Module: Elasticsearch::API::MachineLearning::Actions
- Included in:
- MachineLearningClient
- Defined in:
- lib/elasticsearch/api/namespace/machine_learning.rb,
lib/elasticsearch/api/actions/machine_learning/info.rb,
lib/elasticsearch/api/actions/machine_learning/put_job.rb,
lib/elasticsearch/api/actions/machine_learning/forecast.rb,
lib/elasticsearch/api/actions/machine_learning/get_jobs.rb,
lib/elasticsearch/api/actions/machine_learning/open_job.rb,
lib/elasticsearch/api/actions/machine_learning/validate.rb,
lib/elasticsearch/api/actions/machine_learning/close_job.rb,
lib/elasticsearch/api/actions/machine_learning/flush_job.rb,
lib/elasticsearch/api/actions/machine_learning/post_data.rb,
lib/elasticsearch/api/actions/machine_learning/reset_job.rb,
lib/elasticsearch/api/actions/machine_learning/delete_job.rb,
lib/elasticsearch/api/actions/machine_learning/put_filter.rb,
lib/elasticsearch/api/actions/machine_learning/update_job.rb,
lib/elasticsearch/api/actions/machine_learning/get_buckets.rb,
lib/elasticsearch/api/actions/machine_learning/get_filters.rb,
lib/elasticsearch/api/actions/machine_learning/get_records.rb,
lib/elasticsearch/api/actions/machine_learning/put_calendar.rb,
lib/elasticsearch/api/actions/machine_learning/put_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/delete_filter.rb,
lib/elasticsearch/api/actions/machine_learning/get_calendars.rb,
lib/elasticsearch/api/actions/machine_learning/get_datafeeds.rb,
lib/elasticsearch/api/actions/machine_learning/get_job_stats.rb,
lib/elasticsearch/api/actions/machine_learning/stop_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/update_filter.rb,
lib/elasticsearch/api/actions/machine_learning/get_categories.rb,
lib/elasticsearch/api/actions/machine_learning/start_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/delete_calendar.rb,
lib/elasticsearch/api/actions/machine_learning/delete_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/delete_forecast.rb,
lib/elasticsearch/api/actions/machine_learning/get_influencers.rb,
lib/elasticsearch/api/actions/machine_learning/update_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/get_memory_stats.rb,
lib/elasticsearch/api/actions/machine_learning/preview_datafeed.rb,
lib/elasticsearch/api/actions/machine_learning/put_calendar_job.rb,
lib/elasticsearch/api/actions/machine_learning/set_upgrade_mode.rb,
lib/elasticsearch/api/actions/machine_learning/put_trained_model.rb,
lib/elasticsearch/api/actions/machine_learning/validate_detector.rb,
lib/elasticsearch/api/actions/machine_learning/get_datafeed_stats.rb,
lib/elasticsearch/api/actions/machine_learning/get_trained_models.rb,
lib/elasticsearch/api/actions/machine_learning/delete_calendar_job.rb,
lib/elasticsearch/api/actions/machine_learning/delete_expired_data.rb,
lib/elasticsearch/api/actions/machine_learning/evaluate_data_frame.rb,
lib/elasticsearch/api/actions/machine_learning/get_calendar_events.rb,
lib/elasticsearch/api/actions/machine_learning/get_model_snapshots.rb,
lib/elasticsearch/api/actions/machine_learning/get_overall_buckets.rb,
lib/elasticsearch/api/actions/machine_learning/infer_trained_model.rb,
lib/elasticsearch/api/actions/machine_learning/delete_trained_model.rb,
lib/elasticsearch/api/actions/machine_learning/post_calendar_events.rb,
lib/elasticsearch/api/actions/machine_learning/upgrade_job_snapshot.rb,
lib/elasticsearch/api/actions/machine_learning/delete_calendar_event.rb,
lib/elasticsearch/api/actions/machine_learning/delete_model_snapshot.rb,
lib/elasticsearch/api/actions/machine_learning/estimate_model_memory.rb,
lib/elasticsearch/api/actions/machine_learning/revert_model_snapshot.rb,
lib/elasticsearch/api/actions/machine_learning/update_model_snapshot.rb,
lib/elasticsearch/api/actions/machine_learning/put_trained_model_alias.rb,
lib/elasticsearch/api/actions/machine_learning/get_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/get_trained_models_stats.rb,
lib/elasticsearch/api/actions/machine_learning/put_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/stop_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/delete_trained_model_alias.rb,
lib/elasticsearch/api/actions/machine_learning/start_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/delete_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/update_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/explain_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/preview_data_frame_analytics.rb,
lib/elasticsearch/api/actions/machine_learning/put_trained_model_vocabulary.rb,
lib/elasticsearch/api/actions/machine_learning/stop_trained_model_deployment.rb,
lib/elasticsearch/api/actions/machine_learning/get_data_frame_analytics_stats.rb,
lib/elasticsearch/api/actions/machine_learning/start_trained_model_deployment.rb,
lib/elasticsearch/api/actions/machine_learning/update_trained_model_deployment.rb,
lib/elasticsearch/api/actions/machine_learning/get_model_snapshot_upgrade_stats.rb,
lib/elasticsearch/api/actions/machine_learning/put_trained_model_definition_part.rb,
lib/elasticsearch/api/actions/machine_learning/clear_trained_model_deployment_cache.rb more...
Instance Method Summary collapse
-
#clear_trained_model_deployment_cache(arguments = {}) ⇒ Object
Clear the cached results from a trained model deployment.
-
#close_job(arguments = {}) ⇒ Object
Closes one or more anomaly detection jobs.
-
#delete_calendar(arguments = {}) ⇒ Object
Deletes a calendar.
-
#delete_calendar_event(arguments = {}) ⇒ Object
Deletes scheduled events from a calendar.
-
#delete_calendar_job(arguments = {}) ⇒ Object
Deletes anomaly detection jobs from a calendar.
-
#delete_data_frame_analytics(arguments = {}) ⇒ Object
Deletes an existing data frame analytics job.
-
#delete_datafeed(arguments = {}) ⇒ Object
Deletes an existing datafeed.
-
#delete_expired_data(arguments = {}) ⇒ Object
Deletes expired and unused machine learning data.
-
#delete_filter(arguments = {}) ⇒ Object
Deletes a filter.
-
#delete_forecast(arguments = {}) ⇒ Object
Deletes forecasts from a machine learning job.
-
#delete_job(arguments = {}) ⇒ Object
Deletes an existing anomaly detection job.
-
#delete_model_snapshot(arguments = {}) ⇒ Object
Deletes an existing model snapshot.
-
#delete_trained_model(arguments = {}) ⇒ Object
Deletes an existing trained inference model that is currently not referenced by an ingest pipeline.
-
#delete_trained_model_alias(arguments = {}) ⇒ Object
Deletes a model alias that refers to the trained model.
-
#estimate_model_memory(arguments = {}) ⇒ Object
Estimates the model memory.
-
#evaluate_data_frame(arguments = {}) ⇒ Object
Evaluates the data frame analytics for an annotated index.
-
#explain_data_frame_analytics(arguments = {}) ⇒ Object
Explains a data frame analytics config.
-
#flush_job(arguments = {}) ⇒ Object
Forces any buffered data to be processed by the job.
-
#forecast(arguments = {}) ⇒ Object
Predicts the future behavior of a time series by using its historical behavior.
-
#get_buckets(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more buckets.
-
#get_calendar_events(arguments = {}) ⇒ Object
Retrieves information about the scheduled events in calendars.
-
#get_calendars(arguments = {}) ⇒ Object
Retrieves configuration information for calendars.
-
#get_categories(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more categories.
-
#get_data_frame_analytics(arguments = {}) ⇒ Object
Retrieves configuration information for data frame analytics jobs.
-
#get_data_frame_analytics_stats(arguments = {}) ⇒ Object
Retrieves usage information for data frame analytics jobs.
-
#get_datafeed_stats(arguments = {}) ⇒ Object
Retrieves usage information for datafeeds.
-
#get_datafeeds(arguments = {}) ⇒ Object
Retrieves configuration information for datafeeds.
-
#get_filters(arguments = {}) ⇒ Object
Retrieves filters.
-
#get_influencers(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more influencers.
-
#get_job_stats(arguments = {}) ⇒ Object
Retrieves usage information for anomaly detection jobs.
-
#get_jobs(arguments = {}) ⇒ Object
Retrieves configuration information for anomaly detection jobs.
-
#get_memory_stats(arguments = {}) ⇒ Object
Returns information on how ML is using memory.
-
#get_model_snapshot_upgrade_stats(arguments = {}) ⇒ Object
Gets stats for anomaly detection job model snapshot upgrades that are in progress.
-
#get_model_snapshots(arguments = {}) ⇒ Object
Retrieves information about model snapshots.
-
#get_overall_buckets(arguments = {}) ⇒ Object
Retrieves overall bucket results that summarize the bucket results of multiple anomaly detection jobs.
-
#get_records(arguments = {}) ⇒ Object
Retrieves anomaly records for an anomaly detection job.
-
#get_trained_models(arguments = {}) ⇒ Object
Retrieves configuration information for a trained inference model.
-
#get_trained_models_stats(arguments = {}) ⇒ Object
Retrieves usage information for trained inference models.
-
#infer_trained_model(arguments = {}) ⇒ Object
Evaluate a trained model.
-
#info(arguments = {}) ⇒ Object
Returns defaults and limits used by machine learning.
-
#open_job(arguments = {}) ⇒ Object
Opens one or more anomaly detection jobs.
-
#post_calendar_events(arguments = {}) ⇒ Object
Posts scheduled events in a calendar.
-
#post_data(arguments = {}) ⇒ Object
Sends data to an anomaly detection job for analysis.
-
#preview_data_frame_analytics(arguments = {}) ⇒ Object
Previews that will be analyzed given a data frame analytics config.
-
#preview_datafeed(arguments = {}) ⇒ Object
Previews a datafeed.
-
#put_calendar(arguments = {}) ⇒ Object
Instantiates a calendar.
-
#put_calendar_job(arguments = {}) ⇒ Object
Adds an anomaly detection job to a calendar.
-
#put_data_frame_analytics(arguments = {}) ⇒ Object
Instantiates a data frame analytics job.
-
#put_datafeed(arguments = {}) ⇒ Object
Instantiates a datafeed.
-
#put_filter(arguments = {}) ⇒ Object
Instantiates a filter.
-
#put_job(arguments = {}) ⇒ Object
Instantiates an anomaly detection job.
-
#put_trained_model(arguments = {}) ⇒ Object
Creates an inference trained model.
-
#put_trained_model_alias(arguments = {}) ⇒ Object
Creates a new model alias (or reassigns an existing one) to refer to the trained model.
-
#put_trained_model_definition_part(arguments = {}) ⇒ Object
Creates part of a trained model definition.
-
#put_trained_model_vocabulary(arguments = {}) ⇒ Object
Creates a trained model vocabulary.
-
#reset_job(arguments = {}) ⇒ Object
Resets an existing anomaly detection job.
-
#revert_model_snapshot(arguments = {}) ⇒ Object
Reverts to a specific snapshot.
-
#set_upgrade_mode(arguments = {}) ⇒ Object
Sets a cluster wide upgrade_mode setting that prepares machine learning indices for an upgrade.
-
#start_data_frame_analytics(arguments = {}) ⇒ Object
Starts a data frame analytics job.
-
#start_datafeed(arguments = {}) ⇒ Object
Starts one or more datafeeds.
-
#start_trained_model_deployment(arguments = {}) ⇒ Object
Start a trained model deployment.
-
#stop_data_frame_analytics(arguments = {}) ⇒ Object
Stops one or more data frame analytics jobs.
-
#stop_datafeed(arguments = {}) ⇒ Object
Stops one or more datafeeds.
-
#stop_trained_model_deployment(arguments = {}) ⇒ Object
Stop a trained model deployment.
-
#update_data_frame_analytics(arguments = {}) ⇒ Object
Updates certain properties of a data frame analytics job.
-
#update_datafeed(arguments = {}) ⇒ Object
Updates certain properties of a datafeed.
-
#update_filter(arguments = {}) ⇒ Object
Updates the description of a filter, adds items, or removes items.
-
#update_job(arguments = {}) ⇒ Object
Updates certain properties of an anomaly detection job.
-
#update_model_snapshot(arguments = {}) ⇒ Object
Updates certain properties of a snapshot.
-
#update_trained_model_deployment(arguments = {}) ⇒ Object
Updates certain properties of trained model deployment.
-
#upgrade_job_snapshot(arguments = {}) ⇒ Object
Upgrades a given job snapshot to the current major version.
-
#validate(arguments = {}) ⇒ Object
Validates an anomaly detection job.
-
#validate_detector(arguments = {}) ⇒ Object
Validates an anomaly detection detector.
Instance Method Details
permalink #clear_trained_model_deployment_cache(arguments = {}) ⇒ Object
Clear the cached results from a trained model deployment
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# File 'lib/elasticsearch/api/actions/machine_learning/clear_trained_model_deployment_cache.rb', line 32 def clear_trained_model_deployment_cache(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.clear_trained_model_deployment_cache" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_POST path = "_ml/trained_models/#{Utils.__listify(_model_id)}/deployment/cache/_clear" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #close_job(arguments = {}) ⇒ Object
Closes one or more anomaly detection jobs. A job can be opened and closed multiple times throughout its lifecycle.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/close_job.rb', line 36 def close_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.close_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_close" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_calendar(arguments = {}) ⇒ Object
Deletes a calendar.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_calendar.rb', line 32 def delete_calendar(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_calendar" } defined_params = [:calendar_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _calendar_id = arguments.delete(:calendar_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/calendars/#{Utils.__listify(_calendar_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_calendar_event(arguments = {}) ⇒ Object
Deletes scheduled events from a calendar.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_calendar_event.rb', line 33 def delete_calendar_event(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_calendar_event" } defined_params = [:calendar_id, :event_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] raise ArgumentError, "Required argument 'event_id' missing" unless arguments[:event_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _calendar_id = arguments.delete(:calendar_id) _event_id = arguments.delete(:event_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/calendars/#{Utils.__listify(_calendar_id)}/events/#{Utils.__listify(_event_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_calendar_job(arguments = {}) ⇒ Object
Deletes anomaly detection jobs from a calendar.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_calendar_job.rb', line 33 def delete_calendar_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_calendar_job" } defined_params = [:calendar_id, :job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _calendar_id = arguments.delete(:calendar_id) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/calendars/#{Utils.__listify(_calendar_id)}/jobs/#{Utils.__listify(_job_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_data_frame_analytics(arguments = {}) ⇒ Object
Deletes an existing data frame analytics job.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_data_frame_analytics.rb', line 34 def delete_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'id' missing" unless arguments[:id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/data_frame/analytics/#{Utils.__listify(_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_datafeed(arguments = {}) ⇒ Object
Deletes an existing datafeed.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_datafeed.rb', line 33 def delete_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'datafeed_id' missing" unless arguments[:datafeed_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_expired_data(arguments = {}) ⇒ Object
Deletes expired and unused machine learning data.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_expired_data.rb', line 35 def delete_expired_data(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_expired_data" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_DELETE path = if _job_id "_ml/_delete_expired_data/#{Utils.__listify(_job_id)}" else "_ml/_delete_expired_data" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_filter(arguments = {}) ⇒ Object
Deletes a filter.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_filter.rb', line 32 def delete_filter(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_filter" } defined_params = [:filter_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'filter_id' missing" unless arguments[:filter_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _filter_id = arguments.delete(:filter_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/filters/#{Utils.__listify(_filter_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_forecast(arguments = {}) ⇒ Object
Deletes forecasts from a machine learning job.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_forecast.rb', line 35 def delete_forecast(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_forecast" } defined_params = [:job_id, :forecast_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) _forecast_id = arguments.delete(:forecast_id) method = Elasticsearch::API::HTTP_DELETE path = if _job_id && _forecast_id "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_forecast/#{Utils.__listify(_forecast_id)}" else "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_forecast" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_job(arguments = {}) ⇒ Object
Deletes an existing anomaly detection job.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_job.rb', line 35 def delete_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_model_snapshot(arguments = {}) ⇒ Object
Deletes an existing model snapshot.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_model_snapshot.rb', line 33 def delete_model_snapshot(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_model_snapshot" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] raise ArgumentError, "Required argument 'snapshot_id' missing" unless arguments[:snapshot_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_trained_model(arguments = {}) ⇒ Object
Deletes an existing trained inference model that is currently not referenced by an ingest pipeline.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_trained_model.rb', line 34 def delete_trained_model(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_trained_model" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/trained_models/#{Utils.__listify(_model_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #delete_trained_model_alias(arguments = {}) ⇒ Object
Deletes a model alias that refers to the trained model
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/delete_trained_model_alias.rb', line 33 def delete_trained_model_alias(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.delete_trained_model_alias" } defined_params = [:model_id, :model_alias].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] raise ArgumentError, "Required argument 'model_alias' missing" unless arguments[:model_alias] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_alias = arguments.delete(:model_alias) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_DELETE path = "_ml/trained_models/#{Utils.__listify(_model_id)}/model_aliases/#{Utils.__listify(_model_alias)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #estimate_model_memory(arguments = {}) ⇒ Object
Estimates the model memory
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/elasticsearch/api/actions/machine_learning/estimate_model_memory.rb', line 32 def estimate_model_memory(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.estimate_model_memory" } raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/_estimate_model_memory" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #evaluate_data_frame(arguments = {}) ⇒ Object
Evaluates the data frame analytics for an annotated index.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/elasticsearch/api/actions/machine_learning/evaluate_data_frame.rb', line 32 def evaluate_data_frame(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.evaluate_data_frame" } raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) method = Elasticsearch::API::HTTP_POST path = "_ml/data_frame/_evaluate" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #explain_data_frame_analytics(arguments = {}) ⇒ Object
Explains a data frame analytics config.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/elasticsearch/api/actions/machine_learning/explain_data_frame_analytics.rb', line 33 def explain_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.explain_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _id "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_explain" else "_ml/data_frame/analytics/_explain" end params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #flush_job(arguments = {}) ⇒ Object
Forces any buffered data to be processed by the job.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/flush_job.rb', line 38 def flush_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.flush_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_flush" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #forecast(arguments = {}) ⇒ Object
Predicts the future behavior of a time series by using its historical behavior.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/forecast.rb', line 36 def forecast(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.forecast" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_forecast" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_buckets(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more buckets.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_buckets.rb', line 43 def get_buckets(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_buckets" } defined_params = [:job_id, :timestamp].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) = arguments.delete(:timestamp) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _job_id && "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/buckets/#{Utils.__listify()}" else "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/buckets" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_calendar_events(arguments = {}) ⇒ Object
Retrieves information about the scheduled events in calendars.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_calendar_events.rb', line 37 def get_calendar_events(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_calendar_events" } defined_params = [:calendar_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _calendar_id = arguments.delete(:calendar_id) method = Elasticsearch::API::HTTP_GET path = "_ml/calendars/#{Utils.__listify(_calendar_id)}/events" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_calendars(arguments = {}) ⇒ Object
Retrieves configuration information for calendars.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_calendars.rb', line 35 def get_calendars(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_calendars" } defined_params = [:calendar_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _calendar_id = arguments.delete(:calendar_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _calendar_id "_ml/calendars/#{Utils.__listify(_calendar_id)}" else "_ml/calendars" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_categories(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more categories.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_categories.rb', line 37 def get_categories(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_categories" } defined_params = [:job_id, :category_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) _category_id = arguments.delete(:category_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _job_id && _category_id "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/categories/#{Utils.__listify(_category_id)}" else "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/categories" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_data_frame_analytics(arguments = {}) ⇒ Object
Retrieves configuration information for data frame analytics jobs.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_data_frame_analytics.rb', line 36 def get_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_GET path = if _id "_ml/data_frame/analytics/#{Utils.__listify(_id)}" else "_ml/data_frame/analytics" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_data_frame_analytics_stats(arguments = {}) ⇒ Object
Retrieves usage information for data frame analytics jobs.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_data_frame_analytics_stats.rb', line 36 def get_data_frame_analytics_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_data_frame_analytics_stats" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_GET path = if _id "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_stats" else "_ml/data_frame/analytics/_stats" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_datafeed_stats(arguments = {}) ⇒ Object
Retrieves usage information for datafeeds.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_datafeed_stats.rb', line 33 def get_datafeed_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_datafeed_stats" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_GET path = if _datafeed_id "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}/_stats" else "_ml/datafeeds/_stats" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_datafeeds(arguments = {}) ⇒ Object
Retrieves configuration information for datafeeds.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_datafeeds.rb', line 34 def get_datafeeds(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_datafeeds" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_GET path = if _datafeed_id "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}" else "_ml/datafeeds" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_filters(arguments = {}) ⇒ Object
Retrieves filters.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_filters.rb', line 34 def get_filters(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_filters" } defined_params = [:filter_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _filter_id = arguments.delete(:filter_id) method = Elasticsearch::API::HTTP_GET path = if _filter_id "_ml/filters/#{Utils.__listify(_filter_id)}" else "_ml/filters" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_influencers(arguments = {}) ⇒ Object
Retrieves anomaly detection job results for one or more influencers.
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_influencers.rb', line 41 def get_influencers(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_influencers" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/influencers" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_job_stats(arguments = {}) ⇒ Object
Retrieves usage information for anomaly detection jobs.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_job_stats.rb', line 33 def get_job_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_job_stats" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_GET path = if _job_id "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_stats" else "_ml/anomaly_detectors/_stats" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_jobs(arguments = {}) ⇒ Object
Retrieves configuration information for anomaly detection jobs.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_jobs.rb', line 34 def get_jobs(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_jobs" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_GET path = if _job_id "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}" else "_ml/anomaly_detectors" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_memory_stats(arguments = {}) ⇒ Object
Returns information on how ML is using memory.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_memory_stats.rb', line 34 def get_memory_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_memory_stats" } defined_params = [:node_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _node_id = arguments.delete(:node_id) method = Elasticsearch::API::HTTP_GET path = if _node_id "_ml/memory/#{Utils.__listify(_node_id)}/_stats" else "_ml/memory/_stats" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_model_snapshot_upgrade_stats(arguments = {}) ⇒ Object
Gets stats for anomaly detection job model snapshot upgrades that are in progress.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_model_snapshot_upgrade_stats.rb', line 34 def get_model_snapshot_upgrade_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_model_snapshot_upgrade_stats" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] raise ArgumentError, "Required argument 'snapshot_id' missing" unless arguments[:snapshot_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = Elasticsearch::API::HTTP_GET path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}/_upgrade/_stats" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_model_snapshots(arguments = {}) ⇒ Object
Retrieves information about model snapshots.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_model_snapshots.rb', line 40 def get_model_snapshots(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_model_snapshots" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _job_id && _snapshot_id "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}" else "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_overall_buckets(arguments = {}) ⇒ Object
Retrieves overall bucket results that summarize the bucket results of multiple anomaly detection jobs.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_overall_buckets.rb', line 40 def get_overall_buckets(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_overall_buckets" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/overall_buckets" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_records(arguments = {}) ⇒ Object
Retrieves anomaly records for an anomaly detection job.
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_records.rb', line 41 def get_records(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_records" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/results/records" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_trained_models(arguments = {}) ⇒ Object
Retrieves configuration information for a trained inference model.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_trained_models.rb', line 40 def get_trained_models(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_trained_models" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_GET path = if _model_id "_ml/trained_models/#{Utils.__listify(_model_id)}" else "_ml/trained_models" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #get_trained_models_stats(arguments = {}) ⇒ Object
Retrieves usage information for trained inference models.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/get_trained_models_stats.rb', line 35 def get_trained_models_stats(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.get_trained_models_stats" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_GET path = if _model_id "_ml/trained_models/#{Utils.__listify(_model_id)}/_stats" else "_ml/trained_models/_stats" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #infer_trained_model(arguments = {}) ⇒ Object
Evaluate a trained model.
*Deprecation notice*: /_ml/trained_models/model_id/deployment/_infer is deprecated. Use /_ml/trained_models/model_id/_infer instead Deprecated since version 8.3.0
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/elasticsearch/api/actions/machine_learning/infer_trained_model.rb', line 39 def infer_trained_model(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.infer_trained_model" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_POST path = if _model_id "_ml/trained_models/#{Utils.__listify(_model_id)}/deployment/_infer" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #info(arguments = {}) ⇒ Object
Returns defaults and limits used by machine learning.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# File 'lib/elasticsearch/api/actions/machine_learning/info.rb', line 31 def info(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.info" } arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil method = Elasticsearch::API::HTTP_GET path = "_ml/info" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #open_job(arguments = {}) ⇒ Object
Opens one or more anomaly detection jobs.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/elasticsearch/api/actions/machine_learning/open_job.rb', line 33 def open_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.open_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_open" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #post_calendar_events(arguments = {}) ⇒ Object
Posts scheduled events in a calendar.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/post_calendar_events.rb', line 33 def post_calendar_events(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.post_calendar_events" } defined_params = [:calendar_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _calendar_id = arguments.delete(:calendar_id) method = Elasticsearch::API::HTTP_POST path = "_ml/calendars/#{Utils.__listify(_calendar_id)}/events" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #post_data(arguments = {}) ⇒ Object
Sends data to an anomaly detection job for analysis.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/post_data.rb', line 35 def post_data(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.post_data" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_data" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #preview_data_frame_analytics(arguments = {}) ⇒ Object
Previews that will be analyzed given a data frame analytics config.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/elasticsearch/api/actions/machine_learning/preview_data_frame_analytics.rb', line 33 def preview_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.preview_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _id "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_preview" else "_ml/data_frame/analytics/_preview" end params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #preview_datafeed(arguments = {}) ⇒ Object
Previews a datafeed.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/elasticsearch/api/actions/machine_learning/preview_datafeed.rb', line 35 def preview_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.preview_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _datafeed_id = arguments.delete(:datafeed_id) method = if body Elasticsearch::API::HTTP_POST else Elasticsearch::API::HTTP_GET end path = if _datafeed_id "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}/_preview" else "_ml/datafeeds/_preview" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_calendar(arguments = {}) ⇒ Object
Instantiates a calendar.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_calendar.rb', line 33 def put_calendar(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_calendar" } defined_params = [:calendar_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _calendar_id = arguments.delete(:calendar_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/calendars/#{Utils.__listify(_calendar_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_calendar_job(arguments = {}) ⇒ Object
Adds an anomaly detection job to a calendar.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_calendar_job.rb', line 33 def put_calendar_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_calendar_job" } defined_params = [:calendar_id, :job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'calendar_id' missing" unless arguments[:calendar_id] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _calendar_id = arguments.delete(:calendar_id) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/calendars/#{Utils.__listify(_calendar_id)}/jobs/#{Utils.__listify(_job_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_data_frame_analytics(arguments = {}) ⇒ Object
Instantiates a data frame analytics job.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_data_frame_analytics.rb', line 33 def put_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'id' missing" unless arguments[:id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_PUT path = "_ml/data_frame/analytics/#{Utils.__listify(_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_datafeed(arguments = {}) ⇒ Object
Instantiates a datafeed.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_datafeed.rb', line 37 def put_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'datafeed_id' missing" unless arguments[:datafeed_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_filter(arguments = {}) ⇒ Object
Instantiates a filter.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_filter.rb', line 33 def put_filter(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_filter" } defined_params = [:filter_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'filter_id' missing" unless arguments[:filter_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _filter_id = arguments.delete(:filter_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/filters/#{Utils.__listify(_filter_id)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_job(arguments = {}) ⇒ Object
Instantiates an anomaly detection job.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_job.rb', line 37 def put_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_trained_model(arguments = {}) ⇒ Object
Creates an inference trained model.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_trained_model.rb', line 35 def put_trained_model(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_trained_model" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/trained_models/#{Utils.__listify(_model_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_trained_model_alias(arguments = {}) ⇒ Object
Creates a new model alias (or reassigns an existing one) to refer to the trained model
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_trained_model_alias.rb', line 34 def put_trained_model_alias(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_trained_model_alias" } defined_params = [:model_id, :model_alias].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] raise ArgumentError, "Required argument 'model_alias' missing" unless arguments[:model_alias] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_alias = arguments.delete(:model_alias) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/trained_models/#{Utils.__listify(_model_id)}/model_aliases/#{Utils.__listify(_model_alias)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_trained_model_definition_part(arguments = {}) ⇒ Object
Creates part of a trained model definition
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_trained_model_definition_part.rb', line 34 def put_trained_model_definition_part(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_trained_model_definition_part" } defined_params = [:model_id, :part].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] raise ArgumentError, "Required argument 'part' missing" unless arguments[:part] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) _part = arguments.delete(:part) method = Elasticsearch::API::HTTP_PUT path = "_ml/trained_models/#{Utils.__listify(_model_id)}/definition/#{Utils.__listify(_part)}" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #put_trained_model_vocabulary(arguments = {}) ⇒ Object
Creates a trained model vocabulary
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/put_trained_model_vocabulary.rb', line 33 def put_trained_model_vocabulary(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.put_trained_model_vocabulary" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_PUT path = "_ml/trained_models/#{Utils.__listify(_model_id)}/vocabulary" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #reset_job(arguments = {}) ⇒ Object
Resets an existing anomaly detection job.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/reset_job.rb', line 34 def reset_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.reset_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_reset" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #revert_model_snapshot(arguments = {}) ⇒ Object
Reverts to a specific snapshot.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/revert_model_snapshot.rb', line 35 def revert_model_snapshot(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.revert_model_snapshot" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] raise ArgumentError, "Required argument 'snapshot_id' missing" unless arguments[:snapshot_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}/_revert" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #set_upgrade_mode(arguments = {}) ⇒ Object
Sets a cluster wide upgrade_mode setting that prepares machine learning indices for an upgrade.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# File 'lib/elasticsearch/api/actions/machine_learning/set_upgrade_mode.rb', line 33 def set_upgrade_mode(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.set_upgrade_mode" } arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil method = Elasticsearch::API::HTTP_POST path = "_ml/set_upgrade_mode" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #start_data_frame_analytics(arguments = {}) ⇒ Object
Starts a data frame analytics job.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/start_data_frame_analytics.rb', line 34 def start_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.start_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'id' missing" unless arguments[:id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_POST path = "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_start" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #start_datafeed(arguments = {}) ⇒ Object
Starts one or more datafeeds.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/start_datafeed.rb', line 36 def start_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.start_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'datafeed_id' missing" unless arguments[:datafeed_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_POST path = "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}/_start" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #start_trained_model_deployment(arguments = {}) ⇒ Object
Start a trained model deployment.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/elasticsearch/api/actions/machine_learning/start_trained_model_deployment.rb', line 40 def start_trained_model_deployment(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.start_trained_model_deployment" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_POST path = "_ml/trained_models/#{Utils.__listify(_model_id)}/deployment/_start" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #stop_data_frame_analytics(arguments = {}) ⇒ Object
Stops one or more data frame analytics jobs.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/elasticsearch/api/actions/machine_learning/stop_data_frame_analytics.rb', line 36 def stop_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.stop_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'id' missing" unless arguments[:id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_POST path = "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_stop" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #stop_datafeed(arguments = {}) ⇒ Object
Stops one or more datafeeds.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/elasticsearch/api/actions/machine_learning/stop_datafeed.rb', line 37 def stop_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.stop_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'datafeed_id' missing" unless arguments[:datafeed_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_POST path = "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}/_stop" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #stop_trained_model_deployment(arguments = {}) ⇒ Object
Stop a trained model deployment.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/elasticsearch/api/actions/machine_learning/stop_trained_model_deployment.rb', line 35 def stop_trained_model_deployment(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.stop_trained_model_deployment" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_POST path = "_ml/trained_models/#{Utils.__listify(_model_id)}/deployment/_stop" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_data_frame_analytics(arguments = {}) ⇒ Object
Updates certain properties of a data frame analytics job.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_data_frame_analytics.rb', line 33 def update_data_frame_analytics(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_data_frame_analytics" } defined_params = [:id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'id' missing" unless arguments[:id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _id = arguments.delete(:id) method = Elasticsearch::API::HTTP_POST path = "_ml/data_frame/analytics/#{Utils.__listify(_id)}/_update" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_datafeed(arguments = {}) ⇒ Object
Updates certain properties of a datafeed.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_datafeed.rb', line 37 def update_datafeed(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_datafeed" } defined_params = [:datafeed_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'datafeed_id' missing" unless arguments[:datafeed_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _datafeed_id = arguments.delete(:datafeed_id) method = Elasticsearch::API::HTTP_POST path = "_ml/datafeeds/#{Utils.__listify(_datafeed_id)}/_update" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_filter(arguments = {}) ⇒ Object
Updates the description of a filter, adds items, or removes items.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_filter.rb', line 33 def update_filter(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_filter" } defined_params = [:filter_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'filter_id' missing" unless arguments[:filter_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _filter_id = arguments.delete(:filter_id) method = Elasticsearch::API::HTTP_POST path = "_ml/filters/#{Utils.__listify(_filter_id)}/_update" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_job(arguments = {}) ⇒ Object
Updates certain properties of an anomaly detection job.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_job.rb', line 33 def update_job(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_job" } defined_params = [:job_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_update" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_model_snapshot(arguments = {}) ⇒ Object
Updates certain properties of a snapshot.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_model_snapshot.rb', line 34 def update_model_snapshot(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_model_snapshot" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] raise ArgumentError, "Required argument 'snapshot_id' missing" unless arguments[:snapshot_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}/_update" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #update_trained_model_deployment(arguments = {}) ⇒ Object
Updates certain properties of trained model deployment. This functionality is in Beta and is subject to change. The design and code is less mature than official GA features and is being provided as-is with no warranties. Beta features are not subject to the support SLA of official GA features.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/update_trained_model_deployment.rb', line 37 def update_trained_model_deployment(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.update_trained_model_deployment" } defined_params = [:model_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = Elasticsearch::API::HTTP_POST path = "_ml/trained_models/#{Utils.__listify(_model_id)}/deployment/_update" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #upgrade_job_snapshot(arguments = {}) ⇒ Object
Upgrades a given job snapshot to the current major version.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/elasticsearch/api/actions/machine_learning/upgrade_job_snapshot.rb', line 35 def upgrade_job_snapshot(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.upgrade_job_snapshot" } defined_params = [:job_id, :snapshot_id].inject({}) do |set_variables, variable| set_variables[variable] = arguments[variable] if arguments.key?(variable) set_variables end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] raise ArgumentError, "Required argument 'snapshot_id' missing" unless arguments[:snapshot_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _job_id = arguments.delete(:job_id) _snapshot_id = arguments.delete(:snapshot_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/model_snapshots/#{Utils.__listify(_snapshot_id)}/_upgrade" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #validate(arguments = {}) ⇒ Object
Validates an anomaly detection job.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/elasticsearch/api/actions/machine_learning/validate.rb', line 32 def validate(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.validate" } raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/_validate" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
permalink #validate_detector(arguments = {}) ⇒ Object
Validates an anomaly detection detector.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/elasticsearch/api/actions/machine_learning/validate_detector.rb', line 32 def validate_detector(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || "ml.validate_detector" } raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/_validate/detector" params = {} Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |