Module: Math
- Defined in:
- lib/frac.rb
Overview
Rational approximation to given real number.
Defined Under Namespace
Classes: Fraction
Class Method Summary collapse
Class Method Details
.find_fracs(rv, dv) ⇒ Object
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
# File 'ext/frac_ext.c', line 40
static VALUE find_fracs(VALUE mod, VALUE rv, VALUE dv)
{
N_TYPE m[2][2], ai, maxden = R2N(rb_Integer(dv));
double startx, x = RFLOAT_VALUE(rb_Float(rv));
int sign = 1;
if (maxden <= 0)
rb_raise(rb_eArgError, "maximum denominator should be > 0");
if (x < 0) {
sign = -1;
x = -x;
}
startx = x;
/* initialize matrix */
m[0][0] = m[1][1] = 1;
m[0][1] = m[1][0] = 0;
/* loop finding terms until denom gets too big */
while (m[1][0] * ( ai = (N_TYPE)x ) + m[1][1] <= maxden) {
N_TYPE t;
t = m[0][0] * ai + m[0][1];
m[0][1] = m[0][0];
m[0][0] = t;
t = m[1][0] * ai + m[1][1];
m[1][1] = m[1][0];
m[1][0] = t;
if(x==(double)ai) break; // AF: division by zero
x = 1/(x - (double) ai);
if(x>(double)0x7FFFFFFF) break; // AF: representation failure
}
{
/* now remaining x is between 0 and 1/ai */
/* approx as either 0 or 1/m where m is max that will fit in maxden */
/* first try zero */
VALUE num1, den1, err1, num2, den2, err2;
num1 = N2R(sign*m[0][0]);
den1 = N2R(m[1][0]);
err1 = rb_float_new(startx - ((double) m[0][0] / (double) m[1][0]));
/* now try other possibility */
ai = (maxden - m[1][1]) / m[1][0];
m[0][0] = m[0][0] * ai + m[0][1];
m[1][0] = m[1][0] * ai + m[1][1];
num2 = N2R(sign*m[0][0]);
den2 = N2R(m[1][0]);
err2 = rb_float_new(startx - ((double) m[0][0] / (double) m[1][0]));
return rb_ary_new3(6, num1, den1, err1, num2, den2, err2);
}
}
|
.frac(float, maxden) ⇒ Object
9 10 11 12 |
# File 'lib/frac.rb', line 9 def frac(float, maxden) arr = find_fracs(float, maxden) arr[2].abs > arr[5].abs ? Rational(arr[3], arr[4]) : Rational(arr[0], arr[1]) end |