Class: Daru::DataFrame
- Extended by:
- Gem::Deprecate
- Defined in:
- lib/daru/dataframe.rb,
lib/daru/extensions/rserve.rb,
lib/daru/extensions/which_dsl.rb
Overview
rubocop:disable Metrics/ClassLength
Defined Under Namespace
Modules: SetMultiIndexStrategy, SetSingleIndexStrategy
Instance Attribute Summary collapse
-
#data ⇒ Object
readonly
TOREMOVE.
-
#index ⇒ Object
The index of the rows of the DataFrame.
-
#name ⇒ Object
readonly
The name of the DataFrame.
-
#size ⇒ Object
readonly
The number of rows present in the DataFrame.
-
#vectors ⇒ Object
The vectors (columns) index of the DataFrame.
Class Method Summary collapse
- ._load(data) ⇒ Object
-
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors - Rows - Columns - Values.
-
.from_activerecord(relation, *fields) ⇒ Object
Read a dataframe from AR::Relation.
-
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file.
-
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
-
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file.
-
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file.
-
.from_sql(dbh, query) ⇒ Object
Read a database query and returns a Dataset.
-
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
Instance Method Summary collapse
- #==(other) ⇒ Object
-
#[](*names) ⇒ Object
Access row or vector.
-
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row.
- #_dump(_depth) ⇒ Object
-
#access_row_tuples_by_indexs(*indexes) ⇒ Array
Returns array of row tuples at given index(s).
- #add_row(row, index = nil) ⇒ Object
- #add_vector(n, vector) ⇒ Object
- #add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
- #add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
-
#aggregate(options = {}, multi_index_level = -1)) ⇒ Daru::DataFrame
Function to use for aggregating the data.
-
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?.
-
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
- #apply_method(method, keys: nil, by_position: true) ⇒ Object (also: #apply_method_on_sub_df)
-
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions.
-
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size.
-
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
-
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
-
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
-
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector.
-
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
- #collect_row_with_index(&block) ⇒ Object
-
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
- #collect_vector_with_index(&block) ⇒ Object
-
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
-
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
-
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns.
-
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset.
-
#delete_row(index) ⇒ Object
Delete a row.
-
#delete_vector(vector) ⇒ Object
Delete a vector.
-
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors.
-
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
-
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
-
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame.
-
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
-
#each_row ⇒ Object
Iterate over each row.
- #each_row_with_index ⇒ Object
-
#each_vector(&block) ⇒ Object
(also: #each_column)
Iterate over each vector.
-
#each_vector_with_index ⇒ Object
(also: #each_column_with_index)
Iterate over each vector alongwith the name of the vector.
-
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
-
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
-
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true.
-
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
-
#get_sub_dataframe(keys, by_position: true) ⇒ Daru::Dataframe
Extract a dataframe given row indexes or positions.
- #get_vector_anyways(v) ⇒ Object
-
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them.
- #group_by_and_aggregate(*group_by_keys, **aggregation_map) ⇒ Object
- #has_missing_data? ⇒ Boolean (also: #flawed?)
-
#has_vector?(vector) ⇒ Boolean
Check if a vector is present.
-
#head(quantity = 10) ⇒ Object
(also: #first)
The first ten elements of the DataFrame.
-
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame.
-
#initialize(source = {}, opts = {}) ⇒ DataFrame
constructor
DataFrame basically consists of an Array of Vector objects.
- #insert_vector(n, name, source) ⇒ Object
-
#inspect(spacing = Daru.spacing, threshold = Daru.max_rows) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby).
- #interact_code(vector_names, full) ⇒ Object
-
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins.
- #keep_row_if ⇒ Object
- #keep_vector_if ⇒ Object
-
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified.
-
#map!(axis = :vector, &block) ⇒ Object
Destructive map.
-
#map_rows(&block) ⇒ Object
Map each row.
- #map_rows! ⇒ Object
- #map_rows_with_index(&block) ⇒ Object
-
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
-
#map_vectors! ⇒ Object
Destructive form of #map_vectors.
-
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
-
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames.
- #method_missing(name, *args, &block) ⇒ Object
-
#missing_values_rows(missing_values = [nil]) ⇒ Object
(also: #vector_missing_values)
Return a vector with the number of missing values in each row.
-
#ncols ⇒ Object
The number of vectors.
-
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values.
-
#nrows ⇒ Object
The number of rows.
- #numeric_vector_names ⇒ Object
-
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors.
-
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
-
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors.
-
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe.
-
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
-
#plot(*args, **options, &b) ⇒ Object
this method is overwritten: see Daru::DataFrame#plotting_library=.
- #plotting_library=(lib) ⇒ Object
-
#recast(opts = {}) ⇒ Object
Change dtypes of vectors by supplying a hash of :vector_name => :new_dtype.
-
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame.
- #recode_rows ⇒ Object
- #recode_vectors ⇒ Object
-
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing.
- #reindex_vectors(new_vectors) ⇒ Object
-
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values are ignored.
-
#rename(new_name) ⇒ Object
(also: #name=)
Rename the DataFrame.
-
#rename_vectors(name_map) ⇒ Object
Renames the vectors.
-
#rename_vectors!(name_map) ⇒ Object
Renames the vectors and returns itself.
-
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value.
- #reset_index ⇒ Object
- #respond_to_missing?(name, include_private = false) ⇒ Boolean
- #rolling_fillna(direction = :forward) ⇒ Object
-
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value.
-
#row ⇒ Object
Access a row or set/create a row.
-
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions.
-
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
-
#set_at(positions, vector) ⇒ Object
Set vectors by positions.
-
#set_index(new_index_col, opts = {}) ⇒ Object
Set a particular column as the new DF.
-
#set_row_at(positions, vector) ⇒ Object
Set rows by positions.
-
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
-
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!.
-
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
-
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector.
-
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame.
-
#tail(quantity = 10) ⇒ Object
(also: #last)
The last ten elements of the DataFrame.
-
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element.
-
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors.
-
#to_df ⇒ self
Returns the dataframe.
-
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix.
-
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
-
#to_html(threshold = Daru.max_rows) ⇒ Object
Convert to html for IRuby.
- #to_html_tbody(threshold = Daru.max_rows) ⇒ Object
- #to_html_thead ⇒ Object
-
#to_json(no_index = true) ⇒ Object
Convert to json.
-
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
-
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
-
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame.
-
#to_REXP ⇒ Object
rubocop:disable Style/MethodName.
- #to_s ⇒ Object
-
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
-
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat.
-
#uniq(*vtrs) ⇒ Object
Return unique rows by vector specified or all vectors.
-
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc.
-
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
- #vector_count_characters(vecs = nil) ⇒ Object
-
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
-
#vector_sum(*args) ⇒ Object
Sum all numeric/specified vectors in the DataFrame.
-
#verify(*tests) ⇒ Object
Test each row with one or more tests.
-
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
- #which(&block) ⇒ Object
-
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
-
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet.
-
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table.
Methods included from Maths::Statistics::DataFrame
#acf, #correlation, #count, #covariance, #cumsum, #describe, #ema, #max, #mean, #median, #min, #mode, #percent_change, #product, #range, #rolling_count, #rolling_max, #rolling_mean, #rolling_median, #rolling_min, #rolling_std, #rolling_variance, #standardize, #std, #sum, #variance_sample
Methods included from Maths::Arithmetic::DataFrame
#%, #*, #**, #+, #-, #/, #exp, #round, #sqrt
Constructor Details
#initialize(source = {}, opts = {}) ⇒ DataFrame
DataFrame basically consists of an Array of Vector objects. These objects are indexed by row and column by vectors and index Index objects.
Arguments
-
source - Source from the DataFrame is to be initialized. Can be a Hash
of names and vectors (array or Daru::Vector), an array of arrays or array of Daru::Vectors.
Options
:order
- An Array/Daru::Index/Daru::MultiIndex containing the order in which Vectors should appear in the DataFrame.
:index
- An Array/Daru::Index/Daru::MultiIndex containing the order in which rows of the DataFrame will be named.
:name
- A name for the DataFrame.
:clone
- Specify as true or false. When set to false, and Vector objects are passed for the source, the Vector objects will not duplicated when creating the DataFrame. Will have no effect if Array is passed in the source, or if the passed Daru::Vectors have different indexes. Default to true.
Usage
df = Daru::DataFrame.new
# =>
# <Daru::DataFrame(0x0)>
# Creates an empty DataFrame with no rows or columns.
df = Daru::DataFrame.new({}, order: [:a, :b])
#<Daru::DataFrame(0x2)>
a b
# Creates a DataFrame with no rows and columns :a and :b
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: [:a, :b, :c, :d], name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
df = Daru::DataFrame.new([[1,2,3,4],[6,7,8,9]], name: :bat_man)
# =>
# #<Daru::DataFrame: bat_man (4x2)>
# 0 1
# 0 1 6
# 1 2 7
# 2 3 8
# 3 4 9
# Dataframe having Index name
df = Daru::DataFrame.new({a: [1,2,3,4], b: [6,7,8,9]}, order: [:b, :a],
index: Daru::Index.new([:a, :b, :c, :d], name: 'idx_name'),
name: :spider_man)
# =>
# <Daru::DataFrame:80766980 @name = spider_man @size = 4>
# idx_name b a
# a 6 1
# b 7 2
# c 8 3
# d 9 4
idx = Daru::Index.new [100, 99, 101, 1, 2], name: "s1"
=> #<Daru::Index(5): s1 {100, 99, 101, 1, 2}>
df = Daru::DataFrame.new({b: [11,12,13,14,15], a: [1,2,3,4,5],
c: [11,22,33,44,55]},
order: [:a, :b, :c],
index: idx)
# =>
#<Daru::DataFrame(5x3)>
# s1 a b c
# 100 1 11 11
# 99 2 12 22
# 101 3 13 33
# 1 4 14 44
# 2 5 15 55
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# File 'lib/daru/dataframe.rb', line 346 def initialize source={}, opts={} # rubocop:disable Metrics/MethodLength vectors, index = opts[:order], opts[:index] # FIXME: just keyword arges after Ruby 2.1 @data = [] @name = opts[:name] case source when [], {} create_empty_vectors(vectors, index) when Array initialize_from_array source, vectors, index, opts when Hash initialize_from_hash source, vectors, index, opts when ->(s) { s.empty? } # TODO: likely want to remove this case create_empty_vectors(vectors, index) end set_size validate update end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method
#method_missing(name, *args, &block) ⇒ Object
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 |
# File 'lib/daru/dataframe.rb', line 2308 def method_missing(name, *args, &block) case when name =~ /(.+)\=/ name = name[/(.+)\=/].delete('=') name = name.to_sym unless has_vector?(name) insert_or_modify_vector [name], args[0] when has_vector?(name) self[name] when has_vector?(name.to_s) self[name.to_s] else super end end |
Instance Attribute Details
#data ⇒ Object (readonly)
TOREMOVE
246 247 248 |
# File 'lib/daru/dataframe.rb', line 246 def data @data end |
#index ⇒ Object
The index of the rows of the DataFrame
249 250 251 |
# File 'lib/daru/dataframe.rb', line 249 def index @index end |
#name ⇒ Object (readonly)
The name of the DataFrame
252 253 254 |
# File 'lib/daru/dataframe.rb', line 252 def name @name end |
#size ⇒ Object (readonly)
The number of rows present in the DataFrame
255 256 257 |
# File 'lib/daru/dataframe.rb', line 255 def size @size end |
#vectors ⇒ Object
The vectors (columns) index of the DataFrame
244 245 246 |
# File 'lib/daru/dataframe.rb', line 244 def vectors @vectors end |
Class Method Details
._load(data) ⇒ Object
2233 2234 2235 2236 2237 2238 2239 |
# File 'lib/daru/dataframe.rb', line 2233 def self._load data h = Marshal.load data Daru::DataFrame.new(h[:data], index: h[:index], order: h[:order], name: h[:name]) end |
.crosstab_by_assignation(rows, columns, values) ⇒ Object
Generates a new dataset, using three vectors
-
Rows
-
Columns
-
Values
For example, you have these values
x y v
a a 0
a b 1
b a 1
b b 0
You obtain
id a b
a 0 1
b 1 0
Useful to process outputs from databases
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# File 'lib/daru/dataframe.rb', line 202 def crosstab_by_assignation rows, columns, values raise 'Three vectors should be equal size' if rows.size != columns.size || rows.size!=values.size data = Hash.new { |h, col| h[col] = rows.factors.map { |r| [r, nil] }.to_h } columns.zip(rows, values).each { |c, r, v| data[c][r] = v } # FIXME: in fact, WITHOUT this line you'll obtain more "right" # data: with vectors having "rows" as an index... data = data.map { |c, r| [c, r.values] }.to_h data[:_id] = rows.factors DataFrame.new(data) end |
.from_activerecord(relation, *fields) ⇒ Object
103 104 105 |
# File 'lib/daru/dataframe.rb', line 103 def from_activerecord relation, *fields Daru::IO.from_activerecord relation, *fields end |
.from_csv(path, opts = {}, &block) ⇒ Object
Load data from a CSV file. Specify an optional block to grab the CSV object and pre-condition it (for example use the ‘convert` or `header_convert` methods).
Arguments
-
path - Local path / Remote URL of the file to load specified as a String.
Options
Accepts the same options as the Daru::DataFrame constructor and CSV.open() and uses those to eventually construct the resulting DataFrame.
Verbose Description
You can specify all the options to the ‘.from_csv` function that you do to the Ruby `CSV.read()` function, since this is what is used internally.
For example, if the columns in your CSV file are separated by something other that commas, you can use the ‘:col_sep` option. If you want to convert numeric values to numbers and not keep them as strings, you can use the `:converters` option and set it to `:numeric`.
The ‘.from_csv` function uses the following defaults for reading CSV files (that are passed into the `CSV.read()` function):
{
:col_sep => ',',
:converters => :numeric
}
50 51 52 |
# File 'lib/daru/dataframe.rb', line 50 def from_csv path, opts={}, &block Daru::IO.from_csv path, opts, &block end |
.from_excel(path, opts = {}, &block) ⇒ Object
Read data from an Excel file into a DataFrame.
Arguments
-
path - Path of the file to be read.
Options
*:worksheet_id - ID of the worksheet that is to be read.
63 64 65 |
# File 'lib/daru/dataframe.rb', line 63 def from_excel path, opts={}, &block Daru::IO.from_excel path, opts, &block end |
.from_html(path, fields = {}) ⇒ Object
Read the table data from a remote html file. Please note that this module works only for static table elements on a HTML page, and won’t work in cases where the data is being loaded into the HTML table by Javascript.
By default - all <th> tag elements in the first proper row are considered as the order, and all the <th> tag elements in the first column are considered as the index.
Arguments
-
path [String] - URL of the target HTML file.
-
fields [Hash] -
:match
- A String to match and choose a particular table(s) from multiple tables of a HTML page.:order
- An Array which would act as the user-defined order, to override the parsed Daru::DataFrame.:index
- An Array which would act as the user-defined index, to override the parsed Daru::DataFrame.:name
- A String that manually assigns a name to the scraped Daru::DataFrame, for user’s preference.
Returns
An Array of Daru::DataFrames, with each dataframe corresponding to a HTML table on that webpage.
Usage
dfs = Daru::DataFrame.from_html("http://www.moneycontrol.com/", match: "Sun Pharma")
dfs.count
# => 4
dfs.first
#
# => <Daru::DataFrame(5x4)>
# Company Price Change Value (Rs
# 0 Sun Pharma 502.60 -65.05 2,117.87
# 1 Reliance 1356.90 19.60 745.10
# 2 Tech Mahin 379.45 -49.70 650.22
# 3 ITC 315.85 6.75 621.12
# 4 HDFC 1598.85 50.95 553.91
162 163 164 |
# File 'lib/daru/dataframe.rb', line 162 def from_html path, fields={} Daru::IO.from_html path, fields end |
.from_plaintext(path, fields) ⇒ Object
Read the database from a plaintext file. For this method to work, the data should be present in a plain text file in columns. See spec/fixtures/bank2.dat for an example.
Arguments
-
path - Path of the file to be read.
-
fields - Vector names of the resulting database.
Usage
df = Daru::DataFrame.from_plaintext 'spec/fixtures/bank2.dat', [:v1,:v2,:v3,:v4,:v5,:v6]
119 120 121 |
# File 'lib/daru/dataframe.rb', line 119 def from_plaintext path, fields Daru::IO.from_plaintext path, fields end |
.from_sql(dbh, query) ⇒ Object
83 84 85 |
# File 'lib/daru/dataframe.rb', line 83 def from_sql dbh, query Daru::IO.from_sql dbh, query end |
.rows(source, opts = {}) ⇒ Object
Create DataFrame by specifying rows as an Array of Arrays or Array of Daru::Vector objects.
168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/daru/dataframe.rb', line 168 def rows source, opts={} raise SizeError, 'All vectors must have same length' \ unless source.all? { |v| v.size == source.first.size } opts[:order] ||= guess_order(source) if ArrayHelper.array_of?(source, Array) || source.empty? DataFrame.new(source.transpose, opts) elsif ArrayHelper.array_of?(source, Vector) from_vector_rows(source, opts) else raise ArgumentError, "Can't create DataFrame from #{source}" end end |
Instance Method Details
#==(other) ⇒ Object
2283 2284 2285 2286 2287 2288 2289 |
# File 'lib/daru/dataframe.rb', line 2283 def == other self.class == other.class && @size == other.size && @index == other.index && @vectors == other.vectors && @vectors.to_a.all? { |v| self[v] == other[v] } end |
#[](*names) ⇒ Object
Access row or vector. Specify name of row/vector followed by axis(:row, :vector). Defaults to :vector. Use of this method is not recommended for accessing rows. Use df.row for accessing row with index ‘:a’.
392 393 394 395 |
# File 'lib/daru/dataframe.rb', line 392 def [](*names) axis = extract_axis(names, :vector) dispatch_to_axis axis, :access, *names end |
#[]=(*args) ⇒ Object
Insert a new row/vector of the specified name or modify a previous row. Instead of using this method directly, use df.row = [1,2,3] to set/create a row ‘:a’ to [1,2,3], or df.vector = [1,2,3] for vectors.
In case a Daru::Vector is specified after the equality the sign, the indexes of the vector will be matched against the row/vector indexes of the DataFrame before an insertion is performed. Unmatched indexes will be set to nil.
534 535 536 537 538 539 540 |
# File 'lib/daru/dataframe.rb', line 534 def []=(*args) vector = args.pop axis = extract_axis(args) names = args dispatch_to_axis axis, :insert_or_modify, names, vector end |
#_dump(_depth) ⇒ Object
2224 2225 2226 2227 2228 2229 2230 2231 |
# File 'lib/daru/dataframe.rb', line 2224 def _dump(_depth) Marshal.dump( data: @data, index: @index.to_a, order: @vectors.to_a, name: @name ) end |
#access_row_tuples_by_indexs(*indexes) ⇒ Array
Returns array of row tuples at given index(s)
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 |
# File 'lib/daru/dataframe.rb', line 2398 def access_row_tuples_by_indexs *indexes return get_sub_dataframe(indexes, by_position: false).map_rows(&:to_a) if @index.is_a?(Daru::MultiIndex) positions = @index.pos(*indexes) if positions.is_a? Numeric row = get_rows_for([positions]) row.first.is_a?(Array) ? row : [row] else new_rows = get_rows_for(indexes, by_position: false) indexes.map { |index| new_rows.map { |r| r[index] } } end end |
#add_row(row, index = nil) ⇒ Object
542 543 544 |
# File 'lib/daru/dataframe.rb', line 542 def add_row row, index=nil self.row[*(index || @size)] = row end |
#add_vector(n, vector) ⇒ Object
546 547 548 |
# File 'lib/daru/dataframe.rb', line 546 def add_vector n, vector self[n] = vector end |
#add_vectors_by_split(name, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
1314 1315 1316 1317 1318 |
# File 'lib/daru/dataframe.rb', line 1314 def add_vectors_by_split(name,join='-',sep=Daru::SPLIT_TOKEN) self[name] .split_by_separator(sep) .each { |k,v| self["#{name}#{join}#{k}".to_sym] = v } end |
#add_vectors_by_split_recode(nm, join = '-', sep = Daru::SPLIT_TOKEN) ⇒ Object
2029 2030 2031 2032 2033 2034 2035 2036 |
# File 'lib/daru/dataframe.rb', line 2029 def add_vectors_by_split_recode(nm, join='-', sep=Daru::SPLIT_TOKEN) self[nm] .split_by_separator(sep) .each_with_index do |(k, v), i| v.rename "#{nm}:#{k}" self["#{nm}#{join}#{i + 1}".to_sym] = v end end |
#aggregate(options = {}, multi_index_level = -1)) ⇒ Daru::DataFrame
Function to use for aggregating the data.
Note: ‘GroupBy` class `aggregate` method uses this `aggregate` method internally.
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 |
# File 'lib/daru/dataframe.rb', line 2458 def aggregate(={}, multi_index_level=-1) if block_given? positions_tuples, new_index = yield(@index) # note: use of yield is private for now else positions_tuples, new_index = group_index_for_aggregation(@index, multi_index_level) end colmn_value = aggregate_by_positions_tuples(, positions_tuples) Daru::DataFrame.new(colmn_value, index: new_index, order: .keys) end |
#all?(axis = :vector, &block) ⇒ Boolean
Works like Array#all?
1371 1372 1373 1374 1375 1376 1377 1378 1379 |
# File 'lib/daru/dataframe.rb', line 1371 def all? axis=:vector, &block if %i[vector column].include?(axis) @data.all?(&block) elsif axis == :row each_row.all?(&block) else raise ArgumentError, "Unidentified axis #{axis}" end end |
#any?(axis = :vector, &block) ⇒ Boolean
Works like Array#any?.
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 |
# File 'lib/daru/dataframe.rb', line 1349 def any? axis=:vector, &block if %i[vector column].include?(axis) @data.any?(&block) elsif axis == :row each_row do |row| return true if yield(row) end false else raise ArgumentError, "Unidentified axis #{axis}" end end |
#apply_method(method, keys: nil, by_position: true) ⇒ Object Also known as: apply_method_on_sub_df
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# File 'lib/daru/dataframe.rb', line 1026 def apply_method(method, keys: nil, by_position: true) df = keys ? get_sub_dataframe(keys, by_position: by_position) : self case method when Symbol then df.send(method) when Proc then method.call(df) when Array then method.map(&:to_proc).map { |proc| proc.call(df) } # works with Array of both Symbol and/or Proc else raise end end |
#at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive vectors by positions
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
# File 'lib/daru/dataframe.rb', line 472 def at *positions if AXES.include? positions.last axis = positions.pop return row_at(*positions) if axis == :row end original_positions = positions positions = coerce_positions(*positions, ncols) validate_positions(*positions, ncols) if positions.is_a? Integer @data[positions].dup else Daru::DataFrame.new positions.map { |pos| @data[pos].dup }, index: @index, order: @vectors.at(*original_positions), name: @name end end |
#bootstrap(n = nil) ⇒ Daru::DataFrame
Creates a DataFrame with the random data, of n size. If n not given, uses original number of rows.
1120 1121 1122 1123 1124 1125 1126 1127 1128 |
# File 'lib/daru/dataframe.rb', line 1120 def bootstrap(n=nil) n ||= nrows Daru::DataFrame.new({}, order: @vectors).tap do |df_boot| n.times do df_boot.add_row(row[rand(n)]) end df_boot.update end end |
#clone(*vectors_to_clone) ⇒ Object
Returns a ‘view’ of the DataFrame, i.e the object ID’s of vectors are preserved.
Arguments
vectors_to_clone
- Names of vectors to clone. Optional. Will return a view of the whole data frame otherwise.
611 612 613 614 615 616 617 |
# File 'lib/daru/dataframe.rb', line 611 def clone *vectors_to_clone vectors_to_clone.flatten! if ArrayHelper.array_of?(vectors_to_clone, Array) vectors_to_clone = @vectors.to_a if vectors_to_clone.empty? h = vectors_to_clone.map { |vec| [vec, self[vec]] }.to_h Daru::DataFrame.new(h, clone: false, order: vectors_to_clone, name: @name) end |
#clone_only_valid ⇒ Object
Returns a ‘shallow’ copy of DataFrame if missing data is not present, or a full copy of only valid data if missing data is present.
621 622 623 624 625 626 627 |
# File 'lib/daru/dataframe.rb', line 621 def clone_only_valid if include_values?(*Daru::MISSING_VALUES) reject_values(*Daru::MISSING_VALUES) else clone end end |
#clone_structure ⇒ Object
Only clone the structure of the DataFrame.
600 601 602 |
# File 'lib/daru/dataframe.rb', line 600 def clone_structure Daru::DataFrame.new([], order: @vectors.dup, index: @index.dup, name: @name) end |
#collect(axis = :vector, &block) ⇒ Object
Iterate over a row or vector and return results in a Daru::Vector. Specify axis with :vector or :row. Default to :vector.
Description
The #collect iterator works similar to #map, the only difference being that it returns a Daru::Vector comprising of the results of each block run. The resultant Vector has the same index as that of the axis over which collect has iterated. It also accepts the optional axis argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
865 866 867 |
# File 'lib/daru/dataframe.rb', line 865 def collect axis=:vector, &block dispatch_to_axis_pl axis, :collect, &block end |
#collect_matrix ⇒ ::Matrix
Generate a matrix, based on vector names of the DataFrame.
:nocov: FIXME: Even not trying to cover this: I can’t get, how it is expected to work.… – zverok
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# File 'lib/daru/dataframe.rb', line 1072 def collect_matrix return to_enum(:collect_matrix) unless block_given? vecs = vectors.to_a rows = vecs.collect { |row| vecs.collect { |col| yield row,col } } Matrix.rows(rows) end |
#collect_row_with_index(&block) ⇒ Object
1046 1047 1048 1049 1050 |
# File 'lib/daru/dataframe.rb', line 1046 def collect_row_with_index &block return to_enum(:collect_row_with_index) unless block_given? Daru::Vector.new(each_row_with_index.map(&block), index: @index) end |
#collect_rows(&block) ⇒ Object
Retrieves a Daru::Vector, based on the result of calculation performed on each row.
1040 1041 1042 1043 1044 |
# File 'lib/daru/dataframe.rb', line 1040 def collect_rows &block return to_enum(:collect_rows) unless block_given? Daru::Vector.new(each_row.map(&block), index: @index) end |
#collect_vector_with_index(&block) ⇒ Object
1060 1061 1062 1063 1064 |
# File 'lib/daru/dataframe.rb', line 1060 def collect_vector_with_index &block return to_enum(:collect_vector_with_index) unless block_given? Daru::Vector.new(each_vector_with_index.map(&block), index: @vectors) end |
#collect_vectors(&block) ⇒ Object
Retrives a Daru::Vector, based on the result of calculation performed on each vector.
1054 1055 1056 1057 1058 |
# File 'lib/daru/dataframe.rb', line 1054 def collect_vectors &block return to_enum(:collect_vectors) unless block_given? Daru::Vector.new(each_vector.map(&block), index: @vectors) end |
#compute(text, &block) ⇒ Object
Returns a vector, based on a string with a calculation based on vector.
The calculation will be eval’ed, so you can put any variable or expression valid on ruby.
For example:
a = Daru::Vector.new [1,2]
b = Daru::Vector.new [3,4]
ds = Daru::DataFrame.new({:a => a,:b => b})
ds.compute("a+b")
=> Vector [4,6]
1239 1240 1241 1242 |
# File 'lib/daru/dataframe.rb', line 1239 def compute text, &block return instance_eval(&block) if block_given? instance_eval(text) end |
#concat(other_df) ⇒ Object
Concatenate another DataFrame along corresponding columns. If columns do not exist in both dataframes, they are filled with nils
1526 1527 1528 1529 1530 1531 1532 1533 1534 |
# File 'lib/daru/dataframe.rb', line 1526 def concat other_df vectors = (@vectors.to_a + other_df.vectors.to_a).uniq data = vectors.map do |v| get_vector_anyways(v).dup.concat(other_df.get_vector_anyways(v)) end Daru::DataFrame.new(data, order: vectors) end |
#create_sql(table, charset = 'UTF8') ⇒ Object
Create a sql, basen on a given Dataset
Arguments
-
table - String specifying name of the table that will created in SQL.
-
charset - Character set. Default is “UTF8”.
2054 2055 2056 2057 2058 2059 2060 2061 2062 |
# File 'lib/daru/dataframe.rb', line 2054 def create_sql(table,charset='UTF8') sql = "CREATE TABLE #{table} (" fields = vectors.to_a.collect do |f| v = self[f] f.to_s + ' ' + v.db_type end sql + fields.join(",\n ")+") CHARACTER SET=#{charset};" end |
#delete_row(index) ⇒ Object
Delete a row
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
# File 'lib/daru/dataframe.rb', line 1104 def delete_row index idx = named_index_for index raise IndexError, "Index #{index} does not exist." unless @index.include? idx @index = Daru::Index.new(@index.to_a - [idx]) each_vector do |vector| vector.delete_at idx end set_size end |
#delete_vector(vector) ⇒ Object
Delete a vector
1087 1088 1089 1090 1091 1092 1093 1094 |
# File 'lib/daru/dataframe.rb', line 1087 def delete_vector vector raise IndexError, "Vector #{vector} does not exist." unless @vectors.include?(vector) @data.delete_at @vectors[vector] @vectors = Daru::Index.new @vectors.to_a - [vector] self end |
#delete_vectors(*vectors) ⇒ Object
Deletes a list of vectors
1097 1098 1099 1100 1101 |
# File 'lib/daru/dataframe.rb', line 1097 def delete_vectors *vectors Array(vectors).each { |vec| delete_vector vec } self end |
#dup(vectors_to_dup = nil) ⇒ Object
Duplicate the DataFrame entirely.
Arguments
-
vectors_to_dup
- An Array specifying the names of Vectors to
be duplicated. Will duplicate the entire DataFrame if not specified.
590 591 592 593 594 595 596 597 |
# File 'lib/daru/dataframe.rb', line 590 def dup vectors_to_dup=nil vectors_to_dup = @vectors.to_a unless vectors_to_dup src = vectors_to_dup.map { |vec| @data[@vectors.pos(vec)].dup } new_order = Daru::Index.new(vectors_to_dup) Daru::DataFrame.new src, order: new_order, index: @index.dup, name: @name, clone: true end |
#dup_only_valid(vecs = nil) ⇒ Object
Creates a new duplicate dataframe containing only rows without a single missing value.
631 632 633 634 635 636 637 638 |
# File 'lib/daru/dataframe.rb', line 631 def dup_only_valid vecs=nil rows_with_nil = @data.map { |vec| vec.indexes(*Daru::MISSING_VALUES) } .inject(&:concat) .uniq row_indexes = @index.to_a (vecs.nil? ? self : dup(vecs)).row[*(row_indexes - rows_with_nil)] end |
#each(axis = :vector, &block) ⇒ Object
Iterate over each row or vector of the DataFrame. Specify axis by passing :vector or :row as the argument. Default to :vector.
Description
‘#each` works exactly like Array#each. The default mode for `each` is to iterate over the columns of the DataFrame. To iterate over rows you must pass the axis, i.e `:row` as an argument.
Arguments
-
axis
- The axis to iterate over. Can be :vector (or :column)
or :row. Default to :vector.
846 847 848 |
# File 'lib/daru/dataframe.rb', line 846 def each axis=:vector, &block dispatch_to_axis axis, :each, &block end |
#each_index(&block) ⇒ Object
Iterate over each index of the DataFrame.
780 781 782 783 784 785 786 |
# File 'lib/daru/dataframe.rb', line 780 def each_index &block return to_enum(:each_index) unless block_given? @index.each(&block) self end |
#each_row ⇒ Object
Iterate over each row
813 814 815 816 817 818 819 820 821 |
# File 'lib/daru/dataframe.rb', line 813 def each_row return to_enum(:each_row) unless block_given? @index.size.times do |pos| yield row_at(pos) end self end |
#each_row_with_index ⇒ Object
823 824 825 826 827 828 829 830 831 |
# File 'lib/daru/dataframe.rb', line 823 def each_row_with_index return to_enum(:each_row_with_index) unless block_given? @index.each do |index| yield access_row(index), index end self end |
#each_vector(&block) ⇒ Object Also known as: each_column
Iterate over each vector
789 790 791 792 793 794 795 |
# File 'lib/daru/dataframe.rb', line 789 def each_vector(&block) return to_enum(:each_vector) unless block_given? @data.each(&block) self end |
#each_vector_with_index ⇒ Object Also known as: each_column_with_index
Iterate over each vector alongwith the name of the vector
800 801 802 803 804 805 806 807 808 |
# File 'lib/daru/dataframe.rb', line 800 def each_vector_with_index return to_enum(:each_vector_with_index) unless block_given? @vectors.each do |vector| yield @data[@vectors[vector]], vector end self end |
#filter(axis = :vector, &block) ⇒ Object
Retain vectors or rows if the block returns a truthy value.
Description
For filtering out certain rows/vectors based on their values, use the #filter method. By default it iterates over vectors and keeps those vectors for which the block returns true. It accepts an optional axis argument which lets you specify whether you want to iterate over vectors or rows.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
Usage
# Filter vectors
df.filter do |vector|
vector.type == :numeric and vector.median < 50
end
# Filter rows
df.filter(:row) do |row|
row[:a] + row[:d] < 100
end
954 955 956 |
# File 'lib/daru/dataframe.rb', line 954 def filter axis=:vector, &block dispatch_to_axis_pl axis, :filter, &block end |
#filter_rows ⇒ Object
Iterates over each row and retains it in a new DataFrame if the block returns true for that row.
1149 1150 1151 1152 1153 1154 1155 |
# File 'lib/daru/dataframe.rb', line 1149 def filter_rows return to_enum(:filter_rows) unless block_given? keep_rows = @index.map { |index| yield access_row(index) } where keep_rows end |
#filter_vector(vec, &block) ⇒ Object
creates a new vector with the data of a given field which the block returns true
1143 1144 1145 |
# File 'lib/daru/dataframe.rb', line 1143 def filter_vector vec, &block Daru::Vector.new(each_row.select(&block).map { |row| row[vec] }) end |
#filter_vectors(&block) ⇒ Object
Iterates over each vector and retains it in a new DataFrame if the block returns true for that vector.
1159 1160 1161 1162 1163 |
# File 'lib/daru/dataframe.rb', line 1159 def filter_vectors &block return to_enum(:filter_vectors) unless block_given? dup.tap { |df| df.keep_vector_if(&block) } end |
#get_sub_dataframe(keys, by_position: true) ⇒ Daru::Dataframe
Extract a dataframe given row indexes or positions
573 574 575 576 577 578 579 580 581 582 |
# File 'lib/daru/dataframe.rb', line 573 def get_sub_dataframe(keys, by_position: true) return Daru::DataFrame.new({}) if keys == [] keys = @index.pos(*keys) unless by_position sub_df = row_at(*keys) sub_df = sub_df.to_df.transpose if sub_df.is_a?(Daru::Vector) sub_df end |
#get_vector_anyways(v) ⇒ Object
1520 1521 1522 |
# File 'lib/daru/dataframe.rb', line 1520 def get_vector_anyways(v) @vectors.include?(v) ? self[v].to_a : [nil] * size end |
#group_by(*vectors) ⇒ Object
Group elements by vector to perform operations on them. Returns a Daru::Core::GroupBy object.See the Daru::Core::GroupBy docs for a detailed list of possible operations.
Arguments
-
vectors - An Array contatining names of vectors to group by.
Usage
df = Daru::DataFrame.new({
a: %w{foo bar foo bar foo bar foo foo},
b: %w{one one two three two two one three},
c: [1 ,2 ,3 ,1 ,3 ,6 ,3 ,8],
d: [11 ,22 ,33 ,44 ,55 ,66 ,77 ,88]
})
df.group_by([:a,:b,:c]).groups
#=> {["bar", "one", 2]=>[1],
# ["bar", "three", 1]=>[3],
# ["bar", "two", 6]=>[5],
# ["foo", "one", 1]=>[0],
# ["foo", "one", 3]=>[6],
# ["foo", "three", 8]=>[7],
# ["foo", "two", 3]=>[2, 4]}
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 |
# File 'lib/daru/dataframe.rb', line 1496 def group_by *vectors vectors.flatten! missing = vectors - @vectors.to_a unless missing.empty? raise(ArgumentError, "Vector(s) missing: #{missing.join(', ')}") end vectors = [@vectors.first] if vectors.empty? Daru::Core::GroupBy.new(self, vectors) end |
#group_by_and_aggregate(*group_by_keys, **aggregation_map) ⇒ Object
2470 2471 2472 |
# File 'lib/daru/dataframe.rb', line 2470 def group_by_and_aggregate(*group_by_keys, **aggregation_map) group_by(*group_by_keys).aggregate(aggregation_map) end |
#has_missing_data? ⇒ Boolean Also known as: flawed?
1261 1262 1263 |
# File 'lib/daru/dataframe.rb', line 1261 def has_missing_data? @data.any? { |vec| vec.include_values?(*Daru::MISSING_VALUES) } end |
#has_vector?(vector) ⇒ Boolean
Check if a vector is present
1336 1337 1338 |
# File 'lib/daru/dataframe.rb', line 1336 def has_vector? vector @vectors.include? vector end |
#head(quantity = 10) ⇒ Object Also known as: first
The first ten elements of the DataFrame
1384 1385 1386 |
# File 'lib/daru/dataframe.rb', line 1384 def head quantity=10 row.at 0..(quantity-1) end |
#include_values?(*values) ⇒ true, false
Check if any of given values occur in the data frame
1280 1281 1282 |
# File 'lib/daru/dataframe.rb', line 1280 def include_values?(*values) @data.any? { |vec| vec.include_values?(*values) } end |
#insert_vector(n, name, source) ⇒ Object
550 551 552 553 554 555 556 557 558 559 |
# File 'lib/daru/dataframe.rb', line 550 def insert_vector n, name, source raise ArgumentError unless source.is_a? Array vector = Daru::Vector.new(source, index: @index, name: @name) @data << vector @vectors = @vectors.add name ordr = @vectors.dup.to_a elmnt = ordr.pop ordr = ordr.insert n, elmnt self.order=ordr end |
#inspect(spacing = Daru.spacing, threshold = Daru.max_rows) ⇒ Object
Pretty print in a nice table format for the command line (irb/pry/iruby)
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 |
# File 'lib/daru/dataframe.rb', line 2264 def inspect spacing=Daru.spacing, threshold=Daru.max_rows name_part = @name ? ": #{@name} " : '' spacing = [headers.to_a.map(&:length).max, spacing].max "#<#{self.class}#{name_part}(#{nrows}x#{ncols})>#{$INPUT_RECORD_SEPARATOR}" + Formatters::Table.format( each_row.lazy, row_headers: row_headers, headers: headers, threshold: threshold, spacing: spacing ) end |
#interact_code(vector_names, full) ⇒ Object
2327 2328 2329 2330 2331 2332 2333 2334 2335 |
# File 'lib/daru/dataframe.rb', line 2327 def interact_code vector_names, full dfs = vector_names.zip(full).map do |vec_name, f| self[vec_name].contrast_code(full: f).each.to_a end all_vectors = recursive_product(dfs) Daru::DataFrame.new all_vectors, order: all_vectors.map(&:name) end |
#join(other_df, opts = {}) ⇒ Daru::DataFrame
Join 2 DataFrames with SQL style joins. Currently supports inner, left outer, right outer and full outer joins.
1977 1978 1979 |
# File 'lib/daru/dataframe.rb', line 1977 def join(other_df,opts={}) Daru::Core::Merge.join(self, other_df, opts) end |
#keep_row_if ⇒ Object
1130 1131 1132 1133 1134 |
# File 'lib/daru/dataframe.rb', line 1130 def keep_row_if @index .reject { |idx| yield access_row(idx) } .each { |idx| delete_row idx } end |
#keep_vector_if ⇒ Object
1136 1137 1138 1139 1140 |
# File 'lib/daru/dataframe.rb', line 1136 def keep_vector_if @vectors.each do |vector| delete_vector(vector) unless yield(@data[@vectors[vector]], vector) end end |
#map(axis = :vector, &block) ⇒ Object
Map over each vector or row of the data frame according to the argument specified. Will return an Array of the resulting elements. To map over each row/vector and get a DataFrame, see #recode.
Description
The #map iterator works like Array#map. The value returned by each run of the block is added to an Array and the Array is returned. This method also accepts an axis argument, like #each. The default is :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
885 886 887 |
# File 'lib/daru/dataframe.rb', line 885 def map axis=:vector, &block dispatch_to_axis_pl axis, :map, &block end |
#map!(axis = :vector, &block) ⇒ Object
Destructive map. Modifies the DataFrame. Each run of the block must return a Daru::Vector. You can specify the axis to map over as the argument. Default to :vector.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
897 898 899 900 901 902 903 |
# File 'lib/daru/dataframe.rb', line 897 def map! axis=:vector, &block if %i[vector column].include?(axis) map_vectors!(&block) elsif axis == :row map_rows!(&block) end end |
#map_rows(&block) ⇒ Object
Map each row
1004 1005 1006 1007 1008 |
# File 'lib/daru/dataframe.rb', line 1004 def map_rows &block return to_enum(:map_rows) unless block_given? each_row.map(&block) end |
#map_rows! ⇒ Object
1016 1017 1018 1019 1020 1021 1022 1023 1024 |
# File 'lib/daru/dataframe.rb', line 1016 def map_rows! return to_enum(:map_rows!) unless block_given? index.dup.each do |i| row[i] = should_be_vector!(yield(row[i])) end self end |
#map_rows_with_index(&block) ⇒ Object
1010 1011 1012 1013 1014 |
# File 'lib/daru/dataframe.rb', line 1010 def map_rows_with_index &block return to_enum(:map_rows_with_index) unless block_given? each_row_with_index.map(&block) end |
#map_vectors(&block) ⇒ Object
Map each vector and return an Array.
979 980 981 982 983 |
# File 'lib/daru/dataframe.rb', line 979 def map_vectors &block return to_enum(:map_vectors) unless block_given? @data.map(&block) end |
#map_vectors! ⇒ Object
Destructive form of #map_vectors
986 987 988 989 990 991 992 993 994 |
# File 'lib/daru/dataframe.rb', line 986 def map_vectors! return to_enum(:map_vectors!) unless block_given? vectors.dup.each do |n| self[n] = should_be_vector!(yield(self[n])) end self end |
#map_vectors_with_index(&block) ⇒ Object
Map vectors alongwith the index.
997 998 999 1000 1001 |
# File 'lib/daru/dataframe.rb', line 997 def map_vectors_with_index &block return to_enum(:map_vectors_with_index) unless block_given? each_vector_with_index.map(&block) end |
#merge(other_df) ⇒ Daru::DataFrame
Merge vectors from two DataFrames. In case of name collision, the vectors names are changed to x_1, x_2 .…
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 |
# File 'lib/daru/dataframe.rb', line 1932 def merge other_df # rubocop:disable Metrics/AbcSize unless nrows == other_df.nrows raise ArgumentError, "Number of rows must be equal in this: #{nrows} and other: #{other_df.nrows}" end new_fields = (@vectors.to_a + other_df.vectors.to_a) new_fields = ArrayHelper.recode_repeated(new_fields) DataFrame.new({}, order: new_fields).tap do |df_new| (0...nrows).each do |i| df_new.add_row row[i].to_a + other_df.row[i].to_a end df_new.index = @index if @index == other_df.index df_new.update end end |
#missing_values_rows(missing_values = [nil]) ⇒ Object Also known as: vector_missing_values
Return a vector with the number of missing values in each row.
Arguments
-
missing_values
- An Array of the values that should be
treated as ‘missing’. The default missing value is nil.
1250 1251 1252 1253 1254 1255 1256 |
# File 'lib/daru/dataframe.rb', line 1250 def missing_values_rows missing_values=[nil] number_of_missing = each_row.map do |row| row.indexes(*missing_values).size end Daru::Vector.new number_of_missing, index: @index, name: "#{@name}_missing_rows" end |
#ncols ⇒ Object
The number of vectors
1331 1332 1333 |
# File 'lib/daru/dataframe.rb', line 1331 def ncols @vectors.size end |
#nest(*tree_keys, &_block) ⇒ Object
Return a nested hash using vector names as keys and an array constructed of hashes with other values. If block provided, is used to provide the values, with parameters row
of dataset, current
last hash on hierarchy and name
of the key to include
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 |
# File 'lib/daru/dataframe.rb', line 1288 def nest *tree_keys, &_block tree_keys = tree_keys[0] if tree_keys[0].is_a? Array each_row.each_with_object({}) do |row, current| # Create tree *keys, last = tree_keys current = keys.inject(current) { |c, f| c[row[f]] ||= {} } name = row[last] if block_given? current[name] = yield(row, current, name) else current[name] ||= [] current[name].push(row.to_h.delete_if { |key,_value| tree_keys.include? key }) end end end |
#nrows ⇒ Object
The number of rows
1326 1327 1328 |
# File 'lib/daru/dataframe.rb', line 1326 def nrows @index.size end |
#numeric_vector_names ⇒ Object
1739 1740 1741 |
# File 'lib/daru/dataframe.rb', line 1739 def numeric_vector_names @vectors.select { |v| self[v].numeric? } end |
#numeric_vectors ⇒ Object
Return the indexes of all the numeric vectors. Will include vectors with nils alongwith numbers.
1732 1733 1734 1735 1736 1737 |
# File 'lib/daru/dataframe.rb', line 1732 def numeric_vectors # FIXME: Why _with_index ?.. each_vector_with_index .select { |vec, _i| vec.numeric? } .map(&:last) end |
#one_to_many(parent_fields, pattern) ⇒ Object
Creates a new dataset for one to many relations on a dataset, based on pattern of field names.
for example, you have a survey for number of children with this structure:
id, name, child_name_1, child_age_1, child_name_2, child_age_2
with
ds.one_to_many([:id], "child_%v_%n"
the field of first parameters will be copied verbatim to new dataset, and fields which responds to second pattern will be added one case for each different %n.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 |
# File 'lib/daru/dataframe.rb', line 2012 def one_to_many(parent_fields, pattern) vars, numbers = one_to_many_components(pattern) DataFrame.new([], order: [*parent_fields, '_col_id', *vars]).tap do |ds| each_row do |row| verbatim = parent_fields.map { |f| [f, row[f]] }.to_h numbers.each do |n| generated = one_to_many_row row, n, vars, pattern next if generated.values.all?(&:nil?) ds.add_row(verbatim.merge(generated).merge('_col_id' => n)) end end ds.update end end |
#only_numerics(opts = {}) ⇒ Object
Return a DataFrame of only the numerical Vectors. If clone: false is specified as option, only a view of the Vectors will be returned. Defaults to clone: true.
1746 1747 1748 1749 1750 1751 1752 |
# File 'lib/daru/dataframe.rb', line 1746 def only_numerics opts={} cln = opts[:clone] == false ? false : true arry = numeric_vectors.map { |v| self[v] } order = Index.new(numeric_vectors) Daru::DataFrame.new(arry, clone: cln, order: order, index: @index) end |
#order=(order_array) ⇒ Object
Reorder the vectors in a dataframe
1221 1222 1223 1224 1225 |
# File 'lib/daru/dataframe.rb', line 1221 def order=(order_array) raise ArgumentError, 'Invalid order' unless order_array.sort == vectors.to_a.sort initialize(to_h, order: order_array) end |
#pivot_table(opts = {}) ⇒ Object
Pivots a data frame on specified vectors and applies an aggregate function to quickly generate a summary.
Options
:index
- Keys to group by on the pivot table row index. Pass vector names contained in an Array.
:vectors
- Keys to group by on the pivot table column index. Pass vector names contained in an Array.
:agg
- Function to aggregate the grouped values. Default to :mean. Can use any of the statistics functions applicable on Vectors that can be found in the Daru::Statistics::Vector module.
:values
- Columns to aggregate. Will consider all numeric columns not specified in :index or :vectors. Optional.
Usage
df = Daru::DataFrame.new({
a: ['foo' , 'foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar'],
b: ['one' , 'one', 'one', 'two', 'two', 'one', 'one', 'two', 'two'],
c: ['small','large','large','small','small','large','small','large','small'],
d: [1,2,2,3,3,4,5,6,7],
e: [2,4,4,6,6,8,10,12,14]
})
df.pivot_table(index: [:a], vectors: [:b], agg: :sum, values: :e)
#=>
# #<Daru::DataFrame:88342020 @name = 08cdaf4e-b154-4186-9084-e76dd191b2c9 @size = 2>
# [:e, :one] [:e, :two]
# [:bar] 18 26
# [:foo] 10 12
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 |
# File 'lib/daru/dataframe.rb', line 1911 def pivot_table opts={} raise ArgumentError, 'Specify grouping index' if Array(opts[:index]).empty? index = opts[:index] vectors = opts[:vectors] || [] aggregate_function = opts[:agg] || :mean values = prepare_pivot_values index, vectors, opts raise IndexError, 'No numeric vectors to aggregate' if values.empty? grouped = group_by(index) return grouped.send(aggregate_function) if vectors.empty? super_hash = make_pivot_hash grouped, vectors, values, aggregate_function pivot_dataframe super_hash end |
#plot(*args, **options, &b) ⇒ Object
this method is overwritten: see Daru::DataFrame#plotting_library=
383 384 385 386 387 |
# File 'lib/daru/dataframe.rb', line 383 def plot(*args, **, &b) init_plotting_library plot(*args, **, &b) end |
#plotting_library=(lib) ⇒ Object
367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# File 'lib/daru/dataframe.rb', line 367 def plotting_library= lib case lib when :gruff, :nyaplot @plotting_library = lib if Daru.send("has_#{lib}?".to_sym) extend Module.const_get( "Daru::Plotting::DataFrame::#{lib.to_s.capitalize}Library" ) end else raise ArgumentError, "Plotting library #{lib} not supported. "\ 'Supported libraries are :nyaplot and :gruff' end end |
#recast(opts = {}) ⇒ Object
2246 2247 2248 2249 2250 |
# File 'lib/daru/dataframe.rb', line 2246 def recast opts={} opts.each do |vector_name, dtype| self[vector_name].cast(dtype: dtype) end end |
#recode(axis = :vector, &block) ⇒ Object
Maps over the DataFrame and returns a DataFrame. Each run of the block must return a Daru::Vector object. You can specify the axis to map over. Default to :vector.
Description
Recode works similarly to #map, but an important difference between the two is that recode returns a modified Daru::DataFrame instead of an Array. For this reason, #recode expects that every run of the block to return a Daru::Vector.
Just like map and each, recode also accepts an optional axis argument.
Arguments
-
axis
- The axis to map over. Can be :vector (or :column) or :row.
Default to :vector.
922 923 924 |
# File 'lib/daru/dataframe.rb', line 922 def recode axis=:vector, &block dispatch_to_axis_pl axis, :recode, &block end |
#recode_rows ⇒ Object
968 969 970 971 972 973 974 975 976 |
# File 'lib/daru/dataframe.rb', line 968 def recode_rows block_given? or return to_enum(:recode_rows) dup.tap do |df| df.each_row_with_index do |r, i| df.row[i] = should_be_vector!(yield(r)) end end end |
#recode_vectors ⇒ Object
958 959 960 961 962 963 964 965 966 |
# File 'lib/daru/dataframe.rb', line 958 def recode_vectors block_given? or return to_enum(:recode_vectors) dup.tap do |df| df.each_vector_with_index do |v, i| df[*i] = should_be_vector!(yield(v)) end end end |
#reindex(new_index) ⇒ Object
Change the index of the DataFrame and preserve the labels of the previous indexing. New index can be Daru::Index or any of its subclasses.
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 |
# File 'lib/daru/dataframe.rb', line 1620 def reindex new_index unless new_index.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_index.class}" end cl = Daru::DataFrame.new({}, order: @vectors, index: new_index, name: @name) new_index.each_with_object(cl) do |idx, memo| memo.row[idx] = @index.include?(idx) ? row[idx] : [nil]*ncols end end |
#reindex_vectors(new_vectors) ⇒ Object
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 |
# File 'lib/daru/dataframe.rb', line 1508 def reindex_vectors new_vectors unless new_vectors.is_a?(Daru::Index) raise ArgumentError, 'Must pass the new index of type Index or its '\ "subclasses, not #{new_vectors.class}" end cl = Daru::DataFrame.new({}, order: new_vectors, index: @index, name: @name) new_vectors.each_with_object(cl) do |vec, memo| memo[vec] = @vectors.include?(vec) ? self[vec] : [nil]*nrows end end |
#reject_values(*values) ⇒ Daru::DataFrame
Returns a dataframe in which rows with any of the mentioned values are ignored.
657 658 659 660 661 662 663 664 665 666 667 |
# File 'lib/daru/dataframe.rb', line 657 def reject_values(*values) positions = size.times.to_a - @data.flat_map { |vec| vec.positions(*values) } # Handle the case when positions size is 1 and #row_at wouldn't return a df if positions.size == 1 pos = positions.first row_at(pos..pos) else row_at(*positions) end end |
#rename(new_name) ⇒ Object Also known as: name=
Rename the DataFrame.
2171 2172 2173 2174 |
# File 'lib/daru/dataframe.rb', line 2171 def rename new_name @name = new_name self end |
#rename_vectors(name_map) ⇒ Object
Renames the vectors
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = Daru::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors :a => :alpha, :c => :gamma
df.vectors.to_a #=> [:alpha, :b, :gamma]
1704 1705 1706 1707 1708 1709 1710 |
# File 'lib/daru/dataframe.rb', line 1704 def rename_vectors name_map existing_targets = name_map.reject { |k,v| k == v }.values & vectors.to_a delete_vectors(*existing_targets) new_names = vectors.to_a.map { |v| name_map[v] ? name_map[v] : v } self.vectors = Daru::Index.new new_names end |
#rename_vectors!(name_map) ⇒ Object
Renames the vectors and returns itself
Arguments
-
name_map - A hash where the keys are the exising vector names and
the values are the new names. If a vector is renamed to a vector name that is already in use, the existing one is overwritten.
Usage
df = Daru::DataFrame.new({ a: [1,2,3,4], b: [:a,:b,:c,:d], c: [11,22,33,44] })
df.rename_vectors! :a => :alpha, :c => :gamma # df
1725 1726 1727 1728 |
# File 'lib/daru/dataframe.rb', line 1725 def rename_vectors! name_map rename_vectors(name_map) self end |
#replace_values(old_values, new_value) ⇒ Daru::DataFrame
Replace specified values with given value
691 692 693 694 |
# File 'lib/daru/dataframe.rb', line 691 def replace_values old_values, new_value @data.each { |vec| vec.replace_values old_values, new_value } self end |
#reset_index ⇒ Object
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 |
# File 'lib/daru/dataframe.rb', line 1632 def reset_index index_df = index.to_df names = index.name names = [names] unless names.instance_of?(Array) new_vectors = names + vectors.to_a self.index = index_df.index names.each do |name| self[name] = index_df[name] end self.order = new_vectors self end |
#respond_to_missing?(name, include_private = false) ⇒ Boolean
2323 2324 2325 |
# File 'lib/daru/dataframe.rb', line 2323 def respond_to_missing?(name, include_private=false) name.to_s.end_with?('=') || has_vector?(name) || super end |
#rolling_fillna(direction = :forward) ⇒ Object
736 737 738 |
# File 'lib/daru/dataframe.rb', line 736 def rolling_fillna(direction=:forward) dup.rolling_fillna!(direction) end |
#rolling_fillna!(direction = :forward) ⇒ Object
Rolling fillna replace all Float::NAN and NIL values with the preceeding or following value
731 732 733 734 |
# File 'lib/daru/dataframe.rb', line 731 def rolling_fillna!(direction=:forward) @data.each { |vec| vec.rolling_fillna!(direction) } self end |
#row ⇒ Object
Access a row or set/create a row. Refer #[] and #[]= docs for details.
Usage
df.row[:a] # access row named ':a'
df.row[:b] = [1,2,3] # set row ':b' to [1,2,3]
566 567 568 |
# File 'lib/daru/dataframe.rb', line 566 def row Daru::Accessors::DataFrameByRow.new(self) end |
#row_at(*positions) ⇒ Daru::Vector, Daru::DataFrame
Retrive rows by positions
410 411 412 413 414 415 416 417 418 419 420 421 422 |
# File 'lib/daru/dataframe.rb', line 410 def row_at *positions original_positions = positions positions = coerce_positions(*positions, nrows) validate_positions(*positions, nrows) if positions.is_a? Integer row = get_rows_for([positions]) Daru::Vector.new row, index: @vectors else new_rows = get_rows_for(original_positions) Daru::DataFrame.new new_rows, index: @index.at(*original_positions), order: @vectors end end |
#save(filename) ⇒ Object
Use marshalling to save dataframe to a file.
2220 2221 2222 |
# File 'lib/daru/dataframe.rb', line 2220 def save filename Daru::IO.save self, filename end |
#set_at(positions, vector) ⇒ Object
Set vectors by positions
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# File 'lib/daru/dataframe.rb', line 507 def set_at positions, vector if positions.last == :row positions.pop return set_row_at(positions, vector) end validate_positions(*positions, ncols) vector = if vector.is_a? Daru::Vector vector.reindex @index else Daru::Vector.new vector end raise SizeError, 'Vector length should match index length' if vector.size != @index.size positions.each { |pos| @data[pos] = vector } end |
#set_index(new_index_col, opts = {}) ⇒ Object
Set a particular column as the new DF
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 |
# File 'lib/daru/dataframe.rb', line 1581 def set_index new_index_col, opts={} if new_index_col.respond_to?(:to_a) strategy = SetMultiIndexStrategy new_index_col = new_index_col.to_a else strategy = SetSingleIndexStrategy end uniq_size = strategy.uniq_size(self, new_index_col) raise ArgumentError, 'All elements in new index must be unique.' if @size != uniq_size self.index = strategy.new_index(self, new_index_col) strategy.delete_vector(self, new_index_col) unless opts[:keep] self end |
#set_row_at(positions, vector) ⇒ Object
Set rows by positions
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
# File 'lib/daru/dataframe.rb', line 439 def set_row_at positions, vector validate_positions(*positions, nrows) vector = if vector.is_a? Daru::Vector vector.reindex @vectors else Daru::Vector.new vector end raise SizeError, 'Vector length should match row length' if vector.size != @vectors.size @data.each_with_index do |vec, pos| vec.set_at(positions, vector.at(pos)) end @index = @data[0].index set_size end |
#shape ⇒ Object
Return the number of rows and columns of the DataFrame in an Array.
1321 1322 1323 |
# File 'lib/daru/dataframe.rb', line 1321 def shape [nrows, ncols] end |
#sort(vector_order, opts = {}) ⇒ Object
Non-destructive version of #sort!
1873 1874 1875 |
# File 'lib/daru/dataframe.rb', line 1873 def sort vector_order, opts={} dup.sort! vector_order, opts end |
#sort!(vector_order, opts = {}) ⇒ Object
Sorts a dataframe (ascending/descending) in the given pripority sequence of vectors, with or without a block.
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 |
# File 'lib/daru/dataframe.rb', line 1849 def sort! vector_order, opts={} raise ArgumentError, 'Required atleast one vector name' if vector_order.empty? # To enable sorting with categorical data, # map categories to integers preserving their order old = convert_categorical_vectors vector_order block = sort_prepare_block vector_order, opts order = @index.size.times.sort(&block) new_index = @index.reorder order # To reverse map mapping of categorical data to integers restore_categorical_vectors old @data.each do |vector| vector.reorder! order end self.index = new_index self end |
#split_by_category(cat_name) ⇒ Array
Split the dataframe into many dataframes based on category vector
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 |
# File 'lib/daru/dataframe.rb', line 2355 def split_by_category cat_name cat_dv = self[cat_name] raise ArgumentError, "#{cat_name} is not a category vector" unless cat_dv.category? cat_dv.categories.map do |cat| where(cat_dv.eq cat) .rename(cat) .delete_vector cat_name end end |
#summary ⇒ String
Generate a summary of this DataFrame based on individual vectors in the DataFrame
1756 1757 1758 1759 1760 1761 1762 1763 1764 |
# File 'lib/daru/dataframe.rb', line 1756 def summary summary = "= #{name}" summary << "\n Number of rows: #{nrows}" @vectors.each do |v| summary << "\n Element:[#{v}]\n" summary << self[v].summary(1) end summary end |
#tail(quantity = 10) ⇒ Object Also known as: last
The last ten elements of the DataFrame
1393 1394 1395 1396 |
# File 'lib/daru/dataframe.rb', line 1393 def tail quantity=10 start = [-quantity, -size].max row.at start..-1 end |
#to_a ⇒ Object
Converts the DataFrame into an array of hashes where key is vector name and value is the corresponding element. The 0th index of the array contains the array of hashes while the 1th index contains the indexes of each row of the dataframe. Each element in the index array corresponds to its row in the array of hashes, which has the same index.
2102 2103 2104 |
# File 'lib/daru/dataframe.rb', line 2102 def to_a [each_row.map(&:to_h), @index.to_a] end |
#to_category(*names) ⇒ Daru::DataFrame
Converts the specified non category type vectors to category type vectors
2303 2304 2305 2306 |
# File 'lib/daru/dataframe.rb', line 2303 def to_category *names names.each { |n| self[n] = self[n].to_category } self end |
#to_df ⇒ self
Returns the dataframe. This can be convenient when the user does not know whether the object is a vector or a dataframe.
2067 2068 2069 |
# File 'lib/daru/dataframe.rb', line 2067 def to_df self end |
#to_gsl ⇒ Object
Convert all numeric vectors to GSL::Matrix
2072 2073 2074 2075 2076 |
# File 'lib/daru/dataframe.rb', line 2072 def to_gsl numerics_as_arrays = numeric_vectors.map { |n| self[n].to_a } GSL::Matrix.alloc(*numerics_as_arrays.transpose) end |
#to_h ⇒ Object
Converts DataFrame to a hash (explicit) with keys as vector names and values as the corresponding vectors.
2118 2119 2120 2121 2122 |
# File 'lib/daru/dataframe.rb', line 2118 def to_h @vectors .each_with_index .map { |vec_name, idx| [vec_name, @data[idx]] }.to_h end |
#to_html(threshold = Daru.max_rows) ⇒ Object
Convert to html for IRuby.
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 |
# File 'lib/daru/dataframe.rb', line 2125 def to_html(threshold=Daru.max_rows) table_thead = to_html_thead table_tbody = to_html_tbody(threshold) path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi.html.erb', __FILE__) else File.('../iruby/templates/dataframe.html.erb', __FILE__) end ERB.new(File.read(path).strip).result(binding) end |
#to_html_tbody(threshold = Daru.max_rows) ⇒ Object
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 |
# File 'lib/daru/dataframe.rb', line 2146 def to_html_tbody(threshold=Daru.max_rows) threshold ||= @size table_tbody_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_tbody.html.erb', __FILE__) else File.('../iruby/templates/dataframe_tbody.html.erb', __FILE__) end ERB.new(File.read(table_tbody_path).strip).result(binding) end |
#to_html_thead ⇒ Object
2136 2137 2138 2139 2140 2141 2142 2143 2144 |
# File 'lib/daru/dataframe.rb', line 2136 def to_html_thead table_thead_path = if index.is_a?(MultiIndex) File.('../iruby/templates/dataframe_mi_thead.html.erb', __FILE__) else File.('../iruby/templates/dataframe_thead.html.erb', __FILE__) end ERB.new(File.read(table_thead_path).strip).result(binding) end |
#to_json(no_index = true) ⇒ Object
Convert to json. If no_index is false then the index will NOT be included in the JSON thus created.
2108 2109 2110 2111 2112 2113 2114 |
# File 'lib/daru/dataframe.rb', line 2108 def to_json no_index=true if no_index to_a[0].to_json else to_a.to_json end end |
#to_matrix ⇒ Object
Convert all vectors of type :numeric into a Matrix.
2079 2080 2081 |
# File 'lib/daru/dataframe.rb', line 2079 def to_matrix Matrix.columns each_vector.select(&:numeric?).map(&:to_a) end |
#to_nmatrix ⇒ Object
Convert all vectors of type :numeric and not containing nils into an NMatrix.
2091 2092 2093 2094 2095 |
# File 'lib/daru/dataframe.rb', line 2091 def to_nmatrix each_vector.select do |vector| vector.numeric? && !vector.include_values?(*Daru::MISSING_VALUES) end.map(&:to_a).transpose.to_nm end |
#to_nyaplotdf ⇒ Object
Return a Nyaplot::DataFrame from the data of this DataFrame. :nocov:
2085 2086 2087 |
# File 'lib/daru/dataframe.rb', line 2085 def to_nyaplotdf Nyaplot::DataFrame.new(to_a[0]) end |
#to_REXP ⇒ Object
rubocop:disable Style/MethodName
5 6 7 8 9 10 11 12 13 |
# File 'lib/daru/extensions/rserve.rb', line 5 def to_REXP # rubocop:disable Style/MethodName names = @vectors.to_a data = names.map do |f| Rserve::REXP::Wrapper.wrap(self[f].to_a) end l = Rserve::Rlist.new(data, names.map(&:to_s)) Rserve::REXP.create_data_frame(l) end |
#to_s ⇒ Object
2157 2158 2159 |
# File 'lib/daru/dataframe.rb', line 2157 def to_s "#<#{self.class}#{': ' + @name.to_s if @name}(#{nrows}x#{ncols})>" end |
#transpose ⇒ Object
Transpose a DataFrame, tranposing elements and row, column indexing.
2253 2254 2255 2256 2257 2258 2259 2260 2261 |
# File 'lib/daru/dataframe.rb', line 2253 def transpose Daru::DataFrame.new( each_vector.map(&:to_a).transpose, index: @vectors, order: @index, dtype: @dtype, name: @name ) end |
#union(other_df) ⇒ Object
Concatenates another DataFrame as #concat. Additionally it tries to preserve the index. If the indices contain common elements, #union will overwrite the according rows in the first dataframe.
1540 1541 1542 1543 1544 1545 1546 1547 |
# File 'lib/daru/dataframe.rb', line 1540 def union other_df index = (@index.to_a + other_df.index.to_a).uniq df = row[*(@index.to_a - other_df.index.to_a)] df = df.concat(other_df) df.index = Daru::Index.new(index) df end |
#uniq(*vtrs) ⇒ Object
Return unique rows by vector specified or all vectors
772 773 774 775 776 777 |
# File 'lib/daru/dataframe.rb', line 772 def uniq(*vtrs) vecs = vtrs.empty? ? vectors.to_a : Array(vtrs) grouped = group_by(vecs) indexes = grouped.groups.values.map { |v| v[0] }.sort row[*indexes] end |
#update ⇒ Object
Method for updating the metadata (i.e. missing value positions) of the after assingment/deletion etc. are complete. This is provided so that time is not wasted in creating the metadata for the vector each time assignment/deletion of elements is done. Updating data this way is called lazy loading. To set or unset lazy loading, see the .lazy_update= method.
2166 2167 2168 |
# File 'lib/daru/dataframe.rb', line 2166 def update @data.each(&:update) if Daru.lazy_update end |
#vector_by_calculation(&block) ⇒ Object
DSL for yielding each row and returning a Daru::Vector based on the value each run of the block returns.
Usage
a1 = Daru::Vector.new([1, 2, 3, 4, 5, 6, 7])
a2 = Daru::Vector.new([10, 20, 30, 40, 50, 60, 70])
a3 = Daru::Vector.new([100, 200, 300, 400, 500, 600, 700])
ds = Daru::DataFrame.new({ :a => a1, :b => a2, :c => a3 })
total = ds.vector_by_calculation { a + b + c }
# <Daru::Vector:82314050 @name = nil @size = 7 >
# nil
# 0 111
# 1 222
# 2 333
# 3 444
# 4 555
# 5 666
# 6 777
1201 1202 1203 1204 1205 |
# File 'lib/daru/dataframe.rb', line 1201 def vector_by_calculation &block a = each_row.map { |r| r.instance_eval(&block) } Daru::Vector.new a, index: @index end |
#vector_count_characters(vecs = nil) ⇒ Object
1306 1307 1308 1309 1310 1311 1312 |
# File 'lib/daru/dataframe.rb', line 1306 def vector_count_characters vecs=nil vecs ||= @vectors.to_a collect_rows do |row| vecs.map { |v| row[v].to_s.size }.inject(:+) end end |
#vector_mean(max_missing = 0) ⇒ Object
Calculate mean of the rows of the dataframe.
Arguments
-
max_missing
- The maximum number of elements in the row that can be
zero for the mean calculation to happen. Default to 0.
1462 1463 1464 1465 1466 1467 1468 1469 1470 |
# File 'lib/daru/dataframe.rb', line 1462 def vector_mean max_missing=0 # FIXME: in vector_sum we preserve created vector dtype, but # here we are not. Is this by design or ...? - zverok, 2016-05-18 mean_vec = Daru::Vector.new [0]*@size, index: @index, name: "mean_#{@name}" each_row_with_index.each_with_object(mean_vec) do |(row, i), memo| memo[i] = row.indexes(*Daru::MISSING_VALUES).size > max_missing ? nil : row.mean end end |
#vector_sum(*args) ⇒ Object
Sum all numeric/specified vectors in the DataFrame.
Returns a new vector that’s a containing a sum of all numeric or specified vectors of the DataFrame. By default, if the vector contains a nil, the sum is nil. With :skipnil argument set to true, nil values are assumed to be 0 (zero) and the sum vector is returned.
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 |
# File 'lib/daru/dataframe.rb', line 1444 def vector_sum(*args) defaults = {vecs: nil, skipnil: false} = args.last.is_a?(::Hash) ? args.pop : {} = defaults.merge() vecs = args[0] || [:vecs] skipnil = args[1] || [:skipnil] vecs ||= numeric_vectors sum = Daru::Vector.new [0]*@size, index: @index, name: @name, dtype: @dtype vecs.inject(sum) { |memo, n| self[n].add(memo, skipnil: skipnil) } end |
#verify(*tests) ⇒ Object
Test each row with one or more tests. The function returns an array with all errors.
FIXME: description here is too sparse. As far as I can get, it should tell something about that each test is [descr, fields, block], and that first value may be column name to output. - zverok, 2016-05-18
1173 1174 1175 1176 1177 1178 1179 1180 |
# File 'lib/daru/dataframe.rb', line 1173 def verify(*tests) id = tests.first.is_a?(Symbol) ? tests.shift : @vectors.first each_row_with_index.map do |row, i| tests.reject { |*_, block| block.call(row) } .map { |test| row, test, id, i } end.flatten end |
#where(bool_array) ⇒ Object
Query a DataFrame by passing a Daru::Core::Query::BoolArray object.
2279 2280 2281 |
# File 'lib/daru/dataframe.rb', line 2279 def where bool_array Daru::Core::Query.df_where self, bool_array end |
#which(&block) ⇒ Object
15 16 17 |
# File 'lib/daru/extensions/which_dsl.rb', line 15 def which(&block) WhichQuery.new(self, &block).exec end |
#write_csv(filename, opts = {}) ⇒ Object
Write this DataFrame to a CSV file.
Arguments
-
filename - Path of CSV file where the DataFrame is to be saved.
Options
-
convert_comma - If set to true, will convert any commas in any
of the data to full stops (‘.’). All the options accepted by CSV.read() can also be passed into this function.
2190 2191 2192 |
# File 'lib/daru/dataframe.rb', line 2190 def write_csv filename, opts={} Daru::IO.dataframe_write_csv self, filename, opts end |
#write_excel(filename, opts = {}) ⇒ Object
Write this dataframe to an Excel Spreadsheet
Arguments
-
filename - The path of the file where the DataFrame should be written.
2199 2200 2201 |
# File 'lib/daru/dataframe.rb', line 2199 def write_excel filename, opts={} Daru::IO.dataframe_write_excel self, filename, opts end |
#write_sql(dbh, table) ⇒ Object
Insert each case of the Dataset on the selected table
Arguments
-
dbh - DBI database connection object.
-
query - Query string.
Usage
ds = Daru::DataFrame.new({:id=>Daru::Vector.new([1,2,3]), :name=>Daru::Vector.new(["a","b","c"])})
dbh = DBI.connect("DBI:Mysql:database:localhost", "user", "password")
ds.write_sql(dbh,"test")
2215 2216 2217 |
# File 'lib/daru/dataframe.rb', line 2215 def write_sql dbh, table Daru::IO.dataframe_write_sql self, dbh, table end |