Module: Elasticsearch::API::Inference::Actions
- Defined in:
- lib/elasticsearch/api/actions/inference/get.rb,
lib/elasticsearch/api/actions/inference/put.rb,
lib/elasticsearch/api/actions/inference/delete.rb,
lib/elasticsearch/api/actions/inference/rerank.rb,
lib/elasticsearch/api/actions/inference/update.rb,
lib/elasticsearch/api/actions/inference/put_ai21.rb,
lib/elasticsearch/api/actions/inference/put_groq.rb,
lib/elasticsearch/api/actions/inference/inference.rb,
lib/elasticsearch/api/actions/inference/put_elser.rb,
lib/elasticsearch/api/actions/inference/put_llama.rb,
lib/elasticsearch/api/actions/inference/completion.rb,
lib/elasticsearch/api/actions/inference/put_cohere.rb,
lib/elasticsearch/api/actions/inference/put_custom.rb,
lib/elasticsearch/api/actions/inference/put_jinaai.rb,
lib/elasticsearch/api/actions/inference/put_nvidia.rb,
lib/elasticsearch/api/actions/inference/put_openai.rb,
lib/elasticsearch/api/actions/inference/put_mistral.rb,
lib/elasticsearch/api/actions/inference/put_watsonx.rb,
lib/elasticsearch/api/actions/inference/put_deepseek.rb,
lib/elasticsearch/api/actions/inference/put_voyageai.rb,
lib/elasticsearch/api/actions/inference/put_anthropic.rb,
lib/elasticsearch/api/actions/inference/text_embedding.rb,
lib/elasticsearch/api/actions/inference/put_azureopenai.rb,
lib/elasticsearch/api/actions/inference/put_alibabacloud.rb,
lib/elasticsearch/api/actions/inference/put_contextualai.rb,
lib/elasticsearch/api/actions/inference/put_hugging_face.rb,
lib/elasticsearch/api/actions/inference/put_openshift_ai.rb,
lib/elasticsearch/api/actions/inference/sparse_embedding.rb,
lib/elasticsearch/api/actions/inference/put_amazonbedrock.rb,
lib/elasticsearch/api/actions/inference/put_azureaistudio.rb,
lib/elasticsearch/api/actions/inference/put_elasticsearch.rb,
lib/elasticsearch/api/actions/inference/stream_completion.rb,
lib/elasticsearch/api/actions/inference/put_googleaistudio.rb,
lib/elasticsearch/api/actions/inference/put_googlevertexai.rb,
lib/elasticsearch/api/actions/inference/put_amazonsagemaker.rb,
lib/elasticsearch/api/actions/inference/chat_completion_unified.rb
Instance Method Summary collapse
-
#chat_completion_unified(arguments = {}) ⇒ Object
Perform chat completion inference on the service.
-
#completion(arguments = {}) ⇒ Object
Perform completion inference on the service.
-
#delete(arguments = {}) ⇒ Object
Delete an inference endpoint.
-
#get(arguments = {}) ⇒ Object
Get an inference endpoint.
-
#inference(arguments = {}) ⇒ Object
Perform inference on the service.
-
#put(arguments = {}) ⇒ Object
Create an inference endpoint.
-
#put_ai21(arguments = {}) ⇒ Object
Create a AI21 inference endpoint.
-
#put_alibabacloud(arguments = {}) ⇒ Object
Create an AlibabaCloud AI Search inference endpoint.
-
#put_amazonbedrock(arguments = {}) ⇒ Object
Create an Amazon Bedrock inference endpoint.
-
#put_amazonsagemaker(arguments = {}) ⇒ Object
Create an Amazon SageMaker inference endpoint.
-
#put_anthropic(arguments = {}) ⇒ Object
Create an Anthropic inference endpoint.
-
#put_azureaistudio(arguments = {}) ⇒ Object
Create an Azure AI studio inference endpoint.
-
#put_azureopenai(arguments = {}) ⇒ Object
Create an Azure OpenAI inference endpoint.
-
#put_cohere(arguments = {}) ⇒ Object
Create a Cohere inference endpoint.
-
#put_contextualai(arguments = {}) ⇒ Object
Create an Contextual AI inference endpoint.
-
#put_custom(arguments = {}) ⇒ Object
Create a custom inference endpoint.
-
#put_deepseek(arguments = {}) ⇒ Object
Create a DeepSeek inference endpoint.
-
#put_elasticsearch(arguments = {}) ⇒ Object
Create an Elasticsearch inference endpoint.
-
#put_elser(arguments = {}) ⇒ Object
Create an ELSER inference endpoint.
-
#put_googleaistudio(arguments = {}) ⇒ Object
Create an Google AI Studio inference endpoint.
-
#put_googlevertexai(arguments = {}) ⇒ Object
Create a Google Vertex AI inference endpoint.
-
#put_groq(arguments = {}) ⇒ Object
Create a Groq inference endpoint.
-
#put_hugging_face(arguments = {}) ⇒ Object
Create a Hugging Face inference endpoint.
-
#put_jinaai(arguments = {}) ⇒ Object
Create an JinaAI inference endpoint.
-
#put_llama(arguments = {}) ⇒ Object
Create a Llama inference endpoint.
-
#put_mistral(arguments = {}) ⇒ Object
Create a Mistral inference endpoint.
-
#put_nvidia(arguments = {}) ⇒ Object
Create an Nvidia inference endpoint.
-
#put_openai(arguments = {}) ⇒ Object
Create an OpenAI inference endpoint.
-
#put_openshift_ai(arguments = {}) ⇒ Object
Create an OpenShift AI inference endpoint.
-
#put_voyageai(arguments = {}) ⇒ Object
Create a VoyageAI inference endpoint.
-
#put_watsonx(arguments = {}) ⇒ Object
Create a Watsonx inference endpoint.
-
#rerank(arguments = {}) ⇒ Object
Perform reranking inference on the service.
-
#sparse_embedding(arguments = {}) ⇒ Object
Perform sparse embedding inference on the service.
-
#stream_completion(arguments = {}) ⇒ Object
Perform streaming completion inference on the service.
-
#text_embedding(arguments = {}) ⇒ Object
Perform text embedding inference on the service.
-
#update(arguments = {}) ⇒ Object
Update an inference endpoint.
Instance Method Details
#chat_completion_unified(arguments = {}) ⇒ Object
Perform chat completion inference on the service. The chat completion inference API enables real-time responses for chat completion tasks by delivering answers incrementally, reducing response times during computation. It only works with the chat_completion task type. NOTE: The chat_completion task type is only available within the _stream API and only supports streaming. The Chat completion inference API and the Stream inference API differ in their response structure and capabilities. The Chat completion inference API provides more comprehensive customization options through more fields and function calling support. To determine whether a given inference service supports this task type, please see the page for that service.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/elasticsearch/api/actions/inference/chat_completion_unified.rb', line 51 def chat_completion_unified(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.chat_completion_unified' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/chat_completion/#{Utils.listify(_inference_id)}/_stream" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#completion(arguments = {}) ⇒ Object
Perform completion inference on the service. Get responses for completion tasks. This API works only with the completion task type. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. This API requires the monitor_inference cluster privilege (the built-in inference_admin and inference_user roles grant this privilege).
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/elasticsearch/api/actions/inference/completion.rb', line 49 def completion(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.completion' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/completion/#{Utils.listify(_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#delete(arguments = {}) ⇒ Object
Delete an inference endpoint. This API requires the manage_inference cluster privilege (the built-in inference_admin role grants this privilege).
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/elasticsearch/api/actions/inference/delete.rb', line 47 def delete(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.delete' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _task_type = arguments.delete(:task_type) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_DELETE path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}" else "_inference/#{Utils.listify(_inference_id)}" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#get(arguments = {}) ⇒ Object
Get an inference endpoint. This API requires the monitor_inference cluster privilege (the built-in inference_admin and inference_user roles grant this privilege).
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# File 'lib/elasticsearch/api/actions/inference/get.rb', line 45 def get(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.get' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? arguments = arguments.clone headers = arguments.delete(:headers) || {} body = nil _task_type = arguments.delete(:task_type) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_GET path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}" elsif _inference_id "_inference/#{Utils.listify(_inference_id)}" else '_inference' end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#inference(arguments = {}) ⇒ Object
Perform inference on the service. This API enables you to use machine learning models to perform specific tasks on data that you provide as an input. It returns a response with the results of the tasks. The inference endpoint you use can perform one specific task that has been defined when the endpoint was created with the create inference API. For details about using this API with a service, such as Amazon Bedrock, Anthropic, or HuggingFace, refer to the service-specific documentation.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# File 'lib/elasticsearch/api/actions/inference/inference.rb', line 50 def inference(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.inference' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}" else "_inference/#{Utils.listify(_inference_id)}" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put(arguments = {}) ⇒ Object
Create an inference endpoint. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. The following integrations are available through the inference API. You can find the available task types next to the integration name:
-
AI21 (
chat_completion,completion) -
AlibabaCloud AI Search (
completion,rerank,sparse_embedding,text_embedding) -
Amazon Bedrock (
completion,text_embedding) -
Amazon SageMaker (
chat_completion,completion,rerank,sparse_embedding,text_embedding) -
Anthropic (
completion) -
Azure AI Studio (
completion,rerank,text_embedding) -
Azure OpenAI (
chat_completion,completion,text_embedding) -
Cohere (
completion,rerank,text_embedding) -
DeepSeek (
chat_completion,completion) -
Elasticsearch (
rerank,sparse_embedding,text_embedding- this service is for built-in models and models uploaded through Eland) -
ELSER (
sparse_embedding) -
Google AI Studio (
completion,text_embedding) -
Google Vertex AI (
chat_completion,completion,rerank,text_embedding) -
Groq (
chat_completion) -
Hugging Face (
chat_completion,completion,rerank,text_embedding) -
JinaAI (
rerank,text_embedding) -
Llama (
chat_completion,completion,text_embedding) -
Mistral (
chat_completion,completion,text_embedding) -
Nvidia (
chat_completion,completion,text_embedding,rerank) -
OpenAI (
chat_completion,completion,text_embedding) -
OpenShift AI (
chat_completion,completion,rerank,text_embedding) -
VoyageAI (
rerank,text_embedding) -
Watsonx inference integration (
text_embedding)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# File 'lib/elasticsearch/api/actions/inference/put.rb', line 73 def put(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_PUT path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}" else "_inference/#{Utils.listify(_inference_id)}" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_ai21(arguments = {}) ⇒ Object
Create a AI21 inference endpoint. Create an inference endpoint to perform an inference task with the ai21 service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# File 'lib/elasticsearch/api/actions/inference/put_ai21.rb', line 47 def put_ai21(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_ai21' } defined_params = [:task_type, :ai21_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] raise ArgumentError, "Required argument 'ai21_inference_id' missing" unless arguments[:ai21_inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _ai21_inference_id = arguments.delete(:ai21_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_ai21_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_alibabacloud(arguments = {}) ⇒ Object
Create an AlibabaCloud AI Search inference endpoint. Create an inference endpoint to perform an inference task with the alibabacloud-ai-search service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_alibabacloud.rb', line 47 def put_alibabacloud(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_alibabacloud' } defined_params = [:task_type, :alibabacloud_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:alibabacloud_inference_id] raise ArgumentError, "Required argument 'alibabacloud_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _alibabacloud_inference_id = arguments.delete(:alibabacloud_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_alibabacloud_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_amazonbedrock(arguments = {}) ⇒ Object
Create an Amazon Bedrock inference endpoint. Create an inference endpoint to perform an inference task with the amazonbedrock service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_amazonbedrock.rb', line 47 def put_amazonbedrock(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_amazonbedrock' } defined_params = [:task_type, :amazonbedrock_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:amazonbedrock_inference_id] raise ArgumentError, "Required argument 'amazonbedrock_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _amazonbedrock_inference_id = arguments.delete(:amazonbedrock_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_amazonbedrock_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_amazonsagemaker(arguments = {}) ⇒ Object
Create an Amazon SageMaker inference endpoint. Create an inference endpoint to perform an inference task with the amazon_sagemaker service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_amazonsagemaker.rb', line 47 def put_amazonsagemaker(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_amazonsagemaker' } defined_params = [:task_type, :amazonsagemaker_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:amazonsagemaker_inference_id] raise ArgumentError, "Required argument 'amazonsagemaker_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _amazonsagemaker_inference_id = arguments.delete(:amazonsagemaker_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_amazonsagemaker_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_anthropic(arguments = {}) ⇒ Object
Create an Anthropic inference endpoint. Create an inference endpoint to perform an inference task with the anthropic service.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_anthropic.rb', line 48 def put_anthropic(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_anthropic' } defined_params = [:task_type, :anthropic_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:anthropic_inference_id] raise ArgumentError, "Required argument 'anthropic_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _anthropic_inference_id = arguments.delete(:anthropic_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_anthropic_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_azureaistudio(arguments = {}) ⇒ Object
Create an Azure AI studio inference endpoint. Create an inference endpoint to perform an inference task with the azureaistudio service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_azureaistudio.rb', line 47 def put_azureaistudio(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_azureaistudio' } defined_params = [:task_type, :azureaistudio_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:azureaistudio_inference_id] raise ArgumentError, "Required argument 'azureaistudio_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _azureaistudio_inference_id = arguments.delete(:azureaistudio_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_azureaistudio_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_azureopenai(arguments = {}) ⇒ Object
Create an Azure OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the azureopenai service. The list of chat completion models that you can choose from in your Azure OpenAI deployment include:
The list of embeddings models that you can choose from in your deployment can be found in the Azure models documentation.
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# File 'lib/elasticsearch/api/actions/inference/put_azureopenai.rb', line 52 def put_azureopenai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_azureopenai' } defined_params = [:task_type, :azureopenai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:azureopenai_inference_id] raise ArgumentError, "Required argument 'azureopenai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _azureopenai_inference_id = arguments.delete(:azureopenai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_azureopenai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_cohere(arguments = {}) ⇒ Object
Create a Cohere inference endpoint. Create an inference endpoint to perform an inference task with the cohere service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_cohere.rb', line 47 def put_cohere(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_cohere' } defined_params = [:task_type, :cohere_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:cohere_inference_id] raise ArgumentError, "Required argument 'cohere_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _cohere_inference_id = arguments.delete(:cohere_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_cohere_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_contextualai(arguments = {}) ⇒ Object
Create an Contextual AI inference endpoint. Create an inference endpoint to perform an inference task with the contexualai service. To review the available rerank models, refer to <docs.contextual.ai/api-reference/rerank/rerank#body-model>.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_contextualai.rb', line 48 def put_contextualai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_contextualai' } defined_params = [:task_type, :contextualai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:contextualai_inference_id] raise ArgumentError, "Required argument 'contextualai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _contextualai_inference_id = arguments.delete(:contextualai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_contextualai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_custom(arguments = {}) ⇒ Object
Create a custom inference endpoint. The custom service gives more control over how to interact with external inference services that aren’t explicitly supported through dedicated integrations. The custom service gives you the ability to define the headers, url, query parameters, request body, and secrets. The custom service supports the template replacement functionality, which enables you to define a template that can be replaced with the value associated with that key. Templates are portions of a string that start with ‘$and end with ``. The parameters secret_parameters and task_settings are checked for keys for template replacement. Template replacement is supported in the request, headers, url, and query_parameters. If the definition (key) is not found for a template, an error message is returned. In case of an endpoint definition like the following:
“‘ PUT _inference/text_embedding/test-text-embedding {
"service": "custom",
"service_settings": {
"secret_parameters": {
"api_key": "<some api key>"
},
"url": "...endpoints.huggingface.cloud/v1/embeddings",
"headers": {
"Authorization": "Bearer ${api_key}",
"Content-Type": "application/json"
},
"request": "{\"input\": ${input}}",
"response": {
"json_parser": {
"text_embeddings":"$.data[*].embedding[*]"
}
}
}
} “‘
To replace ‘$api_key` the secret_parameters and task_settings are checked for a key named api_key.
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
# File 'lib/elasticsearch/api/actions/inference/put_custom.rb', line 77 def put_custom(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_custom' } defined_params = [:task_type, :custom_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:custom_inference_id] raise ArgumentError, "Required argument 'custom_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _custom_inference_id = arguments.delete(:custom_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_custom_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_deepseek(arguments = {}) ⇒ Object
Create a DeepSeek inference endpoint. Create an inference endpoint to perform an inference task with the deepseek service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_deepseek.rb', line 47 def put_deepseek(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_deepseek' } defined_params = [:task_type, :deepseek_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:deepseek_inference_id] raise ArgumentError, "Required argument 'deepseek_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _deepseek_inference_id = arguments.delete(:deepseek_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_deepseek_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_elasticsearch(arguments = {}) ⇒ Object
Create an Elasticsearch inference endpoint. Create an inference endpoint to perform an inference task with the elasticsearch service.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_elasticsearch.rb', line 48 def put_elasticsearch(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_elasticsearch' } defined_params = [:task_type, :elasticsearch_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:elasticsearch_inference_id] raise ArgumentError, "Required argument 'elasticsearch_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _elasticsearch_inference_id = arguments.delete(:elasticsearch_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_elasticsearch_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_elser(arguments = {}) ⇒ Object
Create an ELSER inference endpoint. Create an inference endpoint to perform an inference task with the elser service. You can also deploy ELSER by using the Elasticsearch inference integration.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/elasticsearch/api/actions/inference/put_elser.rb', line 48 def put_elser(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_elser' } defined_params = [:task_type, :elser_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] raise ArgumentError, "Required argument 'elser_inference_id' missing" unless arguments[:elser_inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _elser_inference_id = arguments.delete(:elser_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_elser_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_googleaistudio(arguments = {}) ⇒ Object
Create an Google AI Studio inference endpoint. Create an inference endpoint to perform an inference task with the googleaistudio service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_googleaistudio.rb', line 47 def put_googleaistudio(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_googleaistudio' } defined_params = [:task_type, :googleaistudio_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:googleaistudio_inference_id] raise ArgumentError, "Required argument 'googleaistudio_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _googleaistudio_inference_id = arguments.delete(:googleaistudio_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_googleaistudio_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_googlevertexai(arguments = {}) ⇒ Object
Create a Google Vertex AI inference endpoint. Create an inference endpoint to perform an inference task with the googlevertexai service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_googlevertexai.rb', line 47 def put_googlevertexai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_googlevertexai' } defined_params = [:task_type, :googlevertexai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:googlevertexai_inference_id] raise ArgumentError, "Required argument 'googlevertexai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _googlevertexai_inference_id = arguments.delete(:googlevertexai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_googlevertexai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_groq(arguments = {}) ⇒ Object
Create a Groq inference endpoint. Create an inference endpoint to perform an inference task with the groq service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# File 'lib/elasticsearch/api/actions/inference/put_groq.rb', line 47 def put_groq(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_groq' } defined_params = [:task_type, :groq_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] raise ArgumentError, "Required argument 'groq_inference_id' missing" unless arguments[:groq_inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _groq_inference_id = arguments.delete(:groq_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_groq_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_hugging_face(arguments = {}) ⇒ Object
Create a Hugging Face inference endpoint. Create an inference endpoint to perform an inference task with the hugging_face service. Supported tasks include: text_embedding, completion, and chat_completion. To configure the endpoint, first visit the Hugging Face Inference Endpoints page and create a new endpoint. Select a model that supports the task you intend to use. For Elastic’s text_embedding task: The selected model must support the ‘Sentence Embeddings` task. On the new endpoint creation page, select the `Sentence Embeddings` task under the `Advanced Configuration` section. After the endpoint has initialized, copy the generated endpoint URL. Recommended models for text_embedding task:
-
all-MiniLM-L6-v2 -
all-MiniLM-L12-v2 -
all-mpnet-base-v2 -
e5-base-v2 -
e5-small-v2 -
multilingual-e5-base -
multilingual-e5-small
For Elastic’s chat_completion and completion tasks: The selected model must support the ‘Text Generation` task and expose OpenAI API. HuggingFace supports both serverless and dedicated endpoints for `Text Generation`. When creating dedicated endpoint select the `Text Generation` task. After the endpoint is initialized (for dedicated) or ready (for serverless), ensure it supports the OpenAI API and includes /v1/chat/completions part in URL. Then, copy the full endpoint URL for use. Recommended models for chat_completion and completion tasks:
-
Mistral-7B-Instruct-v0.2 -
QwQ-32B -
Phi-3-mini-128k-instruct
For Elastic’s rerank task: The selected model must support the sentence-ranking task and expose OpenAI API. HuggingFace supports only dedicated (not serverless) endpoints for Rerank so far. After the endpoint is initialized, copy the full endpoint URL for use. Tested models for rerank task:
-
bge-reranker-base -
jina-reranker-v1-turbo-en-GGUF
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# File 'lib/elasticsearch/api/actions/inference/put_hugging_face.rb', line 75 def put_hugging_face(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_hugging_face' } defined_params = [:task_type, :huggingface_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:huggingface_inference_id] raise ArgumentError, "Required argument 'huggingface_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _huggingface_inference_id = arguments.delete(:huggingface_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_huggingface_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_jinaai(arguments = {}) ⇒ Object
Create an JinaAI inference endpoint. Create an inference endpoint to perform an inference task with the jinaai service. To review the available rerank models, refer to <jina.ai/reranker>. To review the available text_embedding models, refer to the <jina.ai/embeddings/>.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# File 'lib/elasticsearch/api/actions/inference/put_jinaai.rb', line 49 def put_jinaai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_jinaai' } defined_params = [:task_type, :jinaai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:jinaai_inference_id] raise ArgumentError, "Required argument 'jinaai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _jinaai_inference_id = arguments.delete(:jinaai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_jinaai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_llama(arguments = {}) ⇒ Object
Create a Llama inference endpoint. Create an inference endpoint to perform an inference task with the llama service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# File 'lib/elasticsearch/api/actions/inference/put_llama.rb', line 47 def put_llama(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_llama' } defined_params = [:task_type, :llama_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] raise ArgumentError, "Required argument 'llama_inference_id' missing" unless arguments[:llama_inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _llama_inference_id = arguments.delete(:llama_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_llama_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_mistral(arguments = {}) ⇒ Object
Create a Mistral inference endpoint. Create an inference endpoint to perform an inference task with the mistral service.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/elasticsearch/api/actions/inference/put_mistral.rb', line 47 def put_mistral(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_mistral' } defined_params = [:task_type, :mistral_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:mistral_inference_id] raise ArgumentError, "Required argument 'mistral_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _mistral_inference_id = arguments.delete(:mistral_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_mistral_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_nvidia(arguments = {}) ⇒ Object
Create an Nvidia inference endpoint. Create an inference endpoint to perform an inference task with the nvidia service.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_nvidia.rb', line 48 def put_nvidia(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_nvidia' } defined_params = [:task_type, :nvidia_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:nvidia_inference_id] raise ArgumentError, "Required argument 'nvidia_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _nvidia_inference_id = arguments.delete(:nvidia_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_nvidia_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_openai(arguments = {}) ⇒ Object
Create an OpenAI inference endpoint. Create an inference endpoint to perform an inference task with the openai service or openai compatible APIs.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_openai.rb', line 48 def put_openai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_openai' } defined_params = [:task_type, :openai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:openai_inference_id] raise ArgumentError, "Required argument 'openai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _openai_inference_id = arguments.delete(:openai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_openai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_openshift_ai(arguments = {}) ⇒ Object
Create an OpenShift AI inference endpoint. Create an inference endpoint to perform an inference task with the openshift_ai service.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_openshift_ai.rb', line 48 def put_openshift_ai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_openshift_ai' } defined_params = [:task_type, :openshiftai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:openshiftai_inference_id] raise ArgumentError, "Required argument 'openshiftai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _openshiftai_inference_id = arguments.delete(:openshiftai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_openshiftai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_voyageai(arguments = {}) ⇒ Object
Create a VoyageAI inference endpoint. Create an inference endpoint to perform an inference task with the voyageai service. Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/put_voyageai.rb', line 48 def put_voyageai(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_voyageai' } defined_params = [:task_type, :voyageai_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:voyageai_inference_id] raise ArgumentError, "Required argument 'voyageai_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _voyageai_inference_id = arguments.delete(:voyageai_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_voyageai_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#put_watsonx(arguments = {}) ⇒ Object
Create a Watsonx inference endpoint. Create an inference endpoint to perform an inference task with the watsonxai service. You need an IBM Cloud Databases for Elasticsearch deployment to use the watsonxai inference service. You can provision one through the IBM catalog, the Cloud Databases CLI plug-in, the Cloud Databases API, or Terraform.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
# File 'lib/elasticsearch/api/actions/inference/put_watsonx.rb', line 49 def put_watsonx(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put_watsonx' } defined_params = [:task_type, :watsonx_inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'task_type' missing" unless arguments[:task_type] unless arguments[:watsonx_inference_id] raise ArgumentError, "Required argument 'watsonx_inference_id' missing" end arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _watsonx_inference_id = arguments.delete(:watsonx_inference_id) method = Elasticsearch::API::HTTP_PUT path = "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_watsonx_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#rerank(arguments = {}) ⇒ Object
Perform reranking inference on the service.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/elasticsearch/api/actions/inference/rerank.rb', line 45 def rerank(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.rerank' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/rerank/#{Utils.listify(_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#sparse_embedding(arguments = {}) ⇒ Object
Perform sparse embedding inference on the service.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/elasticsearch/api/actions/inference/sparse_embedding.rb', line 45 def (arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.sparse_embedding' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/sparse_embedding/#{Utils.listify(_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#stream_completion(arguments = {}) ⇒ Object
Perform streaming completion inference on the service. Get real-time responses for completion tasks by delivering answers incrementally, reducing response times during computation. This API works only with the completion task type. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. This API requires the monitor_inference cluster privilege (the built-in inference_admin and inference_user roles grant this privilege). You must use a client that supports streaming.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/elasticsearch/api/actions/inference/stream_completion.rb', line 49 def stream_completion(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.stream_completion' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/completion/#{Utils.listify(_inference_id)}/_stream" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#text_embedding(arguments = {}) ⇒ Object
Perform text embedding inference on the service.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/elasticsearch/api/actions/inference/text_embedding.rb', line 45 def (arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.text_embedding' } defined_params = [:inference_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) method = Elasticsearch::API::HTTP_POST path = "_inference/text_embedding/#{Utils.listify(_inference_id)}" params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |
#update(arguments = {}) ⇒ Object
Update an inference endpoint. Modify task_settings, secrets (within service_settings), or num_allocations for an inference endpoint, depending on the specific endpoint service and task_type. IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Azure, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs.
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
# File 'lib/elasticsearch/api/actions/inference/update.rb', line 49 def update(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.update' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _inference_id = arguments.delete(:inference_id) _task_type = arguments.delete(:task_type) method = Elasticsearch::API::HTTP_PUT path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}/_update" else "_inference/#{Utils.listify(_inference_id)}/_update" end params = Utils.process_params(arguments) Elasticsearch::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end |