Module: ReplaceMissingValues
- Included in:
- FSelector::Base
- Defined in:
- lib/fselector/replace_missing_values.rb
Overview
replace missing feature values
Instance Method Summary collapse
-
#replace_by_fixed_value!(val)
replace missing feature value by a fixed value, applicable to both discrete and continuous feature.
-
#replace_by_knn_value!(k = 1)
replace missing feature value by weighted k-nearest neighbors' value, applicable only to continuous feature.
-
#replace_by_mean_value!(mode = :by_column)
replace missing feature value by mean feature value, applicable only to continuous feature.
-
#replace_by_median_value!(mode = :by_column)
replace missing feature value by median feature value, applicable only to continuous feature.
-
#replace_by_most_seen_value!
replace missing feature value by most seen feature value, applicable only to discrete feature.
Instance Method Details
#replace_by_fixed_value!(val)
data structure will be altered
replace missing feature value by a fixed value, applicable to both discrete and continuous feature
11 12 13 14 15 16 17 18 19 20 21 22 |
# File 'lib/fselector/replace_missing_values.rb', line 11 def replace_by_fixed_value!(val) each_sample do |k, s| each_feature do |f| if not s.has_key? f s[f] = val end end end # clear variables clear_vars end |
#replace_by_knn_value!(k = 1)
data structure will be altered, and the nearest neighbors are determined by Euclidean distance
replace missing feature value by weighted k-nearest neighbors' value, applicable only to continuous feature
val = sigma_k (val_k * w_k)
where w_k = (sum_d - d_k) / ((K-1) * sum_d)
sum_d = sigma_k (d_k)
K: number of d_k
sigma_k (w_k) = 1, normalized to 1
ref: Microarray missing data imputation based on a set theoretic framework and biological knowledge
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# File 'lib/fselector/replace_missing_values.rb', line 134 def replace_by_knn_value!(k=1) each_sample do |ki, si| # potential features having missing value mv_fs = get_features - si.keys next if mv_fs.empty? # sample si has no missing value # record object value for each feature missing value f2val = {} mv_fs.each do |mv_f| knn_s, knn_d = [], [] each_sample do |kj, sj| # sample sj also has missing value of mv_f next if not sj.has_key? mv_f d = euclidean_distance(si, sj) idx = knn_d.index { |di| d<di } if idx knn_s.insert(idx, sj) knn_d.insert(idx, d) if knn_s.size > k knn_s = knn_s[0...k] knn_d = knn_d[0...k] end else if knn_s.size < k knn_s << sj knn_d << d end end end # distance-weighted value from knn knn_d_sum = knn_d.sum sz = knn_d.size val = 0.0 knn_s.each_with_index do |s, i| if sz > 1 if not knn_d_sum.zero? val += s[mv_f] * (knn_d_sum-knn_d[i]) / ((sz-1)*knn_d_sum) else val += s[mv_f] * 1.0 / sz end else # only one nearest neighbor val = s[mv_f] end end f2val[mv_f] = val #pp [si, mv_f, knn_s, knn_d, val] end # set value f2val.each do |f, v| si[f] = v end end # clear variables clear_vars end |
#replace_by_mean_value!(mode = :by_column)
data structure will be altered
replace missing feature value by mean feature value, applicable only to continuous feature
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# File 'lib/fselector/replace_missing_values.rb', line 35 def replace_by_mean_value!(mode = :by_column) each_sample do |k, s| mean = s.values.mean if mode == :by_row each_feature do |f| fv = get_feature_values(f) next if fv.size == get_sample_size # no missing values mean = fv.ave if mode == :by_column if not s.has_key? f s[f] = mean end end end # clear variables clear_vars end |
#replace_by_median_value!(mode = :by_column)
data structure will be altered
replace missing feature value by median feature value, applicable only to continuous feature
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# File 'lib/fselector/replace_missing_values.rb', line 65 def replace_by_median_value!(mode = :by_column) each_sample do |k, s| median = s.values.median if mode == :by_row each_feature do |f| fv = get_feature_values(f) next if fv.size == get_sample_size # no missing values median = fv.median if mode == :by_column if not s.has_key? f s[f] = median end end end # clear variables clear_vars end |
#replace_by_most_seen_value!
data structure will be altered
replace missing feature value by most seen feature value, applicable only to discrete feature
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/fselector/replace_missing_values.rb', line 91 def replace_by_most_seen_value! each_sample do |k, s| each_feature do |f| fv = get_feature_values(f) next if fv.size == get_sample_size # no missing values seen_count, seen_value = 0, nil fv.uniq.each do |v| count = fv.count(v) if count > seen_count seen_count = count seen_value = v end end if not s.has_key? f s[f] = seen_value end end end # clear variables clear_vars end |