Class: Eps::Evaluators::LightGBM
- Inherits:
-
Object
- Object
- Eps::Evaluators::LightGBM
- Defined in:
- lib/eps/evaluators/lightgbm.rb
Instance Attribute Summary collapse
-
#features ⇒ Object
readonly
Returns the value of attribute features.
Instance Method Summary collapse
-
#initialize(trees:, objective:, labels:, features:, text_features:) ⇒ LightGBM
constructor
A new instance of LightGBM.
- #predict(data, probabilities: false) ⇒ Object
Constructor Details
#initialize(trees:, objective:, labels:, features:, text_features:) ⇒ LightGBM
Returns a new instance of LightGBM.
6 7 8 9 10 11 12 |
# File 'lib/eps/evaluators/lightgbm.rb', line 6 def initialize(trees:, objective:, labels:, features:, text_features:) @trees = trees @objective = objective @labels = labels @features = features @text_features = text_features end |
Instance Attribute Details
#features ⇒ Object (readonly)
Returns the value of attribute features.
4 5 6 |
# File 'lib/eps/evaluators/lightgbm.rb', line 4 def features @features end |
Instance Method Details
#predict(data, probabilities: false) ⇒ Object
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/eps/evaluators/lightgbm.rb', line 14 def predict(data, probabilities: false) raise "Probabilities not supported" if probabilities && @objective == "regression" rows = data.map(&:to_h) # sparse matrix @text_features.each do |k, v| encoder = TextEncoder.new(**v) counts = encoder.transform(data.columns[k]) counts.each_with_index do |xc, i| row = rows[i] row.delete(k) xc.each do |word, count| row[[k, word]] = count end end end case @objective when "regression" sum_trees(rows, @trees) when "binary" prob = sum_trees(rows, @trees).map { |s| sigmoid(s) } if probabilities prob.map { |v| @labels.zip([1 - v, v]).to_h } else prob.map { |v| @labels[v > 0.5 ? 1 : 0] } end else tree_scores = [] num_trees = @trees.size / @labels.size @trees.each_slice(num_trees).each do |trees| tree_scores << sum_trees(rows, trees) end rows.size.times.map do |i| v = tree_scores.map { |s| s[i] } if probabilities exp = v.map { |vi| Math.exp(vi) } sum = exp.sum @labels.zip(exp.map { |e| e / sum }).to_h else idx = v.map.with_index.max_by { |v2, _| v2 }.last @labels[idx] end end end end |