Class: Classifier::LSI
Overview
This class implements a Latent Semantic Indexer, which can search, classify and cluster data based on underlying semantic relations. For more information on the algorithms used, please consult Wikipedia.
Instance Attribute Summary collapse
-
#auto_rebuild ⇒ Object
Returns the value of attribute auto_rebuild.
-
#word_list ⇒ Object
readonly
Returns the value of attribute word_list.
Instance Method Summary collapse
-
#<<(item) ⇒ Object
A less flexible shorthand for add_item that assumes you are passing in a string with no categorries.
-
#add_item(item, *categories, &block) ⇒ Object
Adds an item to the index.
-
#build_index(cutoff = 0.75) ⇒ Object
This function rebuilds the index if needs_rebuild? returns true.
-
#categories_for(item) ⇒ Object
Returns the categories for a given indexed items.
-
#classify(doc, cutoff = 0.30, &block) ⇒ Object
This function uses a voting system to categorize documents, based on the categories of other documents.
-
#classify_with_confidence(doc, cutoff = 0.30, &block) ⇒ Object
Returns the same category as classify() but also returns a confidence value derived from the vote share that the winning category got.
-
#find_related(doc, max_nearest = 3, &block) ⇒ Object
This function takes content and finds other documents that are semantically “close”, returning an array of documents sorted from most to least relavant.
-
#highest_ranked_stems(doc, count = 3) ⇒ Object
Prototype, only works on indexed documents.
-
#highest_relative_content(max_chunks = 10) ⇒ Object
This method returns max_chunks entries, ordered by their average semantic rating.
-
#initialize(options = {}) ⇒ LSI
constructor
Create a fresh index.
-
#items ⇒ Object
Returns an array of items that are indexed.
-
#needs_rebuild? ⇒ Boolean
Returns true if the index needs to be rebuilt.
-
#proximity_array_for_content(doc, &block) ⇒ Object
This function is the primitive that find_related and classify build upon.
-
#proximity_norms_for_content(doc, &block) ⇒ Object
Similar to proximity_array_for_content, this function takes similar arguments and returns a similar array.
-
#remove_item(item) ⇒ Object
Removes an item from the database, if it is indexed.
-
#search(string, max_nearest = 3) ⇒ Object
This function allows for text-based search of your index.
- #vote(doc, cutoff = 0.30, &block) ⇒ Object
Constructor Details
#initialize(options = {}) ⇒ LSI
Create a fresh index. If you want to call #build_index manually, use
Classifier::LSI.new :auto_rebuild => false
34 35 36 37 38 39 40 |
# File 'lib/classifier/lsi.rb', line 34 def initialize( = {}) @auto_rebuild = true unless [:auto_rebuild] == false @word_list = WordList.new @items = {} @version = 0 @built_at_version = -1 end |
Instance Attribute Details
#auto_rebuild ⇒ Object
Returns the value of attribute auto_rebuild.
28 29 30 |
# File 'lib/classifier/lsi.rb', line 28 def auto_rebuild @auto_rebuild end |
#word_list ⇒ Object (readonly)
Returns the value of attribute word_list.
27 28 29 |
# File 'lib/classifier/lsi.rb', line 27 def word_list @word_list end |
Instance Method Details
#<<(item) ⇒ Object
A less flexible shorthand for add_item that assumes you are passing in a string with no categorries. item will be duck typed via to_s .
73 74 75 |
# File 'lib/classifier/lsi.rb', line 73 def <<(item) add_item(item) end |
#add_item(item, *categories, &block) ⇒ Object
Adds an item to the index. item is assumed to be a string, but any item may be indexed so long as it responds to #to_s or if you provide an optional block explaining how the indexer can fetch fresh string data. This optional block is passed the item, so the item may only be a reference to a URL or file name.
For example:
lsi = Classifier::LSI.new
lsi.add_item "This is just plain text"
lsi.add_item "/home/me/filename.txt" { |x| File.read x }
ar = ActiveRecordObject.find( :all )
lsi.add_item ar, *ar.categories { |x| ar.content }
62 63 64 65 66 67 |
# File 'lib/classifier/lsi.rb', line 62 def add_item(item, *categories, &block) clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash @items[item] = ContentNode.new(clean_word_hash, *categories) @version += 1 build_index if @auto_rebuild end |
#build_index(cutoff = 0.75) ⇒ Object
This function rebuilds the index if needs_rebuild? returns true. For very large document spaces, this indexing operation may take some time to complete, so it may be wise to place the operation in another thread.
As a rule, indexing will be fairly swift on modern machines until you have well over 500 documents indexed, or have an incredibly diverse vocabulary for your documents.
The optional parameter “cutoff” is a tuning parameter. When the index is built, a certain number of s-values are discarded from the system. The cutoff parameter tells the indexer how many of these values to keep. A value of 1 for cutoff means that no semantic analysis will take place, turning the LSI class into a simple vector search engine.
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# File 'lib/classifier/lsi.rb', line 113 def build_index(cutoff = 0.75) return unless needs_rebuild? make_word_list doc_list = @items.values tda = doc_list.collect { |node| node.raw_vector_with(@word_list) } if $GSL tdm = GSL::Matrix.alloc(*tda).trans ntdm = build_reduced_matrix(tdm, cutoff) ntdm.size[1].times do |col| vec = GSL::Vector.alloc(ntdm.column(col)).row doc_list[col].lsi_vector = vec doc_list[col].lsi_norm = vec.normalize end else tdm = Matrix.rows(tda).trans ntdm = build_reduced_matrix(tdm, cutoff) ntdm.row_size.times do |col| doc_list[col].lsi_vector = ntdm.column(col) if doc_list[col] doc_list[col].lsi_norm = ntdm.column(col).normalize if doc_list[col] end end @built_at_version = @version end |
#categories_for(item) ⇒ Object
Returns the categories for a given indexed items. You are free to add and remove items from this as you see fit. It does not invalide an index to change its categories.
79 80 81 82 83 |
# File 'lib/classifier/lsi.rb', line 79 def categories_for(item) return [] unless @items[item] @items[item].categories end |
#classify(doc, cutoff = 0.30, &block) ⇒ Object
This function uses a voting system to categorize documents, based on the categories of other documents. It uses the same logic as the find_related function to find related documents, then returns the most obvious category from this list.
cutoff signifies the number of documents to consider when clasifying text. A cutoff of 1 means that every document in the index votes on what category the document is in. This may not always make sense.
249 250 251 252 253 254 |
# File 'lib/classifier/lsi.rb', line 249 def classify(doc, cutoff = 0.30, &block) votes = vote(doc, cutoff, &block) ranking = votes.keys.sort_by { |x| votes[x] } ranking[-1] end |
#classify_with_confidence(doc, cutoff = 0.30, &block) ⇒ Object
Returns the same category as classify() but also returns a confidence value derived from the vote share that the winning category got.
e.g. category,confidence = classify_with_confidence(doc) if confidence < 0.3
category = nil
end
See classify() for argument docs
283 284 285 286 287 288 289 290 291 292 |
# File 'lib/classifier/lsi.rb', line 283 def classify_with_confidence(doc, cutoff = 0.30, &block) votes = vote(doc, cutoff, &block) votes_sum = votes.values.inject(0.0) { |sum, v| sum + v } return [nil, nil] if votes_sum.zero? ranking = votes.keys.sort_by { |x| votes[x] } winner = ranking[-1] vote_share = votes[winner] / votes_sum.to_f [winner, vote_share] end |
#find_related(doc, max_nearest = 3, &block) ⇒ Object
This function takes content and finds other documents that are semantically “close”, returning an array of documents sorted from most to least relavant. max_nearest specifies the number of documents to return. A value of 0 means that it returns all the indexed documents, sorted by relavence.
This is particularly useful for identifing clusters in your document space. For example you may want to identify several “What’s Related” items for weblog articles, or find paragraphs that relate to each other in an essay.
233 234 235 236 237 238 |
# File 'lib/classifier/lsi.rb', line 233 def (doc, max_nearest = 3, &block) carry = proximity_array_for_content(doc, &block).reject { |pair| pair[0] == doc } result = carry.collect { |x| x[0] } result[0..max_nearest - 1] end |
#highest_ranked_stems(doc, count = 3) ⇒ Object
Prototype, only works on indexed documents. I have no clue if this is going to work, but in theory it’s supposed to.
297 298 299 300 301 302 303 |
# File 'lib/classifier/lsi.rb', line 297 def highest_ranked_stems(doc, count = 3) raise 'Requested stem ranking on non-indexed content!' unless @items[doc] arr = node_for_content(doc).lsi_vector.to_a top_n = arr.sort.reverse[0..count - 1] top_n.collect { |x| @word_list.word_for_index(arr.index(x)) } end |
#highest_relative_content(max_chunks = 10) ⇒ Object
This method returns max_chunks entries, ordered by their average semantic rating. Essentially, the average distance of each entry from all other entries is calculated, the highest are returned.
This can be used to build a summary service, or to provide more information about your dataset’s general content. For example, if you were to use categorize on the results of this data, you could gather information on what your dataset is generally about.
151 152 153 154 155 156 157 158 |
# File 'lib/classifier/lsi.rb', line 151 def highest_relative_content(max_chunks = 10) return [] if needs_rebuild? avg_density = {} @items.each_key { |x| avg_density[x] = proximity_array_for_content(x).inject(0.0) { |x, y| x + y[1] } } avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..max_chunks - 1].map end |
#items ⇒ Object
Returns an array of items that are indexed.
95 96 97 |
# File 'lib/classifier/lsi.rb', line 95 def items @items.keys end |
#needs_rebuild? ⇒ Boolean
Returns true if the index needs to be rebuilt. The index needs to be built after all informaton is added, but before you start using it for search, classification and cluster detection.
45 46 47 |
# File 'lib/classifier/lsi.rb', line 45 def needs_rebuild? (@items.keys.size > 1) && (@version != @built_at_version) end |
#proximity_array_for_content(doc, &block) ⇒ Object
This function is the primitive that find_related and classify build upon. It returns an array of 2-element arrays. The first element of this array is a document, and the second is its “score”, defining how “close” it is to other indexed items.
These values are somewhat arbitrary, having to do with the vector space created by your content, so the magnitude is interpretable but not always meaningful between indexes.
The parameter doc is the content to compare. If that content is not indexed, you can pass an optional block to define how to create the text data. See add_item for examples of how this works.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# File 'lib/classifier/lsi.rb', line 172 def proximity_array_for_content(doc, &block) return [] if needs_rebuild? content_node = node_for_content(doc, &block) result = @items.keys.collect do |item| val = if $GSL content_node.search_vector * @items[item].search_vector.col else (Matrix[content_node.search_vector] * @items[item].search_vector)[0] end [item, val] end result.sort_by { |x| x[1] }.reverse end |
#proximity_norms_for_content(doc, &block) ⇒ Object
Similar to proximity_array_for_content, this function takes similar arguments and returns a similar array. However, it uses the normalized calculated vectors instead of their full versions. This is useful when you’re trying to perform operations on content that is much smaller than the text you’re working with. search uses this primitive.
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# File 'lib/classifier/lsi.rb', line 193 def proximity_norms_for_content(doc, &block) return [] if needs_rebuild? content_node = node_for_content(doc, &block) result = @items.keys.collect do |item| val = if $GSL content_node.search_norm * @items[item].search_norm.col else (Matrix[content_node.search_norm] * @items[item].search_norm)[0] end [item, val] end result.sort_by { |x| x[1] }.reverse end |
#remove_item(item) ⇒ Object
Removes an item from the database, if it is indexed.
87 88 89 90 91 92 |
# File 'lib/classifier/lsi.rb', line 87 def remove_item(item) return unless @items.key?(item) @items.delete(item) @version += 1 end |
#search(string, max_nearest = 3) ⇒ Object
This function allows for text-based search of your index. Unlike other functions like find_related and classify, search only takes short strings. It will also ignore factors like repeated words. It is best for short, google-like search terms. A search will first priortize lexical relationships, then semantic ones.
While this may seem backwards compared to the other functions that LSI supports, it is actually the same algorithm, just applied on a smaller document.
216 217 218 219 220 221 222 |
# File 'lib/classifier/lsi.rb', line 216 def search(string, max_nearest = 3) return [] if needs_rebuild? carry = proximity_norms_for_content(string) result = carry.collect { |x| x[0] } result[0..max_nearest - 1] end |
#vote(doc, cutoff = 0.30, &block) ⇒ Object
256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# File 'lib/classifier/lsi.rb', line 256 def vote(doc, cutoff = 0.30, &block) icutoff = (@items.size * cutoff).round carry = proximity_array_for_content(doc, &block) carry = carry[0..icutoff - 1] votes = {} carry.each do |pair| categories = @items[pair[0]].categories categories.each do |category| votes[category] ||= 0.0 votes[category] += pair[1] end end votes end |