Method: Elasticsearch::API::MachineLearning::Actions#forecast
- Defined in:
- lib/elasticsearch/api/actions/machine_learning/forecast.rb
#forecast(arguments = {}) ⇒ Object
Predicts the future behavior of a time series by using its historical behavior.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/elasticsearch/api/actions/machine_learning/forecast.rb', line 36 def forecast(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'ml.forecast' } defined_params = [:job_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'job_id' missing" unless arguments[:job_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _job_id = arguments.delete(:job_id) method = Elasticsearch::API::HTTP_POST path = "_ml/anomaly_detectors/#{Utils.__listify(_job_id)}/_forecast" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |