Class: Clusterer::DMatrix

Inherits:
Matrix
  • Object
show all
Defined in:
lib/clusterer/lsi/dmatrix.rb

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.join_columns(columns) ⇒ Object



105
106
107
# File 'lib/clusterer/lsi/dmatrix.rb', line 105

def self.join_columns(columns)
  DMatrix[*columns.collect {|c| [*c] }].transpose
end

.join_rows(rows) ⇒ Object



94
95
96
# File 'lib/clusterer/lsi/dmatrix.rb', line 94

def self.join_rows(rows)
  DMatrix[*rows.collect {|r| [*r] }]
end

Instance Method Details

#[]=(i, j, val) ⇒ Object



90
91
92
# File 'lib/clusterer/lsi/dmatrix.rb', line 90

def []=(i,j,val)
  @rows[i][j] = val
end

#svdObject

algorithm description from “Simple Algoritms for the partial singular value decomposition” by J. C. Nash and S. Shlien Plane rotation method there were some typos in the original algorithm in the paper also see the Pascal code in NashSVD, file alg01.pas; for an idea the partial algorithm is an adaptation of that algo



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# File 'lib/clusterer/lsi/dmatrix.rb', line 32

def svd
  m, n = self.row_size, self.column_size
  tol =  0.001
  slimit = [n/4.to_i, 6].max
  u, z, v = DMatrix[*(1..m).to_a.collect {|i| Array.new(n,0) }], Array.new(n), DMatrix.diagonal(*Array.new(n,1))

  nt = n
  slimit.times do
    rcount = nt *(nt-1)/2
    (nt-1).times do |j|
      (j+1).upto(nt - 1) do |k|
        p=q=r=0
        m.times do |i|
          p += self[i,j]*self[i,k]
          q += self[i,j]*self[i,j]
          r += self[i,k]*self[i,k]
        end
        z[j], z[k] = q, r
        if q < r
          p, q = p/r, q/r - 1
          vt = Math.sqrt(4*p*p + q*q)
          s = Math.sqrt(0.5*(1 - q/vt))
          s = -s if p < 0
          c = p / (vt*s)
        elsif  (q * r <= tol * tol) || (p/q)*(p/r) <= tol
          rcount -= 1
          next
        else
          p, r = p/q, 1 - r/q
          vt = Math.sqrt(4*p*p + r*r)
          c = Math.sqrt(0.5*(1 + r/vt))
          s = p/(vt * c)
        end
        m.times do |i|
          r = self[i,j]
          self[i,j] = c * r + s * self[i,k]
          self[i,k] = -s*r + c * self[i,k]
        end
        n.times do |i|
          r = v[i,j]
          v[i,j] = c * r + s * v[i,k] #typo in paper replace r by s 
          v[i,k] = -s*r + c * v[i,k]  #typo in paper replace A(i,k) by v(i,k)
        end
      end
    end
    until nt < 3 || z[nt-1]/(z[0] + tol) > tol
      nt -= 1
    end
    break unless rcount > 0
  end
  nt.times do |j|
    z[j] = Math.sqrt(z[j])
    m.times {|i| u[i,j] = self[i,j]/z[j] }
  end
  z = DMatrix.diagonal(*z)
  return u, z, v.transpose
end

#transposeObject



98
99
100
101
102
103
# File 'lib/clusterer/lsi/dmatrix.rb', line 98

def transpose
  x = super
  y = DMatrix[]
  y.instance_variable_set("@rows",x.instance_variable_get("@rows"))
  y
end