Module: Build::Text::Merge

Defined in:
lib/build/text/merge.rb

Defined Under Namespace

Classes: Difference, LCSNode

Class Method Summary collapse

Class Method Details

.combine(old_text, new_text) ⇒ Object



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# File 'lib/build/text/merge.rb', line 27

def self.combine(old_text, new_text)
	lcs = lcs(old_text, new_text)
	changes = []
	
	n = 0; o = 0; l = 0
	while o < old_text.size and n < new_text.size and l < lcs.size
		if !similar(old_text[o], lcs[l])
			changes << Difference.new(:old, old_text[o])
			o += 1
		elsif !similar(new_text[n], lcs[l])
			changes << Difference.new(:new, new_text[n])
			n += 1
		else
			changes << Difference.new(:both, lcs[l])
			o += 1; n += 1; l += 1
		end
	end
	
	while o < old_text.size
		changes << Difference.new(:old, old_text[o])
		o += 1
	end
	
	while n < new_text.size
		changes << Difference.new(:old, new_text[n])
		n += 1
	end
	
	changes.map do |change|
		change.value
	end
end

.lcs(x, y) ⇒ Object

Find the Longest Common Subsequence in the given sequences x, y.



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/build/text/merge.rb', line 107

def self.lcs(x, y)
	# Create the lcs matrix:
	m = Array.new(x.length + 1) do
		Array.new(y.length + 1) do
			LCSNode.new(nil, nil)
		end
	end

	# LCS(i, 0) and LCS(0, j) are always 0:
	for i in 0..x.length do m[i][0].value = 0 end
	for j in 0..y.length do m[0][j].value = 0 end

	# Main algorithm, solve row by row:
	for i in 1..x.length do
		for j in 1..y.length do
			if similar(x[i-1], y[j-1])
				# Value is based on maximizing the length of the matched strings:
				m[i][j].value = m[i-1][j-1].value + (x[i-1].chomp.length + y[j-1].chomp.length) / 2.0
				m[i][j].previous = [-1, -1]
			else
				if m[i-1][j].value >= m[i][j-1].value
					m[i][j].value = m[i-1][j].value
					m[i][j].previous = [-1, 0]
				else
					m[i][j].value = m[i][j-1].value
					m[i][j].previous = [0, -1]
				end
			end
		end
	end

	# Get the solution by following the path backwards from m[x.length][y.length]
	lcs = []
	
	i = x.length; j = y.length
	until m[i][j].previous == nil do
		if m[i][j].previous == [-1, -1]
			lcs << x[i-1]
		end
		
		i, j = i + m[i][j].previous[0], j + m[i][j].previous[1]
	end

	return lcs.reverse!
end

.levenshtein_distance(s, t) ⇒ Object

This code is based directly on the Text gem implementation Returns a value representing the “cost” of transforming str1 into str2



62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# File 'lib/build/text/merge.rb', line 62

def self.levenshtein_distance(s, t)
	n = s.length
	m = t.length

	return m if n == 0
	return n if m == 0

	d = (0..m).to_a
	x = nil

	n.times do |i|
		e = i+1

		m.times do |j|
			cost = (s[i] == t[j]) ? 0 : 1
			x = [
				d[j+1] + 1, # insertion
				e + 1,      # deletion
				d[j] + cost # substitution
			].min
			d[j] = e
			e = x
		end

		d[m] = x
	end

	return x
end

.similar(s, t, factor = 0.15) ⇒ Object

Calculate the similarity of two sequences, return true if they are with factor% similarity.



93
94
95
96
97
98
99
100
101
102
# File 'lib/build/text/merge.rb', line 93

def self.similar(s, t, factor = 0.15)
	return true if s == t
	
	distance = levenshtein_distance(s, t)
	average_length = (s.length + t.length) / 2.0

	proximity = (distance.to_f / average_length)
	
	return proximity <= factor
end