Class: Digiproc::Strategies::SorStrategy

Inherits:
Object
  • Object
show all
Defined in:
lib/strategies/linear_algebra/sor_strategy.rb

Instance Method Summary collapse

Constructor Details

#initialize(a_arr, b_arr) ⇒ SorStrategy

Initialize args

a_arr

2D array representing your A matrix

b_arr

1D array representing your B matrix

Where B = Ax defines your series of linear equations



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# File 'lib/strategies/linear_algebra/sor_strategy.rb', line 19

def initialize(a_arr,b_arr)
    # TODO: Raise exception if a_arr is not square and b_arr row_count != a_arr row count
    @b = Matrix.column_vector(b_arr)
    @a = Matrix.rows(a_arr, true)
    d_arr, l_arr, u_arr = [],[],[]
    num_cols = @a.column_count
    @a.row_count.times do 
        d_arr << Array.new(num_cols, 0)
        l_arr << Array.new(num_cols, 0)
        u_arr << Array.new(num_cols, 0)
    end

    @a.each_with_index do |el, row, col| 
        if row > col
            l_arr[row][col] = el
        elsif row < col
            u_arr[row][col] = el
        else
            d_arr[row][col] = el
        end
    end
    @d = Matrix.rows(d_arr)
    @l = Matrix.rows(l_arr)
    @u = Matrix.rows(u_arr)
    #TODO: Ensure no zeros on diagonal
    @dinv = @d.map{ |el| el == 0 ? 0 : 1.0 / el }
end

Instance Method Details

#calculate(w: 0.95, threshold: 0.001, safety_net: false, euclid_norm: true) ⇒ Object

Iteratively solves the linear system of equations using the Successive Over Relaxation method accepts an optional parameter which is the threshold value x(n+1) - x(n) should achieve before returning. Must be used with a key-value pair ie sorm.calculate(threshold: 0.001) default threshold = 0.001 Returns a column vector Matrix => access via matrix_return If run with the option ‘safety_net: true` and the equation diverges, performs A_inverse * B to solve ie sorm.calculate(safety_net: true) You can change the weighting factor w by inputting `w` as an argument, ie: sorm.calculate(w: 0.35) The default value is w = 0.95 The weighting factor does an average on each iteration of x_n between x_n and x_n+1, ie: x_1_new = ((1-w) * x_1_old) + w (eqn_for_x_1_new using x_k_olds) Whereas the gauss seidel strategy would just be x_1_new = (eqn_for_x_1_new using x_k_olds) Threshold strategy is by default set to test the euclidean norm of the delta x matrix. If euclid_norm is manually set to false, then it will compare element by element to ensure each term in delta_x is less than the threshold



66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# File 'lib/strategies/linear_algebra/sor_strategy.rb', line 66

def calculate(w: 0.95, threshold: 0.001, safety_net: false, euclid_norm: true)
    dinv, b, l, u = @dinv, @b, @l, @u
    c = dinv * b
    t = -1 * dinv * (l + u)
    x_n = Matrix.column_vector(Array.new(@a.column_count, 0))
    counter = 0

    #TODO: Investigate speed difference of using 
    # x_new = c + t*x_old , where:
    # c = (l + d).inv * b
    # t = -1 * (l + d).inv * u
    loop do 
        x_n_plus_1 = x_n.dup
        for i in 0...x_n.row_count do 
            x_n_i = ( Matrix[[(1-w) * x_n[i,0]]] ) + w * (c.row(i).to_matrix + t.row(i).to_matrix.transpose * x_n_plus_1)
            # puts "#{Matrix[[(1-w) * x_n[0,0]]]} + #{w} * #{c.row(i).to_matrix} + #{t.row(i).to_matrix.transpose} * #{x_n_plus_1} = #{x_n_i}"
            x_n_plus_1[i,0] = x_n_i[0,0]
            # puts x_n_plus_1[0,0]
        end
        x_difference = (x_n_plus_1 - x_n).map{ |el| el.abs }
        should_break = euclid_norm ? break_euclid?(x_difference, threshold) : break_threshold?(x_difference, threshold)
        x_n = x_n_plus_1           
        break if should_break
        counter += 1
        if counter > 100000 and safety_net 
            return (@a.inv * b).map{ |el| el.to_f}
        end
    end 
    return (safety_net and x_n.find{ |el| el.to_f.nan? }) ? (@a.inv * b).map{ |el| el.to_f} : x_n
end