Module: Daru::Maths::Statistics::Vector
- Included in:
- Vector
- Defined in:
- lib/daru/maths/statistics/vector.rb
Instance Method Summary collapse
- #average_deviation_population(m = nil) ⇒ Object (also: #adp)
-
#box_cox_transformation(lambda) ⇒ Object
:nodoc:.
-
#center ⇒ Object
Center data by subtracting the mean from each non-nil value.
- #coefficient_of_variation ⇒ Object (also: #cov)
-
#count(value = false) ⇒ Object
Retrieves number of cases which comply condition.
-
#dichotomize(low = nil) ⇒ Object
Dichotomize the vector with 0 and 1, based on lowest value.
-
#factors ⇒ Object
Retrieve unique values of non-nil data.
- #freqs ⇒ Object
- #frequencies ⇒ Object
- #kurtosis(m = nil) ⇒ Object
-
#max(return_type = :stored_type) ⇒ Object
Maximum element of the vector.
-
#max_index ⇒ Daru::Vector
Return a Vector with the max element and its index.
- #mean ⇒ Object
- #median ⇒ Object
- #median_absolute_deviation ⇒ Object (also: #mad)
- #min ⇒ Object
- #mode ⇒ Object
-
#percentile(q, strategy = :midpoint) ⇒ Object
(also: #percentil)
Returns the value of the percentile q.
- #product ⇒ Object
- #proportion(value = 1) ⇒ Object
- #proportions ⇒ Object
- #range ⇒ Object
- #ranked ⇒ Object
-
#sample_with_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, with replacement, only with non-nil data.
-
#sample_without_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, without replacement, only with valid data.
-
#skew(m = nil) ⇒ Object
Calculate skewness using (sigma(xi - mean)^3)/((N)*std_dev_sample^3).
- #standard_deviation_population(m = nil) ⇒ Object (also: #sdp)
- #standard_deviation_sample(m = nil) ⇒ Object (also: #sds, #sd)
- #standard_error ⇒ Object (also: #se)
-
#standardize(use_population = false) ⇒ Object
Standardize data.
- #sum ⇒ Object
- #sum_of_squared_deviation ⇒ Object
- #sum_of_squares(m = nil) ⇒ Object (also: #ss)
-
#variance_population(m = nil) ⇒ Object
Population variance with denominator (N).
-
#variance_sample(m = nil) ⇒ Object
(also: #variance)
Sample variance with denominator (N-1).
- #vector_centered_compute(m) ⇒ Object
-
#vector_percentile ⇒ Object
Replace each non-nil value in the vector with its percentile.
- #vector_standardized_compute(m, sd) ⇒ Object
Instance Method Details
#average_deviation_population(m = nil) ⇒ Object Also known as: adp
195 196 197 198 199 200 201 |
# File 'lib/daru/maths/statistics/vector.rb', line 195 def average_deviation_population m=nil type == :numeric or raise TypeError, "Vector must be numeric" m ||= mean (@data.inject( 0 ) { |memo, val| @missing_values.has_key?(val) ? memo : ( val - m ).abs + memo }).quo( n_valid ) end |
#box_cox_transformation(lambda) ⇒ Object
:nodoc:
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# File 'lib/daru/maths/statistics/vector.rb', line 278 def box_cox_transformation lambda # :nodoc: raise "Should be a numeric" unless @type == :numeric self.recode do |x| if !x.nil? if(lambda == 0) Math.log(x) else (x ** lambda - 1).quo(lambda) end else nil end end end |
#center ⇒ Object
Center data by subtracting the mean from each non-nil value.
260 261 262 |
# File 'lib/daru/maths/statistics/vector.rb', line 260 def center self - mean end |
#coefficient_of_variation ⇒ Object Also known as: cov
106 107 108 |
# File 'lib/daru/maths/statistics/vector.rb', line 106 def coefficient_of_variation standard_deviation_sample / mean end |
#count(value = false) ⇒ Object
Retrieves number of cases which comply condition. If block given, retrieves number of instances where block returns true. If other values given, retrieves the frequency for this value. If no value given, counts the number of non-nil elements in the Vector.
114 115 116 117 118 119 120 121 122 123 |
# File 'lib/daru/maths/statistics/vector.rb', line 114 def count value=false if block_given? @data.inject(0){ |memo, val| memo += 1 if yield val; memo} elsif value val = frequencies[value] val.nil? ? 0 : val else size - @missing_positions.size end end |
#dichotomize(low = nil) ⇒ Object
Dichotomize the vector with 0 and 1, based on lowest value. If parameter is defined, this value and lower will be 0 and higher, 1.
245 246 247 248 249 250 251 252 253 254 255 256 257 |
# File 'lib/daru/maths/statistics/vector.rb', line 245 def dichotomize(low = nil) low ||= factors.min self.recode do |x| if x.nil? nil elsif x > low 1 else 0 end end end |
#factors ⇒ Object
Retrieve unique values of non-nil data
52 53 54 |
# File 'lib/daru/maths/statistics/vector.rb', line 52 def factors only_valid.uniq.reset_index! end |
#freqs ⇒ Object
86 87 88 |
# File 'lib/daru/maths/statistics/vector.rb', line 86 def freqs Daru::Vector.new(frequencies) end |
#frequencies ⇒ Object
76 77 78 79 80 81 82 83 84 |
# File 'lib/daru/maths/statistics/vector.rb', line 76 def frequencies @data.inject({}) do |hash, element| unless element.nil? hash[element] ||= 0 hash[element] += 1 end hash end end |
#kurtosis(m = nil) ⇒ Object
185 186 187 188 189 190 191 192 193 |
# File 'lib/daru/maths/statistics/vector.rb', line 185 def kurtosis m=nil if @data.respond_to? :kurtosis @data.kurtosis else m ||= mean fo = @data.inject(0){ |a, x| a + ((x - m) ** 4) } fo.quo((@size - @missing_positions.size) * standard_deviation_sample(m) ** 4) - 3 end end |
#max(return_type = :stored_type) ⇒ Object
Maximum element of the vector.
61 62 63 64 65 66 67 68 |
# File 'lib/daru/maths/statistics/vector.rb', line 61 def max return_type=:stored_type max_value = @data.max if return_type == :vector Daru::Vector.new({index_of(max_value) => max_value}, name: @name, dtype: @dtype) else max_value end end |
#max_index ⇒ Daru::Vector
Return a Vector with the max element and its index.
72 73 74 |
# File 'lib/daru/maths/statistics/vector.rb', line 72 def max_index max :vector end |
#mean ⇒ Object
8 9 10 |
# File 'lib/daru/maths/statistics/vector.rb', line 8 def mean @data.mean end |
#median ⇒ Object
28 29 30 |
# File 'lib/daru/maths/statistics/vector.rb', line 28 def median @data.respond_to?(:median) ? @data.median : percentile(50) end |
#median_absolute_deviation ⇒ Object Also known as: mad
37 38 39 40 |
# File 'lib/daru/maths/statistics/vector.rb', line 37 def median_absolute_deviation m = median recode {|val| (val - m).abs }.median end |
#min ⇒ Object
20 21 22 |
# File 'lib/daru/maths/statistics/vector.rb', line 20 def min @data.min end |
#mode ⇒ Object
32 33 34 35 |
# File 'lib/daru/maths/statistics/vector.rb', line 32 def mode freqs = frequencies.values @data[freqs.index(freqs.max)] end |
#percentile(q, strategy = :midpoint) ⇒ Object Also known as: percentil
Returns the value of the percentile q
Accepts an optional second argument specifying the strategy to interpolate when the requested percentile lies between two data points a and b Valid strategies are:
-
:midpoint (Default): (a + b) / 2
-
:linear : a + (b - a) * d where d is the decimal part of the index between a and b.
References
This is the NIST recommended method (en.wikipedia.org/wiki/Percentile#NIST_method)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'lib/daru/maths/statistics/vector.rb', line 213 def percentile(q, strategy = :midpoint) sorted = only_valid(:array).sort case strategy when :midpoint v = (n_valid * q).quo(100) if(v.to_i!=v) sorted[v.to_i] else (sorted[(v-0.5).to_i].to_f + sorted[(v+0.5).to_i]).quo(2) end when :linear index = (q / 100.0) * (n_valid + 1) k = index.truncate d = index % 1 if k == 0 sorted[0] elsif k >= sorted.size sorted[-1] else sorted[k - 1] + d * (sorted[k] - sorted[k - 1]) end else raise NotImplementedError.new "Unknown strategy #{strategy.to_s}" end end |
#product ⇒ Object
16 17 18 |
# File 'lib/daru/maths/statistics/vector.rb', line 16 def product @data.product end |
#proportion(value = 1) ⇒ Object
125 126 127 |
# File 'lib/daru/maths/statistics/vector.rb', line 125 def proportion value=1 frequencies[value].quo(n_valid).to_f end |
#proportions ⇒ Object
90 91 92 93 |
# File 'lib/daru/maths/statistics/vector.rb', line 90 def proportions len = n_valid frequencies.inject({}) { |hash, arr| hash[arr[0]] = arr[1] / len; hash } end |
#range ⇒ Object
24 25 26 |
# File 'lib/daru/maths/statistics/vector.rb', line 24 def range max - min end |
#ranked ⇒ Object
95 96 97 98 99 100 101 102 103 104 |
# File 'lib/daru/maths/statistics/vector.rb', line 95 def ranked sum = 0 r = frequencies.sort.inject( {} ) do |memo, val| memo[val[0]] = ((sum + 1) + (sum + val[1])).quo(2) sum += val[1] memo end recode { |e| r[e] } end |
#sample_with_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, with replacement, only with non-nil data.
In all the trails, every item have the same probability of been selected.
323 324 325 326 327 328 329 330 331 |
# File 'lib/daru/maths/statistics/vector.rb', line 323 def sample_with_replacement(sample=1) if @data.respond_to? :sample_with_replacement @data.sample_with_replacement sample else valid = missing_positions.empty? ? self : self.only_valid vds = valid.size (0...sample).collect{ valid[rand(vds)] } end end |
#sample_without_replacement(sample = 1) ⇒ Object
Returns an random sample of size n, without replacement, only with valid data.
Every element could only be selected once.
A sample of the same size of the vector is the vector itself.
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# File 'lib/daru/maths/statistics/vector.rb', line 339 def sample_without_replacement(sample=1) if @data.respond_to? :sample_without_replacement @data.sample_without_replacement sample else valid = missing_positions.empty? ? self : self.only_valid raise ArgumentError, "Sample size couldn't be greater than n" if sample > valid.size out = [] size = valid.size while out.size < sample value = rand(size) out.push(value) if !out.include?(value) end out.collect{|i| valid[i]} end end |
#skew(m = nil) ⇒ Object
Calculate skewness using (sigma(xi - mean)^3)/((N)*std_dev_sample^3)
175 176 177 178 179 180 181 182 183 |
# File 'lib/daru/maths/statistics/vector.rb', line 175 def skew m=nil if @data.respond_to? :skew @data.skew else m ||= mean th = @data.inject(0) { |memo, val| memo + ((val - m)**3) } th.quo ((@size - @missing_positions.size) * (standard_deviation_sample(m)**3)) end end |
#standard_deviation_population(m = nil) ⇒ Object Also known as: sdp
156 157 158 159 160 161 162 163 |
# File 'lib/daru/maths/statistics/vector.rb', line 156 def standard_deviation_population m=nil m ||= mean if @data.respond_to? :standard_deviation_population @data.standard_deviation_population(m) else Math::sqrt(variance_population(m)) end end |
#standard_deviation_sample(m = nil) ⇒ Object Also known as: sds, sd
165 166 167 168 169 170 171 172 |
# File 'lib/daru/maths/statistics/vector.rb', line 165 def standard_deviation_sample m=nil m ||= mean if @data.respond_to? :standard_deviation_sample @data.standard_deviation_sample m else Math::sqrt(variance_sample(m)) end end |
#standard_error ⇒ Object Also known as: se
43 44 45 |
# File 'lib/daru/maths/statistics/vector.rb', line 43 def standard_error standard_deviation_sample/(Math::sqrt((n_valid))) end |
#standardize(use_population = false) ⇒ Object
Standardize data.
Arguments
-
use_population - Pass as true if you want to use population
standard deviation instead of sample standard deviation.
270 271 272 273 274 275 276 |
# File 'lib/daru/maths/statistics/vector.rb', line 270 def standardize use_population=false m ||= mean sd = use_population ? sdp : sds return Daru::Vector.new([nil]*@size) if m.nil? or sd == 0.0 vector_standardized_compute m, sd end |
#sum ⇒ Object
12 13 14 |
# File 'lib/daru/maths/statistics/vector.rb', line 12 def sum @data.sum end |
#sum_of_squared_deviation ⇒ Object
47 48 49 |
# File 'lib/daru/maths/statistics/vector.rb', line 47 def sum_of_squared_deviation (@data.inject(0) { |a,x| x.square + a } - (sum.square.quo(n_valid)).to_f).to_f end |
#sum_of_squares(m = nil) ⇒ Object Also known as: ss
149 150 151 152 153 154 |
# File 'lib/daru/maths/statistics/vector.rb', line 149 def sum_of_squares(m=nil) m ||= mean @data.inject(0) { |memo, val| @missing_values.has_key?(val) ? memo : (memo + (val - m)**2) } end |
#variance_population(m = nil) ⇒ Object
Population variance with denominator (N)
140 141 142 143 144 145 146 147 |
# File 'lib/daru/maths/statistics/vector.rb', line 140 def variance_population m=nil m ||= mean if @data.respond_to? :variance_population @data.variance_population m else sum_of_squares(m).quo((n_valid)).to_f end end |
#variance_sample(m = nil) ⇒ Object Also known as: variance
Sample variance with denominator (N-1)
130 131 132 133 134 135 136 137 |
# File 'lib/daru/maths/statistics/vector.rb', line 130 def variance_sample m=nil m ||= self.mean if @data.respond_to? :variance_sample @data.variance_sample m else sum_of_squares(m).quo((n_valid) - 1) end end |
#vector_centered_compute(m) ⇒ Object
309 310 311 312 313 314 315 316 |
# File 'lib/daru/maths/statistics/vector.rb', line 309 def vector_centered_compute(m) if @data.respond_to? :vector_centered_compute @data.vector_centered_compute(m) else Daru::Vector.new @data.collect { |x| x.nil? ? nil : x.to_f-m }, index: index, name: name, dtype: dtype end end |
#vector_percentile ⇒ Object
Replace each non-nil value in the vector with its percentile.
295 296 297 298 |
# File 'lib/daru/maths/statistics/vector.rb', line 295 def vector_percentile c = size - missing_positions.size ranked.recode! { |i| i.nil? ? nil : (i.quo(c)*100).to_f } end |
#vector_standardized_compute(m, sd) ⇒ Object
300 301 302 303 304 305 306 307 |
# File 'lib/daru/maths/statistics/vector.rb', line 300 def vector_standardized_compute(m,sd) if @data.respond_to? :vector_standardized_compute @data.vector_standardized_compute(m,sd) else Daru::Vector.new @data.collect { |x| x.nil? ? nil : (x.to_f - m).quo(sd) }, index: index, name: name, dtype: dtype end end |