

  • org (CvPoint)

    Bottom-left corner of the text string in the image.

  • font (CvFont)

    CvFont object.

  • color (CvScalar)

    Text color.

Returns:



3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
# File 'ext/opencv/cvmat.cpp', line 3630

VALUE
rb_put_text_bang(int argc, VALUE* argv, VALUE self)
{
  VALUE _text, _point, _font, _color;
  rb_scan_args(argc, argv, "31", &_text, &_point, &_font, &_color);
  CvScalar color = NIL_P(_color) ? CV_RGB(0, 0, 0) : VALUE_TO_CVSCALAR(_color);
  try {
    cvPutText(CVARR(self), StringValueCStr(_text), VALUE_TO_CVPOINT(_point),
	      CVFONT_WITH_CHECK(_font), color);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#pyr_down([filter = :gaussian_5x5]) ⇒ Object

Return downsamples image.

This operation performs downsampling step of Gaussian pyramid decomposition. First it convolves source image with the specified filter and then downsamples the image by rejecting even rows and columns.

note: filter - only :gaussian_5x5 is currently supported.



5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
# File 'ext/opencv/cvmat.cpp', line 5053

VALUE
rb_pyr_down(int argc, VALUE *argv, VALUE self)
{
  int filter = CV_GAUSSIAN_5x5;
  if (argc > 0) {
    VALUE filter_type = argv[0];
    switch (TYPE(filter_type)) {
    case T_SYMBOL:
      // currently suport CV_GAUSSIAN_5x5 only.
      break;
    default:
      raise_typeerror(filter_type, rb_cSymbol);
    }
  }
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    CvSize original_size = cvGetSize(self_ptr);
    CvSize size = { original_size.width >> 1, original_size.height >> 1 };
    dest = new_mat_kind_object(size, self);
    cvPyrDown(self_ptr, CVARR(dest), filter);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#pyr_mean_shift_filtering(sp, sr[,max_level = 1][termcrit = CvTermCriteria.new(5,1)]) ⇒ Object

Does meanshift image segmentation.

sp - The spatial window radius.
sr - The color window radius.
max_level - Maximum level of the pyramid for the segmentation.
termcrit - Termination criteria: when to stop meanshift iterations.

This method is implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered “posterized” image with color gradients and fine-grain texture flattened. At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is considered:

{(x,y): X-sp≤x≤X+sp && Y-sp≤y≤Y+sp && ||(R,G,B)-(r,g,b)|| ≤ sr},

where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively (though, the algorithm does not depend on the color space used, so any 3-component color space can be used instead). Over the neighborhood the average spatial value (X’,Y’) and average color vector (R’,G’,B’) are found and they act as the neighborhood center on the next iteration:

(X,Y)~(X',Y'), (R,G,B)~(R',G',B').

After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started) are set to the final value (average color at the last iteration):

I(X,Y) <- (R*,G*,B*).

Then max_level > 0, the gaussian pyramid of max_level+1 levels is built, and the above procedure is run on the smallest layer. After that, the results are propagated to the larger layer and the iterations are run again only on those pixels where the layer colors differ much (>sr) from the lower-resolution layer, that is, the boundaries of the color regions are clarified.

Note, that the results will be actually different from the ones obtained by running the meanshift procedure on the whole original image (i.e. when max_level==0).



5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
# File 'ext/opencv/cvmat.cpp', line 5428

VALUE
rb_pyr_mean_shift_filtering(int argc, VALUE *argv, VALUE self)
{
  VALUE spatial_window_radius, color_window_radius, max_level, termcrit;
  rb_scan_args(argc, argv, "22", &spatial_window_radius, &color_window_radius, &max_level, &termcrit);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvPyrMeanShiftFiltering(self_ptr, CVARR(dest),
			    NUM2DBL(spatial_window_radius),
			    NUM2DBL(color_window_radius),
			    IF_INT(max_level, 1),
			    NIL_P(termcrit) ? cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 5, 1)
			    : VALUE_TO_CVTERMCRITERIA(termcrit));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#pyr_up([filter = :gaussian_5x5]) ⇒ Object

Return upsamples image.

This operation performs up-sampling step of Gaussian pyramid decomposition. First it upsamples the source image by injecting even zero rows and columns and then convolves result with the specified filter multiplied by 4 for interpolation. So the destination image is four times larger than the source image.

note: filter - only :gaussian_5x5 is currently supported.



5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
# File 'ext/opencv/cvmat.cpp', line 5094

VALUE
rb_pyr_up(int argc, VALUE *argv, VALUE self)
{
  VALUE filter_type;
  rb_scan_args(argc, argv, "01", &filter_type);
  int filter = CV_GAUSSIAN_5x5;
  if (argc > 0) {
    switch (TYPE(filter_type)) {
    case T_SYMBOL:
      // currently suport CV_GAUSSIAN_5x5 only.
      break;
    default:
      raise_typeerror(filter_type, rb_cSymbol);
    }
  }
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    CvSize original_size = cvGetSize(self_ptr);
    CvSize size = { original_size.width << 1, original_size.height << 1 };
    dest = new_mat_kind_object(size, self);
    cvPyrUp(self_ptr, CVARR(dest), filter);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#quadrangle_sub_pix(map_matrix, size = self.size) ⇒ CvMat

Note:

CvMat#quadrangle_sub_pix is similar to CvMat#warp_affine, but the outliers are extrapolated using replication border mode.

Applies an affine transformation to an image.

Parameters:

  • map_matrix (CvMat)

    2x3 transformation matrix.

  • size (CvSize)

    Size of the output image.

Returns:

  • (CvMat)

    Output image that has the size size and the same type as self.



4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
# File 'ext/opencv/cvmat.cpp', line 4150

VALUE
rb_quadrangle_sub_pix(int argc, VALUE *argv, VALUE self)
{
  VALUE map_matrix, size;
  VALUE dest = Qnil;
  CvSize _size;
  CvArr* self_ptr = CVARR(self);
  try {
    if (rb_scan_args(argc, argv, "11", &map_matrix, &size) < 2)
      _size = cvGetSize(self_ptr);
    else
      _size = VALUE_TO_CVSIZE(size);
    dest = new_mat_kind_object(_size, self);
    cvGetQuadrangleSubPix(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#rand_shuffle(seed = -1, iter_factor = 1) ⇒ CvMat

Returns shuffled matrix by swapping randomly chosen pairs of the matrix elements on each iteration (where each element may contain several components in case of multi-channel arrays)

Parameters:

  • seed (Integer)

    Integer value used to initiate a random sequence

  • iter_factor (Integer)

    The relative parameter that characterizes intensity of the shuffling performed. The number of iterations (i.e. pairs swapped) is round(iter_factor*rows(mat)*cols(mat)), so iter_factor = 0 means that no shuffling is done, iter_factor = 1 means that the function swaps rows(mat)*cols(mat) random pairs etc

Returns:

  • (CvMat)

    Shuffled matrix



1633
1634
1635
1636
1637
# File 'ext/opencv/cvmat.cpp', line 1633

VALUE
rb_rand_shuffle(int argc, VALUE *argv, VALUE self)
{
  return rb_rand_shuffle_bang(argc, argv, copy(self));
}

#rand_shuffle!(seed = -1, iter_factor = 1) ⇒ CvMat

Shuffles the matrix by swapping randomly chosen pairs of the matrix elements on each iteration (where each element may contain several components in case of multi-channel arrays)

Parameters:

  • seed (Integer)

    Integer value used to initiate a random sequence

  • iter_factor (Integer)

    The relative parameter that characterizes intensity of the shuffling performed. The number of iterations (i.e. pairs swapped) is round(iter_factor*rows(mat)*cols(mat)), so iter_factor = 0 means that no shuffling is done, iter_factor = 1 means that the function swaps rows(mat)*cols(mat) random pairs etc

Returns:

  • (CvMat)

    Shuffled matrix



1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
# File 'ext/opencv/cvmat.cpp', line 1648

VALUE
rb_rand_shuffle_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE seed, iter;
  rb_scan_args(argc, argv, "02", &seed, &iter);
  try {
    if (NIL_P(seed))
      cvRandShuffle(CVARR(self), NULL, IF_INT(iter, 1));
    else {
      CvRNG rng = cvRNG(rb_num2ll(seed));
      cvRandShuffle(CVARR(self), &rng, IF_INT(iter, 1));
    }
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#range(start, end) ⇒ CvMat

Returns initialized matrix as following:

arr(i,j)=(end-start)*(i*cols(arr)+j)/(cols(arr)*rows(arr))

Parameters:

  • start (Number)

    The lower inclusive boundary of the range

  • end (Number)

    The upper exclusive boundary of the range

Returns:

  • (CvMat)

    Initialized matrix



1407
1408
1409
1410
1411
# File 'ext/opencv/cvmat.cpp', line 1407

VALUE
rb_range(VALUE self, VALUE start, VALUE end)
{
  return rb_range_bang(copy(self), start, end);
}

#range!(start, end) ⇒ CvMat

Initializes the matrix as following:

arr(i,j)=(end-start)*(i*cols(arr)+j)/(cols(arr)*rows(arr))

Parameters:

  • start (Number)

    The lower inclusive boundary of the range

  • end (Number)

    The upper exclusive boundary of the range

Returns:



1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
# File 'ext/opencv/cvmat.cpp', line 1421

VALUE
rb_range_bang(VALUE self, VALUE start, VALUE end)
{
  try {
    cvRange(CVARR(self), NUM2DBL(start), NUM2DBL(end));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#cloneCvMat

Makes a clone of an object.

Returns:

  • (CvMat)

    Clone of the object



496
497
498
499
500
501
502
503
504
505
506
507
# File 'ext/opencv/cvmat.cpp', line 496

VALUE
rb_rcv_clone(VALUE self)
{
  VALUE clone = rb_obj_clone(self);
  try {
    DATA_PTR(clone) = cvClone(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return clone;
}

#rect_sub_pix(center, size = self.size) ⇒ CvMat

Retrieves a pixel rectangle from an image with sub-pixel accuracy.

Parameters:

  • center (CvPoint2D32f)

    Floating point coordinates of the center of the extracted rectangle within the source image. The center must be inside the image.

  • size (CvSize)

    Size of the extracted patch.

Returns:

  • (CvMat)

    Extracted patch that has the size size and the same number of channels as self.



4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
# File 'ext/opencv/cvmat.cpp', line 4118

VALUE
rb_rect_sub_pix(int argc, VALUE *argv, VALUE self)
{
  VALUE center, size;
  VALUE dest = Qnil;
  CvSize _size;
  CvArr* self_ptr = CVARR(self);
  try {
    if (rb_scan_args(argc, argv, "11", &center, &size) < 2)
      _size = cvGetSize(self_ptr);
    else
      _size = VALUE_TO_CVSIZE(size);
    dest = new_mat_kind_object(_size, self);
    cvGetRectSubPix(self_ptr, CVARR(dest), VALUE_TO_CVPOINT2D32F(center));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#rectangle(p1, p2, options = nil) ⇒ CvMat

Returns an image that is drawn a simple, thick, or filled up-right rectangle.

Parameters:

  • p1 (CvPoint)

    Vertex of the rectangle.

  • p2 (CvPoint)

    Vertex of the rectangle opposite to p1.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:

  • (CvMat)

    Output image



3145
3146
3147
3148
3149
# File 'ext/opencv/cvmat.cpp', line 3145

VALUE
rb_rectangle(int argc, VALUE *argv, VALUE self)
{
  return rb_rectangle_bang(argc, argv, rb_rcv_clone(self));
}

#rectangle!(p1, p2, options = nil) ⇒ CvMat

Draws a simple, thick, or filled up-right rectangle.

Parameters:

  • p1 (CvPoint)

    Vertex of the rectangle.

  • p2 (CvPoint)

    Vertex of the rectangle opposite to p1.

  • options (Hash) (defaults to: nil)

    Drawing options

Options Hash (options):

  • :color (CvScalar)

    Line color.

  • :thickness (Integer)

    Line thickness.

  • :line_type (Integer)

    Type of the line.

    • 8 - 8-connected line.

    • 4 - 4-connected line.

    • CV_AA - Antialiased line.

  • :shift (Integer)

    Number of fractional bits in the point coordinates.

Returns:



3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
# File 'ext/opencv/cvmat.cpp', line 3168

VALUE
rb_rectangle_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE p1, p2, drawing_option;
  rb_scan_args(argc, argv, "21", &p1, &p2, &drawing_option);
  drawing_option = DRAWING_OPTION(drawing_option);
  try {
    cvRectangle(CVARR(self), VALUE_TO_CVPOINT(p1), VALUE_TO_CVPOINT(p2),
		DO_COLOR(drawing_option),
		DO_THICKNESS(drawing_option),
		DO_LINE_TYPE(drawing_option),
		DO_SHIFT(drawing_option));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#remap(mapx, mapy, flags = CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS, fillval = 0) ⇒ CvMat

Applies a generic geometrical transformation to an image.

Parameters:

  • mapx (CvMat)

    The first map of either (x,y) points or just x values having the type CV_16SC2, CV_32FC1, or CV_32FC2.

  • mapy (CvMat)

    The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map if mapx is (x,y) points), respectively.

  • flags (Integer) (defaults to: CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS)

    Combination of interpolation methods (CV_INTER_LINEAR or CV_INTER_NEAREST) and the optional flag CV_WARP_INVERSE_MAP, that sets map_matrix as the inverse transformation.

  • fillval (Number, CvScalar) (defaults to: 0)

    Value used in case of a constant border.

Returns:

  • (CvMat)

    Output image.



4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
# File 'ext/opencv/cvmat.cpp', line 4398

VALUE
rb_remap(int argc, VALUE *argv, VALUE self)
{
  VALUE mapx, mapy, flags_val, option, fillval;
  if (rb_scan_args(argc, argv, "23", &mapx, &mapy, &flags_val, &option, &fillval) < 5)
    fillval = INT2FIX(0);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val);
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvRemap(self_ptr, CVARR(dest), CVARR_WITH_CHECK(mapx), CVARR_WITH_CHECK(mapy),
	    flags, VALUE_TO_CVSCALAR(fillval));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#repeat(dst) ⇒ CvMat

Fills the destination array with repeated copies of the source array.

Parameters:

  • dst (CvMat)

    Destination array of the same type as self.

Returns:

  • (CvMat)

    Destination array



1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
# File 'ext/opencv/cvmat.cpp', line 1472

VALUE
rb_repeat(VALUE self, VALUE object)
{
  try {
    cvRepeat(CVARR(self), CVARR_WITH_CHECK(object));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return object;
}

#reshape(cn, rows = 0) ⇒ CvMat

Changes shape of matrix/image without copying data.

Examples:

mat = CvMat.new(3, 3, CV_8U, 3)  #=> 3x3 3-channel matrix
vec = mat.reshape(:rows => 1)    #=> 1x9 3-channel matrix
ch1 = mat.reshape(:channel => 1) #=> 9x3 1-channel matrix

Parameters:

  • cn (Integer)

    New number of channels. If the parameter is 0, the number of channels remains the same.

  • rows (Integer) (defaults to: 0)

    New number of rows. If the parameter is 0, the number of rows remains the same.

Returns:

  • (CvMat)

    Changed matrix



1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
# File 'ext/opencv/cvmat.cpp', line 1445

VALUE
rb_reshape(VALUE self, VALUE hash)
{
  Check_Type(hash, T_HASH);
  VALUE channel = rb_hash_aref(hash, ID2SYM(rb_intern("channel")));
  VALUE rows = rb_hash_aref(hash, ID2SYM(rb_intern("rows")));
  CvMat *mat = NULL;
  try {
    mat = cvReshape(CVARR(self), RB_CVALLOC(CvMat), NIL_P(channel) ? 0 : NUM2INT(channel),
		    NIL_P(rows) ? 0 : NUM2INT(rows));
  }
  catch (cv::Exception& e) {
    if (mat != NULL)
      cvReleaseMat(&mat);
    raise_cverror(e);
  }
  return DEPEND_OBJECT(rb_klass, mat, self);
}

#resize(size, interpolation = :linear) ⇒ CvMat

Resizes an image.

Parameters:

  • size (CvSize)

    Output image size.

  • interpolation (Symbol)

    Interpolation method:

    • CV_INTER_NN - A nearest-neighbor interpolation

    • CV_INTER_LINEAR - A bilinear interpolation (used by default)

    • CV_INTER_AREA - Resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the :nn method.

    • CV_INTER_CUBIC - A bicubic interpolation over 4x4 pixel neighborhood

    • CV_INTER_LANCZOS4 - A Lanczos interpolation over 8x8 pixel neighborhood

Returns:

  • (CvMat)

    Output image.



4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
# File 'ext/opencv/cvmat.cpp', line 4187

VALUE
rb_resize(int argc, VALUE *argv, VALUE self)
{
  VALUE size, interpolation;
  rb_scan_args(argc, argv, "11", &size, &interpolation);
  VALUE dest = new_mat_kind_object(VALUE_TO_CVSIZE(size), self);
  int method = NIL_P(interpolation) ? CV_INTER_LINEAR : NUM2INT(interpolation);

  try {
    cvResize(CVARR(self), CVARR(dest), method);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#save_image(filename) ⇒ CvMat Also known as: save

Saves an image to a specified file. The image format is chosen based on the filename extension.

Parameters:

  • filename (String)

    Name of the file

Returns:



1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
# File 'ext/opencv/cvmat.cpp', line 1258

VALUE
rb_save_image(int argc, VALUE *argv, VALUE self)
{
  VALUE _filename, _params;
  rb_scan_args(argc, argv, "11", &_filename, &_params);
  Check_Type(_filename, T_STRING);
  int *params = NULL;
  if (!NIL_P(_params)) {
    params = hash_to_format_specific_param(_params);
  }

  try {
    cvSaveImage(StringValueCStr(_filename), CVARR(self), params);
  }
  catch (cv::Exception& e) {
    if (params != NULL) {
      free(params);
      params = NULL;
    }
    raise_cverror(e);
  }
  if (params != NULL) {
    free(params);
    params = NULL;
  }

  return self;
}

#sobel(<i>xorder, yorder[,aperture_size = 3]) ⇒ Object

Calculates first, second, third or mixed image derivatives using extended Sobel operator. self should be single-channel 8bit unsigned or 32bit floating-point.



3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
# File 'ext/opencv/cvmat.cpp', line 3695

VALUE
rb_scharr(int argc, VALUE *argv, VALUE self)
{
  VALUE xorder, yorder, aperture_size, dest, scale;
  rb_scan_args(argc, argv, "3", &xorder, &yorder, &scale);
  //  aperture_size = INT2FIX(3);
  CvMat* self_ptr = CVMAT(self);
  switch(CV_MAT_DEPTH(self_ptr->type)) {
  case CV_8U:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_16S, 1);
    break;
  case CV_32F:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1);
    break;
  default:
    rb_raise(rb_eArgError, "source depth should be CV_8U or CV_32F.");
    break;
  }

  try {
    const cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
    cv::Mat destMat(CVMAT(dest));
    cv::Scharr(selfMat, destMat, CV_MAT_DEPTH(self_ptr->type), NUM2INT(xorder), NUM2INT(yorder), scale);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#sdv(mask = nil) ⇒ CvScalar

Calculates a standard deviation of array elements.

Parameters:

  • mask (CvMat)

    Optional operation mask.

Returns:

  • (CvScalar)

    The standard deviation of array elements.



2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
# File 'ext/opencv/cvmat.cpp', line 2488

VALUE
rb_sdv(int argc, VALUE *argv, VALUE self)
{
  VALUE mask, std_dev;
  rb_scan_args(argc, argv, "01", &mask);
  std_dev = cCvScalar::new_object();
  try {
    cvAvgSdv(CVARR(self), NULL, CVSCALAR(std_dev), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return std_dev;
}

#set(value, mask = nil) ⇒ CvMat Also known as: fill

Returns a matrix which is set every element to a given value. The function copies the scalar value to every selected element of the destination array:

mat[I] = value if mask(I) != 0

Parameters:

  • value (CvScalar)

    Fill value

  • mask (CvMat)

    Operation mask, 8-bit single channel array; specifies elements of the destination array to be changed

Returns:

  • (CvMat)

    Matrix which is set every element to a given value.



1220
1221
1222
1223
1224
# File 'ext/opencv/cvmat.cpp', line 1220

VALUE
rb_set(int argc, VALUE *argv, VALUE self)
{
  return rb_set_bang(argc, argv, copy(self));
}

#set!(value, mask = nil) ⇒ CvMat Also known as: fill!

Sets every element of the matrix to a given value. The function copies the scalar value to every selected element of the destination array:

mat[I] = value if mask(I) != 0

Parameters:

  • value (CvScalar)

    Fill value

  • mask (CvMat)

    Operation mask, 8-bit single channel array; specifies elements of the destination array to be changed

Returns:



1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
# File 'ext/opencv/cvmat.cpp', line 1236

VALUE
rb_set_bang(int argc, VALUE *argv, VALUE self)
{
  VALUE value, mask;
  rb_scan_args(argc, argv, "11", &value, &mask);
  try {
    cvSet(CVARR(self), VALUE_TO_CVSCALAR(value), MASK(mask));    
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#set_data(data) ⇒ CvMat

Assigns user data to the array header

Parameters:

  • data (Array<Integer>)

    User data

Returns:



1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# File 'ext/opencv/cvmat.cpp', line 1133

VALUE
rb_set_data(VALUE self, VALUE data)
{
  CvMat *self_ptr = CVMAT(self);
  int depth = CV_MAT_DEPTH(self_ptr->type);

  if (TYPE(data) == T_STRING) {
    if (!CV_IS_MAT_CONT(self_ptr->type))
      rb_raise(rb_eArgError, "CvMat must be continuous");
      
    const int dataLength = RSTRING_LEN(data);
    if (dataLength != self_ptr->width * self_ptr->height * CV_ELEM_SIZE(self_ptr->type))
      rb_raise(rb_eArgError, "Invalid data string length");
    
    memcpy(self_ptr->data.ptr, RSTRING_PTR(data), dataLength);
    
  } else {
    data = rb_funcall(data, rb_intern("flatten"), 0);
    
    const int DATA_LEN = RARRAY_LEN(data);
   
    void* array = NULL;
  
    switch (depth) {
    case CV_8U:
      array = rb_cvAlloc(sizeof(uchar) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((uchar*)array)[i] = (uchar)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_8S:
      array = rb_cvAlloc(sizeof(char) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((char*)array)[i] = (char)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_16U:
      array = rb_cvAlloc(sizeof(ushort) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((ushort*)array)[i] = (ushort)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_16S:
      array = rb_cvAlloc(sizeof(short) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((short*)array)[i] = (short)(NUM2INT(rb_ary_entry(data, i)));
      break;
    case CV_32S:
      array = rb_cvAlloc(sizeof(int) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((int*)array)[i] = NUM2INT(rb_ary_entry(data, i));
      break;
    case CV_32F:
      array = rb_cvAlloc(sizeof(float) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((float*)array)[i] = (float)NUM2DBL(rb_ary_entry(data, i));
      break;
    case CV_64F:
      array = rb_cvAlloc(sizeof(double) * DATA_LEN);
      for (int i = 0; i < DATA_LEN; ++i)
        ((double*)array)[i] = NUM2DBL(rb_ary_entry(data, i));
      break;
    default:
      rb_raise(rb_eArgError, "Invalid CvMat depth");
      break;
    }

    try {
      cvSetData(self_ptr, array, self_ptr->step);    
    }
    catch (cv::Exception& e) {
      raise_cverror(e);
    }
  }

  return self;
}

#set_zeroCvMat Also known as: clear, zero

Returns cleared array.

Returns:

  • (CvMat)

    Cleared array



1333
1334
1335
1336
1337
# File 'ext/opencv/cvmat.cpp', line 1333

VALUE
rb_set_zero(VALUE self)
{
  return rb_set_zero_bang(copy(self));
}

#set_zero!CvMat Also known as: clear!, zero!

Clears the array.

Returns:



1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
# File 'ext/opencv/cvmat.cpp', line 1345

VALUE
rb_set_zero_bang(VALUE self)
{
  try {
    cvSetZero(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return self;
}

#sizeCvSize

Returns size of the matrix

Returns:

  • (CvSize)

    Size of the matrix



935
936
937
938
939
940
941
942
943
944
945
946
# File 'ext/opencv/cvmat.cpp', line 935

VALUE
rb_size(VALUE self)
{
  CvSize size;
  try {
    size = cvGetSize(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvSize::new_object(size);
}

#smooth(smoothtype, size1 = 3, size2 = 0, sigma1 = 0, sigma2 = 0) ⇒ CvMat

Smooths the image in one of several ways.

Parameters:

  • smoothtype (Integer)

    Type of the smoothing.

    • CV_BLUR_NO_SCALE - linear convolution with size1 x size2 box kernel (all 1’s). If you want to smooth different pixels with different-size box kernels, you can use the integral image that is computed using CvMat#integral.

    • CV_BLUR - linear convolution with size1 x size2 box kernel (all 1’s) with subsequent scaling by 1 / (size1 x size1).

    • CV_GAUSSIAN - linear convolution with a size1 x size2 Gaussian kernel.

    • CV_MEDIAN - median filter with a size1 x size1 square aperture

    • CV_BILATERAL - bilateral filter with a size1 x size1 square aperture, color sigma = sigma1 and spatial sigma = sigma2. If size1 = 0, the aperture square side is set to CvMat#round(sigma2 * 1.5) * 2 + 1.

  • size1 (Integer) (defaults to: 3)

    The first parameter of the smoothing operation, the aperture width. Must be a positive odd number (1, 3, 5, …)

  • size2 (Integer) (defaults to: 0)

    The second parameter of the smoothing operation, the aperture height. Ignored by CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and Gaussian blur if size2 is zero, it is set to size1. Otherwise it must be a positive odd number.

  • sigma1 (Integer) (defaults to: 0)

    In the case of a Gaussian parameter this parameter may specify Gaussian sigma (standard deviation). If it is zero, it is calculated from the kernel size.

Returns:

  • (CvMat)

    The destination image.



4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
# File 'ext/opencv/cvmat.cpp', line 4715

VALUE
rb_smooth(int argc, VALUE *argv, VALUE self)
{
  VALUE smoothtype, p1, p2, p3, p4;
  rb_scan_args(argc, argv, "14", &smoothtype, &p1, &p2, &p3, &p4);
  int _smoothtype = CVMETHOD("SMOOTHING_TYPE", smoothtype, -1);
  
  VALUE (*smooth_func)(int c, VALUE* v, VALUE s);
  argc--;
  switch (_smoothtype) {
  case CV_BLUR_NO_SCALE:
    smooth_func = rb_smooth_blur_no_scale;
    argc = (argc > 2) ? 2 : argc;
    break;
  case CV_BLUR:
    smooth_func = rb_smooth_blur;
    argc = (argc > 2) ? 2 : argc;
    break;
  case CV_GAUSSIAN:
    smooth_func = rb_smooth_gaussian;
    break;
  case CV_MEDIAN:
    smooth_func = rb_smooth_median;
    argc = (argc > 1) ? 1 : argc;
    break;
  case CV_BILATERAL:
    smooth_func = rb_smooth_bilateral;
    argc = (argc > 4) ? 4 : argc;
    break;
  default:
    smooth_func = rb_smooth_gaussian;
    break;
  }
  VALUE result = Qnil;
  try {
    result = (*smooth_func)(argc, argv + 1, self);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return result;
}

#snake_image(points, alpha, beta, gamma, window, criteria[, calc_gradient = true]) ⇒ Object

Updates snake in order to minimize its total energy that is a sum of internal energy that depends on contour shape (the smoother contour is, the smaller internal energy is) and external energy that depends on the energy field and reaches minimum at the local energy extremums that correspond to the image edges in case of image gradient.

The parameter criteria.epsilon is used to define the minimal number of points that must be moved during any iteration to keep the iteration process running.

If at some iteration the number of moved points is less than criteria.epsilon or the function performed criteria.max_iter iterations, the function terminates.

points

Contour points (snake).

alpha

Weight[s] of continuity energy, single float or array of length floats, one per each contour point.

beta

Weight[s] of curvature energy, similar to alpha.

gamma

Weight[s] of image energy, similar to alpha.

window

Size of neighborhood of every point used to search the minimum, both win.width and win.height must be odd.

criteria

Termination criteria.

calc_gradient

Gradient flag. If not 0, the function calculates gradient magnitude for every image pixel and consideres
it as the energy field, otherwise the input image itself is considered.


6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
# File 'ext/opencv/cvmat.cpp', line 6044

VALUE
rb_snake_image(int argc, VALUE *argv, VALUE self)
{
  VALUE points, alpha, beta, gamma, window, criteria, calc_gradient;
  rb_scan_args(argc, argv, "61", &points, &alpha, &beta, &gamma, &window, &criteria, &calc_gradient);
  CvPoint *pointset = 0;
  int length = CVPOINTS_FROM_POINT_SET(points, &pointset);
  int coeff = (TYPE(alpha) == T_ARRAY && TYPE(beta) == T_ARRAY && TYPE(gamma) == T_ARRAY) ? CV_ARRAY : CV_VALUE;
  float *a = 0, *b = 0, *c = 0;
  IplImage stub;
  int i;
  if (coeff == CV_VALUE) {
    float buff_a, buff_b, buff_c;
    buff_a = (float)NUM2DBL(alpha);
    buff_b = (float)NUM2DBL(beta);
    buff_c = (float)NUM2DBL(gamma);
    a = &buff_a;
    b = &buff_b;
    c = &buff_c;
  }
  else { // CV_ARRAY
    if ((RARRAY_LEN(alpha) != length) ||
	(RARRAY_LEN(beta) != length) ||
	(RARRAY_LEN(gamma) != length))
      rb_raise(rb_eArgError, "alpha, beta, gamma should be same size of points");
    a = RB_ALLOC_N(float, length);
    b = RB_ALLOC_N(float, length);
    c = RB_ALLOC_N(float, length);
    for (i = 0; i < length; ++i) {
      a[i] = (float)NUM2DBL(RARRAY_PTR(alpha)[i]);
      b[i] = (float)NUM2DBL(RARRAY_PTR(beta)[i]);
      c[i] = (float)NUM2DBL(RARRAY_PTR(gamma)[i]);
    }
  }
  CvSize win = VALUE_TO_CVSIZE(window);
  CvTermCriteria tc = VALUE_TO_CVTERMCRITERIA(criteria);
  try {
    cvSnakeImage(cvGetImage(CVARR(self), &stub), pointset, length,
		 a, b, c, coeff, win, tc, IF_BOOL(calc_gradient, 1, 0, 1));
  }
  catch (cv::Exception& e) {
    if (pointset != NULL)
      cvFree(&pointset);
    raise_cverror(e);
  }
  VALUE result = rb_ary_new2(length);
  for (i = 0; i < length; ++i)
    rb_ary_push(result, cCvPoint::new_object(pointset[i]));
  cvFree(&pointset);
  
  return result;
}

#sobel(xorder, yorder, aperture_size = 3) ⇒ CvMat

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

Parameters:

  • xorder (Integer)

    Order of the derivative x.

  • yorder (Integer)

    Order of the derivative y.

  • aperture_size (Integer)

    Size of the extended Sobel kernel; it must be 1, 3, 5, or 7.

Returns:

  • (CvMat)

    Output image.



3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
# File 'ext/opencv/cvmat.cpp', line 3656

VALUE
rb_sobel(int argc, VALUE *argv, VALUE self)
{
  VALUE xorder, yorder, dest, ksize;
  rb_scan_args(argc, argv, "3", &xorder, &yorder, &ksize);
  //  aperture_size = INT2FIX(3);
  CvMat* self_ptr = CVMAT(self);
  switch(CV_MAT_DEPTH(self_ptr->type)) {
  case CV_8U:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_8U, 1);
    break;
  case CV_32F:
    dest = new_mat_kind_object(cvGetSize(self_ptr), self, CV_32F, 1);
    break;
  default:
    rb_raise(rb_eArgError, "source depth should be CV_8U or CV_32F.");
    break;
  }

  try {
    const cv::Mat selfMat(CVMAT(self)); // WBH convert openCv1-style cvMat to openCv2-style cv::Mat
    cv::Mat destMat(CVMAT(dest));
    cv::Sobel(selfMat, destMat, CV_MAT_DEPTH(self_ptr->type), NUM2INT(xorder), NUM2INT(yorder), NUM2INT(ksize));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#splitArray<CvMat>

Divides a multi-channel array into several single-channel arrays.

Examples:

img = CvMat.new(640, 480, CV_8U, 3) #=> 3-channel image
a = img.split                       #=> [img-ch1, img-ch2, img-ch3]

Returns:

  • (Array<CvMat>)

    Array of single-channel arrays

See Also:



1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
# File 'ext/opencv/cvmat.cpp', line 1547

VALUE
rb_split(VALUE self)
{
  CvArr* self_ptr = CVARR(self);
  int type = cvGetElemType(self_ptr);
  int depth = CV_MAT_DEPTH(type), channel = CV_MAT_CN(type);
  VALUE dest = rb_ary_new2(channel);
  try {
    CvArr *dest_ptr[] = { NULL, NULL, NULL, NULL };
    CvSize size = cvGetSize(self_ptr);
    for (int i = 0; i < channel; ++i) {
      VALUE tmp = new_mat_kind_object(size, self, depth, 1);
      rb_ary_store(dest, i, tmp);
      dest_ptr[i] = CVARR(tmp);
    }
    cvSplit(self_ptr, dest_ptr[0], dest_ptr[1], dest_ptr[2], dest_ptr[3]);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#sqrtObject

Calculates a square root of array elements.



1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
# File 'ext/opencv/cvmat.cpp', line 1847

VALUE
rb_sqrt(VALUE self)
{
  CvArr* self_ptr = CVARR(self);
  VALUE dest = new_mat_kind_object(cvGetSize(self_ptr), self);

  try {
    const cv::Mat srcMat(CVMAT(self));
    cv::Mat dstMat(CVMAT(dest));
    cv::sqrt(srcMat, dstMat);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return dest;
}

#square?Boolean

Returns whether the matrix is a square.

Returns:

  • (Boolean)

    If width = height, returns true. if not, returns false.



674
675
676
677
678
679
# File 'ext/opencv/cvmat.cpp', line 674

VALUE
rb_square_q(VALUE self)
{
  CvMat *mat = CVMAT(self);
  return mat->width == mat->height ? Qtrue : Qfalse;
}

#sub(val, mask = nil) ⇒ CvMat Also known as: -

Calculates the per-element difference between two arrays or array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to subtract

  • mask (CvMat)

    Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Result array



1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
# File 'ext/opencv/cvmat.cpp', line 1791

VALUE
rb_sub(int argc, VALUE *argv, VALUE self)
{
  VALUE val, mask, dest;
  rb_scan_args(argc, argv, "11", &val, &mask);
  dest = copy(self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvSub(CVARR(self), CVARR(val), CVARR(dest), MASK(mask));
    else
      cvSubS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#sub_rect(rect) ⇒ CvMat #sub_rect(topleft, size) ⇒ CvMat #sub_rect(x, y, width, height) ⇒ CvMat Also known as: subrect

Returns matrix corresponding to the rectangular sub-array of input image or matrix

Overloads:

  • #sub_rect(rect) ⇒ CvMat

    Parameters:

    • rect (CvRect)

      Zero-based coordinates of the rectangle of interest.

  • #sub_rect(topleft, size) ⇒ CvMat

    Parameters:

    • topleft (CvPoint)

      Top-left coordinates of the rectangle of interest

    • size (CvSize)

      Size of the rectangle of interest

  • #sub_rect(x, y, width, height) ⇒ CvMat

    Parameters:

    • x (Integer)

      X-coordinate of the rectangle of interest

    • y (Integer)

      Y-coordinate of the rectangle of interest

    • width (Integer)

      Width of the rectangle of interest

    • height (Integer)

      Height of the rectangle of interest

Returns:

  • (CvMat)

    Sub-array of matrix



722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
# File 'ext/opencv/cvmat.cpp', line 722

VALUE
rb_sub_rect(VALUE self, VALUE args)
{
  CvRect area;
  CvPoint topleft;
  CvSize size;
  switch(RARRAY_LEN(args)) {
  case 1:
    area = VALUE_TO_CVRECT(RARRAY_PTR(args)[0]);
    break;
  case 2:
    topleft = VALUE_TO_CVPOINT(RARRAY_PTR(args)[0]);
    size = VALUE_TO_CVSIZE(RARRAY_PTR(args)[1]);
    area.x = topleft.x;
    area.y = topleft.y;
    area.width = size.width;
    area.height = size.height;
    break;
  case 4:
    area.x = NUM2INT(RARRAY_PTR(args)[0]);
    area.y = NUM2INT(RARRAY_PTR(args)[1]);
    area.width = NUM2INT(RARRAY_PTR(args)[2]);
    area.height = NUM2INT(RARRAY_PTR(args)[3]);
    break;
  default:
    rb_raise(rb_eArgError, "wrong number of arguments (%ld of 1 or 2 or 4)", RARRAY_LEN(args));
  }

  CvMat* mat = NULL;
  try {
    mat = cvGetSubRect(CVARR(self), RB_CVALLOC(CvMat), area);
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return DEPEND_OBJECT(rb_klass, mat, self);
}

#subspace_project(w, mean) ⇒ Object



6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
# File 'ext/opencv/cvmat.cpp', line 6514

VALUE
rb_subspace_project(VALUE self, VALUE w, VALUE mean)
{
  VALUE projection;
  try {
    cv::Mat w_mat(CVMAT_WITH_CHECK(w));
    cv::Mat mean_mat(CVMAT_WITH_CHECK(mean));
    cv::Mat self_mat(CVMAT(self));
    cv::Mat pmat = cv::subspaceProject(w_mat, mean_mat, self_mat);
    projection = new_object(pmat.rows, pmat.cols, pmat.type());
    CvMat tmp = pmat;
    cvCopy(&tmp, CVMAT(projection));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return projection;
}

#subspace_reconstruct(w, mean) ⇒ Object



6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
# File 'ext/opencv/cvmat.cpp', line 6538

VALUE
rb_subspace_reconstruct(VALUE self, VALUE w, VALUE mean)
{
  VALUE result;
  try {
    cv::Mat w_mat(CVMAT_WITH_CHECK(w));
    cv::Mat mean_mat(CVMAT_WITH_CHECK(mean));
    cv::Mat self_mat(CVMAT(self));
    cv::Mat rmat = cv::subspaceReconstruct(w_mat, mean_mat, self_mat);
    result = new_object(rmat.rows, rmat.cols, rmat.type());
    CvMat tmp = rmat;
    cvCopy(&tmp, CVMAT(result));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }

  return result;
}

#sumCvScalar

Calculates the sum of array elements.

Returns:

  • (CvScalar)

    The sum of array elements.



2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
# File 'ext/opencv/cvmat.cpp', line 2409

VALUE
rb_sum(VALUE self)
{
  CvScalar sum;
  try {
    sum = cvSum(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvScalar::new_object(sum);
}

#svd(flag = 0) ⇒ Array<CvMat>

Performs SVD of a matrix

Parameters:

  • flag (Integer)

    Operation flags.

    • CV_SVD_MODIFY_A - Use the algorithm to modify the decomposed matrix. It can save space and speed up processing.

    • CV_SVD_U_T - Indicate that only a vector of singular values w is to be computed, while u and v will be set to empty matrices.

    • CV_SVD_V_T - When the matrix is not square, by default the algorithm produces u and v matrices of sufficiently large size for the further A reconstruction. If, however, CV_SVD_V_T flag is specified, u and v will be full-size square orthogonal matrices.

Returns:

  • (Array<CvMat>)

    Array of the computed values [w, u, v], where

    • w - Computed singular values

    • u - Computed left singular vectors

    • v - Computed right singular vectors



2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
# File 'ext/opencv/cvmat.cpp', line 2879

VALUE
rb_svd(int argc, VALUE *argv, VALUE self)
{
  VALUE _flag = Qnil;
  int flag = 0;
  if (rb_scan_args(argc, argv, "01", &_flag) > 0) {
    flag = NUM2INT(_flag);
  }

  CvMat* self_ptr = CVMAT(self);
  VALUE w = new_mat_kind_object(cvSize(self_ptr->cols, self_ptr->rows), self);
  
  int rows = 0;
  int cols = 0;
  if (flag & CV_SVD_U_T) {
    rows = MIN(self_ptr->rows, self_ptr->cols);
    cols = self_ptr->rows;
  }
  else {
    rows = self_ptr->rows;
    cols = MIN(self_ptr->rows, self_ptr->cols);
  }
  VALUE u = new_mat_kind_object(cvSize(cols, rows), self);

  if (flag & CV_SVD_V_T) {
    rows = MIN(self_ptr->rows, self_ptr->cols);
    cols = self_ptr->cols;
  }
  else {
    rows = self_ptr->cols;
    cols = MIN(self_ptr->rows, self_ptr->cols);
  }
  VALUE v = new_mat_kind_object(cvSize(cols, rows), self);

  cvSVD(self_ptr, CVARR(w), CVARR(u), CVARR(v), flag);

  return rb_ary_new3(3, w, u, v);
}

#threshold(threshold, max_value, threshold_type) ⇒ CvMat #threshold(threshold, max_value, threshold_type, use_otsu) ⇒ Array<CvMat, Number>

Applies a fixed-level threshold to each array element.

Examples:

mat = CvMat.new(3, 3, CV_8U, 1)
mat.set_data([1, 2, 3, 4, 5, 6, 7, 8, 9])
mat #=> [1, 2, 3,
         4, 5, 6,
         7, 8, 9]
result = mat.threshold(4, 7, CV_THRESH_BINARY)
result #=> [0, 0, 0,
            0, 7, 7,
            7, 7, 7]

Overloads:

  • #threshold(threshold, max_value, threshold_type) ⇒ CvMat

    Returns Output array of the same size and type as self.

    Parameters:

    • threshold (Number)

      Threshold value.

    • max_value (Number)

      Maximum value to use with the CV_THRESH_BINARY and CV_THRESH_BINARY_INV thresholding types.

    • threshold_type (Integer)

      Thresholding type

      • CV_THRESH_BINARY

      • CV_THRESH_BINARY_INV

      • CV_THRESH_TRUNC

      • CV_THRESH_TOZERO

      • CV_THRESH_TOZERO_INV

    Returns:

    • (CvMat)

      Output array of the same size and type as self.

  • #threshold(threshold, max_value, threshold_type, use_otsu) ⇒ Array<CvMat, Number>

    Returns Output array and Otsu’s threshold.

    Parameters:

    • threshold (Number)

      Threshold value.

    • max_value (Number)

      Maximum value to use with the CV_THRESH_BINARY and CV_THRESH_BINARY_INV thresholding types.

    • threshold_type (Integer)

      Thresholding type

      • CV_THRESH_BINARY

      • CV_THRESH_BINARY_INV

      • CV_THRESH_TRUNC

      • CV_THRESH_TOZERO

      • CV_THRESH_TOZERO_INV

    • use_otsu (Boolean)

      Determines the optimal threshold value using the Otsu’s algorithm

    Returns:

    • (Array<CvMat, Number>)

      Output array and Otsu’s threshold.



4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
# File 'ext/opencv/cvmat.cpp', line 4939

VALUE
rb_threshold(int argc, VALUE *argv, VALUE self)
{
  VALUE threshold, max_value, threshold_type, use_otsu;
  rb_scan_args(argc, argv, "31", &threshold, &max_value, &threshold_type, &use_otsu);
  const int INVALID_TYPE = -1;
  int type = CVMETHOD("THRESHOLD_TYPE", threshold_type, INVALID_TYPE);
  if (type == INVALID_TYPE)
    rb_raise(rb_eArgError, "Invalid threshold type.");
  
  return rb_threshold_internal(type, threshold, max_value, use_otsu, self);
}

#to_16sCvMat

Converts the matrix to 16bit signed.

Returns:

  • (CvMat)

    Converted matrix which depth is 16bit signed. The size and channels of the new matrix are same as the source.



610
611
612
613
614
# File 'ext/opencv/cvmat.cpp', line 610

VALUE
rb_to_16s(VALUE self)
{
  return rb_to_X_internal(self, CV_16S);
}

#to_16uCvMat

Converts the matrix to 16bit unsigned.

Returns:

  • (CvMat)

    Converted matrix which depth is 16bit unsigned. The size and channels of the new matrix are same as the source.



598
599
600
601
# File 'ext/opencv/cvmat.cpp', line 598

VALUE rb_to_16u(VALUE self)
{
  return rb_to_X_internal(self, CV_16U);
}

#to_32fCvMat

Converts the matrix to 32bit float.

Returns:

  • (CvMat)

    Converted matrix which depth is 32bit float. The size and channels of the new matrix are same as the source.



636
637
638
639
640
# File 'ext/opencv/cvmat.cpp', line 636

VALUE
rb_to_32f(VALUE self)
{
  return rb_to_X_internal(self, CV_32F);
}

#to_32sCvMat

Converts the matrix to 32bit signed.

Returns:

  • (CvMat)

    Converted matrix which depth is 32bit signed. The size and channels of the new matrix are same as the source.



623
624
625
626
627
# File 'ext/opencv/cvmat.cpp', line 623

VALUE
rb_to_32s(VALUE self)
{
  return rb_to_X_internal(self, CV_32S);
}

#to_64fCvMat

Converts the matrix to 64bit float.

Returns:

  • (CvMat)

    Converted matrix which depth is 64bit float. The size and channels of the new matrix are same as the source.



649
650
651
652
653
# File 'ext/opencv/cvmat.cpp', line 649

VALUE
rb_to_64f(VALUE self)
{
  return rb_to_X_internal(self, CV_64F);
}

#to_8sCvMat

Converts the matrix to 8bit signed.

Returns:

  • (CvMat)

    Converted matrix which depth is 8bit signed. The size and channels of the new matrix are same as the source.



585
586
587
588
589
# File 'ext/opencv/cvmat.cpp', line 585

VALUE
rb_to_8s(VALUE self)
{
  return rb_to_X_internal(self, CV_8S);
}

#to_8uCvMat

Converts the matrix to 8bit unsigned.

Returns:

  • (CvMat)

    Converted matrix which depth is 8bit unsigned. The size and channels of the new matrix are same as the source.



572
573
574
575
576
# File 'ext/opencv/cvmat.cpp', line 572

VALUE
rb_to_8u(VALUE self)
{
  return rb_to_X_internal(self, CV_8U);
}

#to_CvMatCvMat

Converts an object to CvMat

Returns:

  • (CvMat)

    Converted matrix



689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
# File 'ext/opencv/cvmat.cpp', line 689

VALUE
rb_to_CvMat(VALUE self)
{
  // CvMat#to_CvMat aborts when self's class is CvMat.
  if (CLASS_OF(self) == rb_klass)
    return self;

  CvMat *mat = NULL;
  try {
    mat = cvGetMat(CVARR(self), RB_CVALLOC(CvMat));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return DEPEND_OBJECT(rb_klass, mat, self);
}

#to_IplConvKernel(anchor) ⇒ IplConvKernel

Creates a structuring element from the matrix for morphological operations.

Parameters:

  • anchor (CvPoint)

    Anchor position within the element

Returns:



404
405
406
407
408
409
410
411
412
# File 'ext/opencv/cvmat.cpp', line 404

VALUE
rb_to_IplConvKernel(VALUE self, VALUE anchor)
{
  CvMat *src = CVMAT(self);
  CvPoint p = VALUE_TO_CVPOINT(anchor);
  IplConvKernel *kernel = rb_cvCreateStructuringElementEx(src->cols, src->rows, p.x, p.y,
							  CV_SHAPE_CUSTOM, src->data.i);
  return DEPEND_OBJECT(cIplConvKernel::rb_class(), kernel, self);
}

#to_sString

Returns String representation of the matrix.

Returns:

  • (String)

    String representation of the matrix



353
354
355
356
357
358
359
360
361
362
363
364
365
# File 'ext/opencv/cvmat.cpp', line 353

VALUE
rb_to_s(VALUE self)
{
  const int i = 6;
  VALUE str[i];
  str[0] = rb_str_new2("<%s:%dx%d,depth=%s,channel=%d>");
  str[1] = rb_str_new2(rb_class2name(CLASS_OF(self)));
  str[2] = rb_width(self);
  str[3] = rb_height(self);
  str[4] = rb_depth(self);
  str[5] = rb_channel(self);
  return rb_f_sprintf(i, str);
}

#traceCvScalar

Returns the trace of a matrix.

Returns:



2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
# File 'ext/opencv/cvmat.cpp', line 2752

VALUE
rb_trace(VALUE self)
{
  CvScalar scalar;
  try {
    scalar = cvTrace(CVARR(self));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return cCvScalar::new_object(scalar);
}

#transform(transmat, shiftvec = nil) ⇒ CvMat

Performs the matrix transformation of every array element.

Parameters:

  • transmat (CvMat)

    Transformation 2x2 or 2x3 floating-point matrix.

  • shiftvec (CvMat)

    Optional translation vector.

Returns:

  • (CvMat)

    Transformed array.



2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
# File 'ext/opencv/cvmat.cpp', line 2658

VALUE
rb_transform(int argc, VALUE *argv, VALUE self)
{
  VALUE transmat, shiftvec;
  rb_scan_args(argc, argv, "11", &transmat, &shiftvec);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvTransform(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(transmat),
		NIL_P(shiftvec) ? NULL : CVMAT_WITH_CHECK(shiftvec));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#transposeCvMat Also known as: t

Transposes a matrix.

Returns:

  • (CvMat)

    Transposed matrix.



2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
# File 'ext/opencv/cvmat.cpp', line 2772

VALUE
rb_transpose(VALUE self)
{
  CvMat* self_ptr = CVMAT(self);
  VALUE dest = new_mat_kind_object(cvSize(self_ptr->rows, self_ptr->cols), self);
  try {
    cvTranspose(self_ptr, CVARR(dest));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#vector?Boolean

Returns whether the matrix is a vector.

Returns:

  • (Boolean)

    If width or height of the matrix is 1, returns true. if not, returns false.



661
662
663
664
665
666
# File 'ext/opencv/cvmat.cpp', line 661

VALUE
rb_vector_q(VALUE self)
{
  CvMat *mat = CVMAT(self);
  return (mat->width == 1|| mat->height == 1) ? Qtrue : Qfalse;
}

#vector_magnitude!Object



1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
# File 'ext/opencv/cvmat.cpp', line 1066

VALUE
rb_vector_magnitude(VALUE self)
{
  CvMat* self_ptr = CVMAT(self);
  int type = self_ptr->type, depth = CV_MAT_DEPTH(type), channel = CV_MAT_CN(type);

  CvArr* mat_ptr = CVARR(self);
	CvScalar this_scalar;
	CvSize arrSize = cvGetSize(CVARR(self));
	for(int i=0;i<(arrSize.height*arrSize.width)-1;i++) {
		this_scalar = cvGet1D(mat_ptr, i);

		int sum_of_squares = this_scalar.val[0]*this_scalar.val[0] + this_scalar.val[1]*this_scalar.val[1] + this_scalar.val[2]*this_scalar.val[2];
		cvSet1D(CVARR(self), i, cvScalar(sqrt(sum_of_squares), 0, 0, 0));
	}

	return self;
}

#warp_affine(map_matrix, flags = CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS, fillval = 0) ⇒ CvMat

Applies an affine transformation to an image.

Parameters:

  • map_matrix (CvMat)

    2x3 transformation matrix.

  • flags (Integer)

    Combination of interpolation methods (#see resize) and the optional flag WARP_INVERSE_MAP that means that map_matrix is the inverse transformation.

  • fillval (Number, CvScalar)

    Value used in case of a constant border.

Returns:

  • (CvMat)

    Output image that has the size size and the same type as self.



4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
# File 'ext/opencv/cvmat.cpp', line 4215

VALUE
rb_warp_affine(int argc, VALUE *argv, VALUE self)
{
  VALUE map_matrix, flags_val, fill_value;
  VALUE dest = Qnil;
  if (rb_scan_args(argc, argv, "12", &map_matrix, &flags_val, &fill_value) < 3)
    fill_value = INT2FIX(0);
  CvArr* self_ptr = CVARR(self);
  int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val);
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvWarpAffine(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix),
		 flags, VALUE_TO_CVSCALAR(fill_value));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#warp_perspective(map_matrix, flags = CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS, fillval = 0) ⇒ CvMat

Applies a perspective transformation to an image.

Parameters:

  • map_matrix (CvMat)

    3x3 transformation matrix.

  • flags (Integer) (defaults to: CV_INTER_LINEAR|CV_WARP_FILL_OUTLIERS)

    Combination of interpolation methods (CV_INTER_LINEAR or CV_INTER_NEAREST) and the optional flag CV_WARP_INVERSE_MAP, that sets map_matrix as the inverse transformation.

  • fillval (Number, CvScalar) (defaults to: 0)

    Value used in case of a constant border.

Returns:

  • (CvMat)

    Output image.



4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
# File 'ext/opencv/cvmat.cpp', line 4364

VALUE
rb_warp_perspective(int argc, VALUE *argv, VALUE self)
{
  VALUE map_matrix, flags_val, option, fillval;
  if (rb_scan_args(argc, argv, "13", &map_matrix, &flags_val, &option, &fillval) < 4)
    fillval = INT2FIX(0);
  CvArr* self_ptr = CVARR(self);
  VALUE dest = Qnil;
  int flags = NIL_P(flags_val) ? (CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS) : NUM2INT(flags_val);
  try {
    dest = new_mat_kind_object(cvGetSize(self_ptr), self);
    cvWarpPerspective(self_ptr, CVARR(dest), CVMAT_WITH_CHECK(map_matrix),
		      flags, VALUE_TO_CVSCALAR(fillval));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#watershed(markers) ⇒ CvMat

Performs a marker-based image segmentation using the watershed algorithm.

Parameters:

  • markers (CvMat)

    Input 32-bit single-channel image of markers. It should have the same size as self

Returns:

  • (CvMat)

    Output image



5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
# File 'ext/opencv/cvmat.cpp', line 5458

VALUE
rb_watershed(VALUE self, VALUE markers)
{
  try {
    cvWatershed(CVARR(self), CVARR_WITH_CHECK(markers));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return markers;
}

#widthInteger Also known as: columns, cols

Returns number of columns of the matrix.

Returns:

  • (Integer)

    Number of columns of the matrix



438
439
440
441
442
# File 'ext/opencv/cvmat.cpp', line 438

VALUE
rb_width(VALUE self)
{
  return INT2NUM(CVMAT(self)->width);
}

#xor(val, mask = nil) ⇒ CvMat Also known as: ^

Calculates the per-element bit-wise “exclusive or” operation on two arrays or an array and a scalar.

Parameters:

  • val (CvMat, CvScalar)

    Array or scalar to calculate bit-wise xor operation.

  • mask (CvMat)

    Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.

Returns:

  • (CvMat)

    Result array



2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
# File 'ext/opencv/cvmat.cpp', line 2041

VALUE
rb_xor(int argc, VALUE *argv, VALUE self)
{
  VALUE val, mask, dest;
  rb_scan_args(argc, argv, "11", &val, &mask);
  dest = copy(self);
  try {
    if (rb_obj_is_kind_of(val, rb_klass))
      cvXor(CVARR(self), CVARR(val), CVARR(dest), MASK(mask));
    else
      cvXorS(CVARR(self), VALUE_TO_CVSCALAR(val), CVARR(dest), MASK(mask));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return dest;
}

#zero?(x, y) ⇒ Boolean

Returns:

  • (Boolean)


1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
# File 'ext/opencv/cvmat.cpp', line 1048

VALUE
rb_zero_q(VALUE self, VALUE x, VALUE y)
{
  CvScalar scalar;
  try {
    scalar = cvGet2D(CVARR(self), NUM2INT(y), NUM2INT(x));
  }
  catch (cv::Exception& e) {
    raise_cverror(e);
  }
  return (scalar.val[0] == 0 && scalar.val[1] == 0 && scalar.val[2] == 0 && scalar.val[3] == 0) ? Qtrue : Qfalse;
}