Module: EventMachine
- Defined in:
- lib/em/future.rb,
lib/em/eventable.rb,
lib/eventmachine.rb,
lib/em/deferrable.rb,
lib/evma/callback.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/pr_eventmachine.rb,
lib/protocols/tcptest.rb,
lib/eventmachine_version.rb,
lib/protocols/httpclient.rb,
lib/protocols/line_and_text.rb,
lib/protocols/header_and_content.rb
Overview
$Id: eventmachine_version.rb 324 2007-05-22 22:43:35Z blackhedd $
- Author
-
Francis Cianfrocca (gmail: blackhedd)
- Homepage
- Date
-
8 Apr 2006
See EventMachine and EventMachine::Connection for documentation and usage examples.
Copyright © 2006-07 by Francis Cianfrocca. All Rights Reserved. Gmail: blackhedd
This program is free software; you can redistribute it and/or modify it under the terms of either: 1) the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version; or 2) Ruby’s License.
See the file COPYING for complete licensing information.
Defined Under Namespace
Modules: Deferrable, Eventable, Protocols, UuidGenerator Classes: Connection, DatagramObject, Error, EvmaTCPClient, EvmaTCPServer, EvmaUDPSocket, LoopbreakReader, PeriodicTimer, Reactor, Selectable, StreamObject, Timer
Constant Summary collapse
- TimerFired =
100
- ConnectionData =
101
- ConnectionUnbound =
102
- ConnectionAccepted =
103
- ConnectionCompleted =
104
- LoopbreakSignalled =
105
- VERSION =
"0.7.2"
Class Method Summary collapse
- ._open_file_for_writing(filename, handler = nil) ⇒ Object
-
.add_oneshot_timer(interval) ⇒ Object
#add_oneshot_timer – Changed 04Oct06: intervals from the caller are now in milliseconds, but our native-ruby processor still wants them in seconds.
-
.add_periodic_timer(*args, &block) ⇒ Object
EventMachine#add_periodic_timer adds a periodic timer to the event loop.
-
.add_timer(*args, &block) ⇒ Object
EventMachine#add_timer adds a one-shot timer to the event loop.
-
.close_connection(target, after_writing) ⇒ Object
#close_connection The extension version does NOT raise any kind of an error if an attempt is made to close a non-existent connection.
-
.connect(server, port, handler = nil) ⇒ Object
EventMachine#connect initiates a TCP connection to a remote server and sets up event-handling for the connection.
-
.connect_server(host, port) ⇒ Object
#connect_server.
-
.connect_unix_domain(socketname, handler = nil) ⇒ Object
Make a connection to a Unix-domain socket.
-
.defer(op, callback = nil) ⇒ Object
#defer is for integrating blocking operations into EventMachine’s control flow.
- .event_callback(target, opcode, data) ⇒ Object
-
.get_peername(sig) ⇒ Object
#get_peername.
-
.initialize_event_machine ⇒ Object
#initialize_event_machine.
-
.library_type ⇒ Object
This is mostly useful for automated tests.
-
.open_datagram_socket(address, port, handler = nil) ⇒ Object
EventMachine#open_datagram_socket is for support of UDP-based protocols.
-
.open_udp_socket(host, port) ⇒ Object
#open_udp_socket.
-
.reconnect(server, port, handler) ⇒ Object
– EXPERIMENTAL.
-
.release_machine ⇒ Object
release_machine.
-
.run(&block) ⇒ Object
EventMachine::run initializes and runs an event loop.
-
.run_deferred_callbacks ⇒ Object
:nodoc:.
-
.run_machine ⇒ Object
run_machine.
-
.run_without_threads(&block) ⇒ Object
deprecated
– EventMachine#run_without_threads is semantically identical to EventMachine#run, but it runs somewhat faster. -
.send_data(target, data, datalength) ⇒ Object
#send_data.
-
.send_datagram(target, data, datalength, host, port) ⇒ Object
#send_datagram.
-
.set_effective_user(username) ⇒ Object
A wrapper over the setuid system call.
-
.set_quantum(mills) ⇒ Object
For advanced users.
-
.set_timer_quantum(interval) ⇒ Object
#set_timer_quantum in milliseconds.
-
.signal_loopbreak ⇒ Object
#signal_loopbreak.
-
.start_server(server, port, handler = nil, &block) ⇒ Object
EventMachine::start_server initiates a TCP server (socket acceptor) on the specified IP address and port.
-
.start_tcp_server(host, port) ⇒ Object
#start_tcp_server.
- .start_unix_domain_server(filename, handler = nil, &block) ⇒ Object
-
.stop ⇒ Object
#stop.
-
.stop_event_loop ⇒ Object
stop_event_loop may called from within a callback method while EventMachine’s processing loop is running.
Class Method Details
._open_file_for_writing(filename, handler = nil) ⇒ Object
857 858 859 860 861 862 863 864 865 866 867 868 869 |
# File 'lib/eventmachine.rb', line 857 def _open_file_for_writing filename, handler=nil klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = _write_file filename c = klass.new s @conns[s] = c block_given? and yield c c end |
.add_oneshot_timer(interval) ⇒ Object
#add_oneshot_timer – Changed 04Oct06: intervals from the caller are now in milliseconds, but our native-ruby processor still wants them in seconds.
57 58 59 |
# File 'lib/pr_eventmachine.rb', line 57 def add_oneshot_timer interval Reactor.instance.install_oneshot_timer(interval / 1000) end |
.add_periodic_timer(*args, &block) ⇒ Object
EventMachine#add_periodic_timer adds a periodic timer to the event loop. It takes the same parameters as the one-shot timer method, EventMachine#add_timer. This method schedules execution of the given block repeatedly, at intervals of time at least as great as the number of seconds given in the first parameter to the call.
Usage example
The following sample program will write a dollar-sign to stderr every five seconds. (Of course if the program defined network clients and/or servers, they would be doing their work while the periodic timer is counting off.)
EventMachine::run {
EventMachine::add_periodic_timer( 5 ) { $stderr.write "$" }
}
282 283 284 285 286 287 288 289 290 291 292 |
# File 'lib/eventmachine.rb', line 282 def EventMachine::add_periodic_timer *args, &block interval = args.shift code = args.shift || block if code block_1 = proc { code.call EventMachine::add_periodic_timer interval, code } add_timer interval, block_1 end end |
.add_timer(*args, &block) ⇒ Object
EventMachine#add_timer adds a one-shot timer to the event loop. Call it with one or two parameters. The first parameters is a delay-time expressed in seconds (not milliseconds). The second parameter, if present, must be a proc object. If a proc object is not given, then you can also simply pass a block to the method call.
EventMachine#add_timer may be called from the block passed to EventMachine#run or from any callback method. It schedules execution of the proc or block passed to add_timer, after the passage of an interval of time equal to at least the number of seconds specified in the first parameter to the call.
EventMachine#add_timer is a non-blocking call. Callbacks can and will be called during the interval of time that the timer is in effect. There is no built-in limit to the number of timers that can be outstanding at any given time.
Usage example
This example shows how easy timers are to use. Observe that two timers are initiated simultaneously. Also, notice that the event loop will continue to run even after the second timer event is processed, since there was no call to EventMachine#stop_event_loop. There will be no activity, of course, since no network clients or servers are defined. Stop the program with Ctrl-C.
require 'rubygems'
require 'eventmachine'
EventMachine::run {
puts "Starting the run now: #{Time.now}"
EventMachine::add_timer 5, proc { puts "Executing timer event: #{Time.now}" }
EventMachine::add_timer( 10 ) { puts "Executing timer event: #{Time.now}" }
}
– Changed 04Oct06: We now pass the interval as an integer number of milliseconds.
255 256 257 258 259 260 261 262 263 264 |
# File 'lib/eventmachine.rb', line 255 def EventMachine::add_timer *args, &block interval = args.shift code = args.shift || block if code # check too many timers! s = add_oneshot_timer((interval * 1000).to_i) @timers[s] = code s end end |
.close_connection(target, after_writing) ⇒ Object
#close_connection The extension version does NOT raise any kind of an error if an attempt is made to close a non-existent connection. Not sure whether we should. For now, we’ll raise an error here in that case.
91 92 93 94 |
# File 'lib/pr_eventmachine.rb', line 91 def close_connection target, after_writing selectable = Reactor.instance.get_selectable( target ) or raise "unknown close_connection target" selectable.schedule_close after_writing end |
.connect(server, port, handler = nil) ⇒ Object
EventMachine#connect initiates a TCP connection to a remote server and sets up event-handling for the connection. You can call EventMachine#connect in the block supplied to EventMachine#run or in any callback method.
EventMachine#connect takes the IP address (or hostname) and port of the remote server you want to connect to. It also takes an optional handler Module which you must define, that contains the callbacks that will be invoked by the event loop on behalf of the connection.
See the description of EventMachine#start_server for a discussion of the handler Module. All of the details given in that description apply for connections created with EventMachine#connect.
Usage Example
Here’s a program which connects to a web server, sends a naive request, parses the HTTP header of the response, and then (antisocially) ends the event loop, which automatically drops the connection (and incidentally calls the connection’s unbind method).
require 'rubygems'
require 'eventmachine'
module DumbHttpClient
def post_init
send_data "GET / HTTP/1.1\r\nHost: _\r\n\r\n"
@data = ""
end
def receive_data data
@data << data
if @data =~ /[\n][\r]*[\n]/m
puts "RECEIVED HTTP HEADER:"
$`.each {|line| puts ">>> #{line}" }
puts "Now we'll terminate the loop, which will also close the connection"
EventMachine::stop_event_loop
end
end
def unbind
puts "A connection has terminated"
end
end # DumbHttpClient
EventMachine::run {
EventMachine::connect "www.bayshorenetworks.com", 80, DumbHttpClient
}
puts "The event loop has ended"
There are times when it’s more convenient to define a protocol handler as a Class rather than a Module. Here’s how to do this:
class MyProtocolHandler < EventMachine::Connection
def initialize *args
super
# whatever else you want to do here
end
#.......your other class code
end # class MyProtocolHandler
If you do this, then an instance of your class will be instantiated to handle every network connection created by your code or accepted by servers that you create. If you redefine #post_init in your protocol-handler class, your #post_init method will be called inside the call to #super that you will make in your #initialize method (if you provide one).
– EventMachine::connect initiates a TCP connection to a remote server and sets up event-handling for the connection. It internally creates an object that should not be handled by the caller. HOWEVER, it’s often convenient to get the object to set up interfacing to other objects in the system. We return the newly-created anonymous-class object to the caller. It’s expected that a considerable amount of code will depend on this behavior, so don’t change it.
Ok, added support for a user-defined block, 13Apr06. This leads us to an interesting choice because of the presence of the post_init call, which happens in the initialize method of the new object. We call the user’s block and pass the new object to it. This is a great way to do protocol-specific initiation. It happens AFTER post_init has been called on the object, which I certainly hope is the right choice. Don’t change this lightly, because accepted connections are different from connected ones and we don’t want to have them behave differently with respect to post_init if at all possible.
566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
# File 'lib/eventmachine.rb', line 566 def EventMachine::connect server, port, handler=nil klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = connect_server server, port c = klass.new s @conns[s] = c block_given? and yield c c end |
.connect_server(host, port) ⇒ Object
#connect_server. Return a connection descriptor to the caller. TODO, what do we return here if we can’t connect?
77 78 79 |
# File 'lib/pr_eventmachine.rb', line 77 def connect_server host, port EvmaTCPClient.connect(host, port).uuid end |
.connect_unix_domain(socketname, handler = nil) ⇒ Object
Make a connection to a Unix-domain socket. This is not implemented on Windows platforms. The parameter socketname is a String which identifies the Unix-domain socket you want to connect to. socketname is the name of a file on your local system, and in most cases is a fully-qualified path name. Make sure that your process has enough local permissions to open the Unix-domain socket. See also the documentation for #connect_server. This method behaves like #connect_server in all respects except for the fact that it connects to a local Unix-domain socket rather than a TCP socket. NOTE: this functionality will soon be subsumed into the #connect method. This method will still be supported as an alias. – For making connections to Unix-domain sockets. Eventually this has to get properly documented and unified with the TCP-connect methods. Note how nearly identical this is to EventMachine#connect
621 622 623 624 625 626 627 628 629 630 631 632 633 |
# File 'lib/eventmachine.rb', line 621 def EventMachine::connect_unix_domain socketname, handler=nil klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = connect_unix_server socketname c = klass.new s @conns[s] = c block_given? and yield c c end |
.defer(op, callback = nil) ⇒ Object
#defer is for integrating blocking operations into EventMachine’s control flow. Call #defer with one or two blocks, as shown below (the second block is optional):
operation = proc {
# perform a long-running operation here, such as a database query.
"result" # as usual, the last expression evaluated in the block will be the return value.
}
callback = proc {|result|
# do something with result here, such as send it back to a network client.
}
EventMachine.defer( operation, callback )
The action of #defer is to take the block specified in the first parameter (the “operation”) and schedule it for asynchronous execution on an internal thread pool maintained by EventMachine. When the operation completes, it will pass the result computed by the block (if any) back to the EventMachine reactor. Then, EventMachine calls the block specified in the second parameter to #defer (the “callback”), as part of its normal, synchronous event handling loop. The result computed by the operation block is passed as a parameter to the callback. You may omit the callback parameter if you don’t need to execute any code after the operation completes.
Caveats: This is a provisional implementation and is subject to change. Note carefully that the code in your deferred operation will be executed on a separate thread from the main EventMachine processing and all other Ruby threads that may exist in your program. Also, multiple deferred operations may be running at once! Therefore, you are responsible for ensuring that your operation code is threadsafe. [Need more explanation and examples.] Don’t write a deferred operation that will block forever. If so, the current implementation will not detect the problem, and the thread will never be returned to the pool. EventMachine limits the number of threads in its pool, so if you do this enough times, your subsequent deferred operations won’t get a chance to run. [We might put in a timer to detect this problem.]
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
# File 'lib/eventmachine.rb', line 779 def self::defer op, callback = nil unless @threadqueue #start_server "127.0.0.1", 29999, DeferredTrigger #@deferred_trigger = connect "127.0.0.1", 29999 require 'thread' @threadqueue = Queue.new @resultqueue = Queue.new 20.times {|ix| Thread.new { my_ix = ix loop { op,cback = @threadqueue.pop result = op.call @resultqueue << [result, cback] EventMachine.signal_loopbreak #@deferred_trigger.send_data "." } } } end @threadqueue << [op,callback] end |
.event_callback(target, opcode, data) ⇒ Object
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
# File 'lib/eventmachine.rb', line 820 def EventMachine::event_callback conn_binding, opcode, data case opcode when ConnectionData c = @conns[conn_binding] or raise ConnectionNotBound c.receive_data data when ConnectionUnbound if c = @conns.delete( conn_binding ) c.unbind elsif c = @acceptors.delete( conn_binding ) # no-op else raise ConnectionNotBound end when ConnectionAccepted accep,blk = @acceptors[conn_binding] raise NoHandlerForAcceptedConnection unless accep c = accep.new data @conns[data] = c blk and blk.call(c) c # (needed?) when TimerFired t = @timers.delete( data ) or raise UnknownTimerFired t.call when ConnectionCompleted c = @conns[conn_binding] or raise ConnectionNotBound c.connection_completed when LoopbreakSignalled run_deferred_callbacks end end |
.get_peername(sig) ⇒ Object
#get_peername
108 109 110 111 |
# File 'lib/pr_eventmachine.rb', line 108 def get_peername sig selectable = Reactor.instance.get_selectable( sig ) or raise "unknown get_peername target" selectable.get_peername end |
.initialize_event_machine ⇒ Object
#initialize_event_machine
49 50 51 |
# File 'lib/pr_eventmachine.rb', line 49 def initialize_event_machine Reactor.instance.initialize_for_run end |
.library_type ⇒ Object
This is mostly useful for automated tests. Return a distinctive symbol so the caller knows whether he’s dealing with an extension or with a pure-Ruby library.
44 45 46 |
# File 'lib/pr_eventmachine.rb', line 44 def library_type :pure_ruby end |
.open_datagram_socket(address, port, handler = nil) ⇒ Object
EventMachine#open_datagram_socket is for support of UDP-based protocols. Its usage is similar to that of EventMachine#start_server. It takes three parameters: an IP address (which must be valid on the machine which executes the method), a port number, and an optional Module name which will handle the data. This method will create a new UDP (datagram) socket and bind it to the address and port that you specify. The normal callbacks (see EventMachine#start_server) will be called as events of interest occur on the newly-created socket, but there are some differences in how they behave.
Connection#receive_data will be called when a datagram packet is received on the socket, but unlike TCP sockets, the message boundaries of the received data will be respected. In other words, if the remote peer sent you a datagram of a particular size, you may rely on Connection#receive_data to give you the exact data in the packet, with the original data length. Also observe that Connection#receive_data may be called with a zero-length data payload, since empty datagrams are permitted in UDP.
Connection#send_data is available with UDP packets as with TCP, but there is an important difference. Because UDP communications are connectionless, there is no implicit recipient for the packets you send. Ordinarily you must specify the recipient for each packet you send. However, EventMachine provides for the typical pattern of receiving a UDP datagram from a remote peer, performing some operation, and then sending one or more packets in response to the same remote peer. To support this model easily, just use Connection#send_data in the code that you supply for Connection:receive_data. EventMachine will provide an implicit return address for any messages sent to Connection#send_data within the context of a Connection#receive_data callback, and your response will automatically go to the correct remote peer. (TODO: Example-code needed!)
Observe that the port number that you supply to EventMachine#open_datagram_socket may be zero. In this case, EventMachine will create a UDP socket that is bound to an ephemeral (not well-known) port. This is not appropriate for servers that must publish a well-known port to which remote peers may send datagrams. But it can be useful for clients that send datagrams to other servers. If you do this, you will receive any responses from the remote servers through the normal Connection#receive_data callback. Observe that you will probably have issues with firewalls blocking the ephemeral port numbers, so this technique is most appropriate for LANs. (TODO: Need an example!)
If you wish to send datagrams to arbitrary remote peers (not necessarily ones that have sent data to which you are responding), then see Connection#send_datagram.
– Replaced the implementation on 01Oct06. Thanks to Tobias Gustafsson for pointing out that this originally did not take a class but only a module.
693 694 695 696 697 698 699 700 701 702 703 704 705 |
# File 'lib/eventmachine.rb', line 693 def self::open_datagram_socket address, port, handler=nil klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = open_udp_socket address, port c = klass.new s @conns[s] = c block_given? and yield c c end |
.open_udp_socket(host, port) ⇒ Object
#open_udp_socket
114 115 116 |
# File 'lib/pr_eventmachine.rb', line 114 def open_udp_socket host, port EvmaUDPSocket.create(host, port).uuid end |
.reconnect(server, port, handler) ⇒ Object
– EXPERIMENTAL. DO NOT RELY ON THIS METHOD TO BE HERE IN THIS FORM, OR AT ALL. (03Nov06) Observe, the test for already-connected FAILS if we call a reconnect inside post_init, because we haven’t set up the connection in @conns by that point. RESIST THE TEMPTATION to “fix” this problem by redefining the behavior of post_init.
Changed 22Nov06: if called on an already-connected handler, just return the handler and do nothing more. Originally this condition raised an exception. We may want to change it yet again and call the block, if any.
593 594 595 596 597 598 599 600 601 602 |
# File 'lib/eventmachine.rb', line 593 def EventMachine::reconnect server, port, handler raise "invalid handler" unless handler.respond_to?(:connection_completed) #raise "still connected" if @conns.has_key?(handler.signature) return handler if @conns.has_key?(handler.signature) s = connect_server server, port handler.signature = s @conns[s] = handler block_given? and yield handler handler end |
.release_machine ⇒ Object
release_machine. Probably a no-op.
67 68 |
# File 'lib/pr_eventmachine.rb', line 67 def release_machine end |
.run(&block) ⇒ Object
EventMachine::run initializes and runs an event loop. This method only returns if user-callback code calls stop_event_loop. Use the supplied block to define your clients and servers. The block is called by EventMachine::run immediately after initializing its internal event loop but before running the loop. Therefore this block is the right place to call start_server if you want to accept connections from remote clients.
For programs that are structured as servers, it’s usually appropriate to start an event loop by calling EventMachine::run, and let it run forever. It’s also possible to use EventMachine::run to make a single client-connection to a remote server, process the data flow from that single connection, and then call stop_event_loop to force EventMachine::run to return. Your program will then continue from the point immediately following the call to EventMachine::run.
You can of course do both client and servers simultaneously in the same program. One of the strengths of the event-driven programming model is that the handling of network events on many different connections will be interleaved, and scheduled according to the actual events themselves. This maximizes efficiency.
Server usage example
See the text at the top of this file for an example of an echo server.
Client usage example
See the description of stop_event_loop for an extremely simple client example.
– Obsoleted the use_threads mechanism. 25Nov06: Added the begin/ensure block. We need to be sure that release_machine gets called even if an exception gets thrown within any of the user code that the event loop runs. The best way to see this is to run a unit test with two functions, each of which calls EventMachine#run and each of which throws something inside of #run. Without the ensure, the second test will start without release_machine being called and will immediately throw a C++ runtime error.
191 192 193 194 195 196 197 198 199 200 201 202 |
# File 'lib/eventmachine.rb', line 191 def EventMachine::run &block @conns = {} @acceptors = {} @timers = {} begin initialize_event_machine block and add_timer 0, block run_machine ensure release_machine end end |
.run_deferred_callbacks ⇒ Object
:nodoc:
738 739 740 741 742 743 |
# File 'lib/eventmachine.rb', line 738 def self::run_deferred_callbacks # :nodoc: until @resultqueue.empty? result,cback = @resultqueue.pop cback.call result if cback end end |
.run_machine ⇒ Object
run_machine
62 63 64 |
# File 'lib/pr_eventmachine.rb', line 62 def run_machine Reactor.instance.run end |
.run_without_threads(&block) ⇒ Object
deprecated
– EventMachine#run_without_threads is semantically identical to EventMachine#run, but it runs somewhat faster. However, it must not be used in applications that spin Ruby threads.
211 212 213 214 |
# File 'lib/eventmachine.rb', line 211 def EventMachine::run_without_threads &block #EventMachine::run false, &block EventMachine::run(&block) end |
.send_data(target, data, datalength) ⇒ Object
#send_data
82 83 84 85 |
# File 'lib/pr_eventmachine.rb', line 82 def send_data target, data, datalength selectable = Reactor.instance.get_selectable( target ) or raise "unknown send_data target" selectable.send_data data end |
.send_datagram(target, data, datalength, host, port) ⇒ Object
#send_datagram. This is currently only for UDP! We need to make it work with unix-domain sockets as well.
120 121 122 123 |
# File 'lib/pr_eventmachine.rb', line 120 def send_datagram target, data, datalength, host, port selectable = Reactor.instance.get_selectable( target ) or raise "unknown send_data target" selectable.send_datagram data, Socket::pack_sockaddr_in(port, host) end |
.set_effective_user(username) ⇒ Object
A wrapper over the setuid system call. Particularly useful when opening a network server on a privileged port because you can use this call to drop privileges after opening the port. This method has no effective implementation on Windows or in the pure-Ruby implementation of EventMachine. Call #set_effective_user by passing it a string containing the effective name of the user whose privilege-level your process should attain. This method is intended for use in enforcing security requirements, consequently it will throw a fatal error and end your program if it fails.
814 815 816 |
# File 'lib/eventmachine.rb', line 814 def self::set_effective_user username EventMachine::setuid_string username end |
.set_quantum(mills) ⇒ Object
For advanced users. This function sets the default timer granularity, which by default is slightly smaller than 100 milliseconds. Call this function to set a higher or lower granularity. The function affects the behavior of #add_timer and #add_periodic_timer. Most applications will not need to call this function.
The argument is a number of milliseconds. Avoid setting the quantum to very low values because that may reduce performance under some extreme conditions. We recommend that you not set a quantum lower than 10.
You MUST call this function while an EventMachine loop is running (that is, after a call to EventMachine#run and before a subsequent call to EventMachine#stop).
733 734 735 |
# File 'lib/eventmachine.rb', line 733 def self::set_quantum mills set_timer_quantum mills.to_i end |
.set_timer_quantum(interval) ⇒ Object
#set_timer_quantum in milliseconds. The underlying Reactor function wants a (possibly fractional) number of seconds.
128 129 130 |
# File 'lib/pr_eventmachine.rb', line 128 def set_timer_quantum interval Reactor.instance.set_timer_quantum(( 1.0 * interval) / 1000.0) end |
.signal_loopbreak ⇒ Object
#signal_loopbreak
103 104 105 |
# File 'lib/pr_eventmachine.rb', line 103 def signal_loopbreak Reactor.instance.signal_loopbreak end |
.start_server(server, port, handler = nil, &block) ⇒ Object
EventMachine::start_server initiates a TCP server (socket acceptor) on the specified IP address and port. The IP address must be valid on the machine where the program runs, and the process must be privileged enough to listen on the specified port (on Unix-like systems, superuser privileges are usually required to listen on any port lower than 1024). Only one listener may be running on any given address/port combination. start_server will fail if the given address and port are already listening on the machine, either because of a prior call to start_server or some unrelated process running on the machine. If start_server succeeds, the new network listener becomes active immediately and starts accepting connections from remote peers, and these connections generate callback events that are processed by the code specified in the handler parameter to start_server.
The optional handler which is passed to start_server is the key to EventMachine’s ability to handle particular network protocols. The handler parameter passed to start_server must be a Ruby Module that you must define. When the network server that is started by start_server accepts a new connection, it instantiates a new object of an anonymous class that is inherited from EventMachine::Connection, into which the methods from your handler have been mixed. Your handler module may redefine any of the methods in EventMachine::Connection in order to implement the specific behavior of the network protocol.
Callbacks invoked in response to network events always take place within the execution context of the object derived from EventMachine::Connection extended by your handler module. There is one object per connection, and all of the callbacks invoked for a particular connection take the form of instance methods called against the corresponding EventMachine::Connection object. Therefore, you are free to define whatever instance variables you wish, in order to contain the per-connection state required by the network protocol you are implementing.
start_server is often called inside the block passed to EventMachine::run, but it can be called from any EventMachine callback. start_server will fail unless the EventMachine event loop is currently running (which is why it’s often called in the block suppled to EventMachine::run).
You may call start_server any number of times to start up network listeners on different address/port combinations. The servers will all run simultaneously. More interestingly, each individual call to start_server can specify a different handler module and thus implement a different network protocol from all the others.
Usage example
Here is an example of a server that counts lines of input from the remote peer and sends back the total number of lines received, after each line. Try the example with more than one client connection opened via telnet, and you will see that the line count increments independently on each of the client connections. Also very important to note, is that the handler for the receive_data function, which our handler redefines, may not assume that the data it receives observes any kind of message boundaries. Also, to use this example, be sure to change the server and port parameters to the start_server call to values appropriate for your environment.
require 'rubygems'
require 'eventmachine'
module LineCounter
MaxLinesPerConnection = 10
def post_init
puts "Received a new connection"
@data_received = ""
@line_count = 0
end
def receive_data data
@data_received << data
while @data_received.slice!( /^[^\n]*[\n]/m )
@line_count += 1
send_data "received #{@line_count} lines so far\r\n"
@line_count == MaxLinesPerConnection and close_connection_after_writing
end
end
end # module LineCounter
EventMachine::run {
host,port = "192.168.0.100", 8090
EventMachine::start_server host, port, LineCounter
puts "Now accepting connections on address #{host}, port #{port}..."
EventMachine::add_periodic_timer( 10 ) { $stderr.write "*" }
}
446 447 448 449 450 451 452 453 454 455 |
# File 'lib/eventmachine.rb', line 446 def EventMachine::start_server server, port, handler=nil, &block klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = start_tcp_server server, port @acceptors[s] = [klass,block] end |
.start_tcp_server(host, port) ⇒ Object
#start_tcp_server
97 98 99 100 |
# File 'lib/pr_eventmachine.rb', line 97 def start_tcp_server host, port (s = EvmaTCPServer.start_server host, port) or raise "no acceptor" s.uuid end |
.start_unix_domain_server(filename, handler = nil, &block) ⇒ Object
458 459 460 461 462 463 464 465 466 467 |
# File 'lib/eventmachine.rb', line 458 def EventMachine::start_unix_domain_server filename, handler=nil, &block klass = if (handler and handler.is_a?(Class)) handler else Class.new( Connection ) {handler and include handler} end s = start_unix_server filename @acceptors[s] = [klass,block] end |
.stop ⇒ Object
#stop
71 72 73 |
# File 'lib/pr_eventmachine.rb', line 71 def stop Reactor.instance.stop end |
.stop_event_loop ⇒ Object
stop_event_loop may called from within a callback method while EventMachine’s processing loop is running. It causes the processing loop to stop executing, which will cause all open connections and accepting servers to be run down and closed. Callbacks for connection-termination will be called as part of the processing of stop_event_loop. (There currently is no option to panic-stop the loop without closing connections.) When all of this processing is complete, the call to EventMachine::run which started the processing loop will return and program flow will resume from the statement following EventMachine::run call.
Usage example
require 'rubygems'
require 'eventmachine'
module Redmond
def post_init
puts "We're sending a dumb HTTP request to the remote peer."
send_data "GET / HTTP/1.1\r\nHost: www.microsoft.com\r\n\r\n"
end
def receive_data data
puts "We received #{data.length} bytes from the remote peer."
puts "We're going to stop the event loop now."
EventMachine::stop_event_loop
end
def unbind
puts "A connection has terminated."
end
end
puts "We're starting the event loop now."
EventMachine::run {
EventMachine::connect "www.microsoft.com", 80, Redmond
}
puts "The event loop has stopped."
This program will produce approximately the following output:
We're starting the event loop now.
We're sending a dumb HTTP request to the remote peer.
We received 1440 bytes from the remote peer.
We're going to stop the event loop now.
A connection has terminated.
The event loop has stopped.
354 355 356 |
# File 'lib/eventmachine.rb', line 354 def EventMachine::stop_event_loop EventMachine::stop end |