Class: NMatrix
- Inherits:
-
Object
- Object
- NMatrix
- Defined in:
- lib/expcalc/nmatrix_expansion.rb
Overview
require ‘pp’
Instance Method Summary collapse
- #cosine_normalization ⇒ Object
-
#div(second_mat) ⇒ Object
Matrix division A/B => A.dot(B.pinv) #stackoverflow.com/questions/49225693/matlab-matrix-division-into-python.
- #div_by_vector(vector, by = :col) ⇒ Object
- #expm ⇒ Object
- #frobenius_norm ⇒ Object
-
#max_eigenvalue(n = 100, error = 10e-12) ⇒ Object
do not set error too low or the eigenvalue cannot stabilised around the real one.
-
#max_norm ⇒ Object
docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html, ord parameter = 1.
- #min_eigenvalue(n = 100, error = 10e-12) ⇒ Object
- #vector_product(vec_b) ⇒ Object
- #vector_self_product ⇒ Object
Instance Method Details
#cosine_normalization ⇒ Object
172 173 174 175 176 177 178 179 180 181 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 172 def cosine_normalization normalized_matrix = NMatrix.zeros(self.shape, dtype: self.dtype) #normalized_matrix = NMatrix.zeros(self.shape, dtype: :complex64) self.each_with_indices do |val, i, j| norm = val/CMath.sqrt(self[i, i] * self[j,j]) #abort("#{norm} has non zero imaginary part" ) if norm.imag != 0 normalized_matrix[i, j] = norm#.real end return normalized_matrix end |
#div(second_mat) ⇒ Object
Matrix division A/B => A.dot(B.pinv) #stackoverflow.com/questions/49225693/matlab-matrix-division-into-python
9 10 11 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 9 def div(second_mat) #Matrix division A/B => A.dot(B.pinv) #https://stackoverflow.com/questions/49225693/matlab-matrix-division-into-python return self.dot(second_mat.pinv) end |
#div_by_vector(vector, by = :col) ⇒ Object
13 14 15 16 17 18 19 20 21 22 23 24 25 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 13 def div_by_vector(vector, by=:col) new_matrix = NMatrix.zeros(self.shape, dtype: self.dtype) if by == :col self.cols.times do |n| vector.each_with_indices do |val, i, j| new_matrix[i, n] = self[i, n].fdiv(val) end end elsif by == :row end return new_matrix end |
#expm ⇒ Object
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 80 def expm return compute_py_method{|mat| expm(mat)} #return compute_py_method(self){|mat| expm(mat)} ################################################## # matlab pade aproximation ################################################ ### toolbox/matlab/demos/expmdemo1.m (Golub and Van Loan, Matrix Computations, Algorithm 11.3-1.) #fraction, exponent = Math.frexp(max_norm) #s = [0, exponent+1].max #a = self/2**s ## Pade approximation for exp(A) #x = a #c = 0.5 #ac = a*c #e = NMatrix.identity(a.shape, dtype: a.dtype) + ac #d = NMatrix.identity(a.shape, dtype: a.dtype) - ac #q = 6 #p = true #(2..q).each do |k| # c = c * (q-k+1) / (k*(2*q-k+1)) # x = a.dot(x) # cX = x * c # e = e + cX # if p # d = d + cX # else # d = d - cX # end # p = !p #end #e = d.solve(e) #solve ## Undo scaling by repeated squaring #(1..s).each do # e = e.dot(e) #end #return e ################################### ## Old python Pade aproximation ################################### #### Pade aproximation: https://github.com/rngantner/Pade_PyCpp/blob/master/src/expm.py #a_l1 = max_norm #n_squarings = 0 #if self.dtype == :float64 || self.dtype == :complex128 # if a_l1 < 1.495585217958292e-002 # u,v = _pade3(self) #elsif a_l1 < 2.539398330063230e-001 # u,v = _pade5(self) #elsif a_l1 < 9.504178996162932e-001 # u,v = _pade7(self) #elsif a_l1 < 2.097847961257068e+000 # u,v = _pade9(self) # else # maxnorm = 5.371920351148152 # n_squarings = [0, Math.log2(a_l1 / maxnorm).ceil].max # mat = self / 2**n_squarings # u,v = _pade13(mat) # end #elsif self.dtype == :float32 || self.dtype == :complex64 # if a_l1 < 4.258730016922831e-001 # u,v = _pade3(self) # elsif a_l1 < 1.880152677804762e+000 # u,v = _pade5(self) # else # maxnorm = 3.925724783138660 # n_squarings = [0, Math.log2(a_l1 / maxnorm).ceil].max # mat = self / 2**n_squarings # u,v = _pade7(mat) # end #end #p = u + v #q = -u + v #r = q.solve(p) #n_squarings.times do # r = r.dot(r) #end #return r ###################### # Exact computing ###################### #####expm(matrix) = V*diag(exp(diag(D)))/V; V => eigenvectors(right), D => eigenvalues (right). # https://es.mathworks.com/help/matlab/ref/expm.html #eigenvalues, eigenvectors = NMatrix::LAPACK.geev(self, :right) #eigenvalues.map!{|val| Math.exp(val)} #numerator = eigenvectors.dot(NMatrix.diagonal(eigenvalues, dtype: self.dtype)) #matrix_exp = numerator.div(eigenvectors) #return matrix_exp end |
#frobenius_norm ⇒ Object
27 28 29 30 31 32 33 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 27 def frobenius_norm fro = 0.0 self.each do |value| fro += value.abs ** 2 end return fro ** 0.5 end |
#max_eigenvalue(n = 100, error = 10e-12) ⇒ Object
do not set error too low or the eigenvalue cannot stabilised around the real one
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 56 def max_eigenvalue(n=100, error = 10e-12) # do not set error too low or the eigenvalue cannot stabilised around the real one max_eigenvalue = 0.0 length = self.cols v = NMatrix.random([self.cols, 1], dtype: self.dtype) # http://web.mit.edu/18.06/www/Spring17/Power-Method.pdf #IMPLEMENTATION PROBLEM: RESULTS ARE TOO VARIABLE last_max_eigenvalue = nil n.times do v = self.dot(v) # calculate the matrix-by-vector product Mv v = v / v.frobenius_norm # calculate the norm and normalize the vector max_eigenvalue = v.vector_product(self.dot(v)) / v.vector_self_product #Rayleigh quotient # Rayleigh quotient: lambda = vMv/vv # v is a vector so vv is inner product of one vector with self (use vector_self_product); # Mv gives a vector, so vMv is the inner product of two different vectors (use vector_product) break if !last_max_eigenvalue.nil? && last_max_eigenvalue - max_eigenvalue <= error last_max_eigenvalue = max_eigenvalue end return max_eigenvalue end |
#max_norm ⇒ Object
docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html, ord parameter = 1
35 36 37 38 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 35 def max_norm #https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html, ord parameter = 1 sums = self.abs.sum(1) return sums.max[0, 0] end |
#min_eigenvalue(n = 100, error = 10e-12) ⇒ Object
76 77 78 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 76 def min_eigenvalue(n=100, error = 10e-12) return self.invert.max_eigenvalue(n, error) end |
#vector_product(vec_b) ⇒ Object
40 41 42 43 44 45 46 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 40 def vector_product(vec_b) product = 0.0 self.each_with_indices do |val, i, j| product += val * vec_b[i, j] end return product end |
#vector_self_product ⇒ Object
48 49 50 51 52 53 54 |
# File 'lib/expcalc/nmatrix_expansion.rb', line 48 def vector_self_product product = 0.0 self.each_stored_with_indices do |val, i, j| product += val ** 2 end return product end |