Class: GeoRuby::SimpleFeatures::Point
- Defined in:
- lib/geo_ruby/simple_features/point.rb
Overview
Represents a point. It is in 3D if the Z coordinate is not nil
.
Constant Summary collapse
- DEG2RAD =
Math::PI / 180
Instance Attribute Summary collapse
-
#m ⇒ Object
Returns the value of attribute m.
-
#x ⇒ Object
(also: #lon, #lng)
Returns the value of attribute x.
-
#y ⇒ Object
(also: #lat)
Returns the value of attribute y.
-
#z ⇒ Object
Returns the value of attribute z.
Attributes inherited from Geometry
Class Method Summary collapse
-
.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) ⇒ Object
Creates a point from an array of coordinates.
-
.from_geo(geo_obj, srid = DEFAULT_SRID) ⇒ Object
Creates a point from a geo object that contains latitude and longitude.
-
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N.
-
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object
Creates a point using polar coordinates r and theta(degrees).
-
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X and Y coordinates.
-
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y and M coordinates.
-
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y and Z coordinates.
-
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y, Z and M coordinates.
Instance Method Summary collapse
-
#-@ ⇒ Object
Invert signal of all coordinates.
-
#==(other) ⇒ Object
Tests the equality of the position of points + m.
-
#as_json(_options = {}) ⇒ Object
Outputs the point in json format.
-
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N.
-
#as_latlong(options = {}) ⇒ Object
(also: #as_ll)
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″.
-
#as_long(options = {}) ⇒ Object
(also: #as_lng)
Outputs the geometry coordinate in human format: -20°06′00W″.
-
#as_polar ⇒ Object
Outputs an array containing polar distance and theta.
-
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols.
-
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
-
#binary_geometry_type ⇒ Object
WKB geometry type of a point.
-
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point.
-
#bounding_box ⇒ Object
Bounding box in 2D/3D.
-
#ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula.
-
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
-
#georss_gml_representation(options) ⇒ Object
georss gml representation.
-
#georss_simple_representation(options) ⇒ Object
georss simple representation.
-
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation.
- #html_representation(options = {}) ⇒ Object
-
#human_representation(options = {}, g = { x: x, y: y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong.
-
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
constructor
A new instance of Point.
-
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are
:id
,:tesselate
,:extrude
,:altitude_mode
. - #m_range ⇒ Object
-
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720.
-
#r ⇒ Object
(also: #rad)
outputs radius.
-
#set_x_y(x, y) ⇒ Object
(also: #set_lon_lat)
Sets all coordinates of a 2D point in one call.
-
#set_x_y_z(x, y, z) ⇒ Object
(also: #set_lon_lat_z)
Sets all coordinates in one call.
-
#spherical_distance(point, r = 6_370_997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula.
-
#text_geometry_type ⇒ Object
WKT geometry type of a point.
-
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point.
-
#theta_deg ⇒ Object
(also: #t, #tet, #tetha)
Outputs theta in degrees.
-
#theta_rad ⇒ Object
Outputs theta.
-
#to_coordinates ⇒ Object
Helper to get all coordinates as array.
-
#to_xy ⇒ Object
Simple helper for 2D maps.
-
#to_xyz ⇒ Object
Simple helper for 3D maps.
Methods inherited from Geometry
#as_ewkb, #as_ewkt, #as_georss, #as_hex_ewkb, #as_hex_wkb, #as_kml, #as_wkb, #as_wkt, #envelope, from_ewkb, from_ewkt, from_geojson, from_georss, from_georss_with_tags, from_hex_ewkb, from_kml, #to_json
Constructor Details
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
Returns a new instance of Point.
18 19 20 21 22 23 |
# File 'lib/geo_ruby/simple_features/point.rb', line 18 def initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) super(srid, with_z, with_m) @x = @y = 0.0 @z = 0.0 # default value : meaningful if with_z @m = 0.0 # default value : meaningful if with_m end |
Instance Attribute Details
#m ⇒ Object
Returns the value of attribute m.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def m @m end |
#x ⇒ Object Also known as: lon, lng
Returns the value of attribute x.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def x @x end |
#y ⇒ Object Also known as: lat
Returns the value of attribute y.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def y @y end |
#z ⇒ Object
Returns the value of attribute z.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def z @z end |
Class Method Details
.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) ⇒ Object
Creates a point from an array of coordinates
387 388 389 390 391 392 393 394 395 396 397 |
# File 'lib/geo_ruby/simple_features/point.rb', line 387 def self.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) if !(z || m) from_x_y(coords[0], coords[1], srid) elsif z && m from_x_y_z_m(coords[0], coords[1], coords[2], coords[3], srid) elsif z from_x_y_z(coords[0], coords[1], coords[2], srid) else from_x_y_m(coords[0], coords[1], coords[2], srid) end end |
.from_geo(geo_obj, srid = DEFAULT_SRID) ⇒ Object
Creates a point from a geo object that contains latitude and longitude
372 373 374 375 376 377 378 379 380 381 382 383 384 |
# File 'lib/geo_ruby/simple_features/point.rb', line 372 def self.from_geo(geo_obj, srid = DEFAULT_SRID) lat_names = %w(latitude lat).map(&:to_s) long_names = %w(longitude long lng).map(&:to_s) lat_method = lat_names.select {|mth| geo_obj.respond_to?(mth)}.first long_method = long_names.select {|mth| geo_obj.respond_to?(mth)}.first if lat_method && long_method return from_coordinates([geo_obj.send(long_method), geo_obj.send(lat_method)], srid) else raise ArgumentError, 'object must have both latitude and longitude methods' end end |
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N
436 437 438 439 440 441 442 443 444 445 446 |
# File 'lib/geo_ruby/simple_features/point.rb', line 436 def self.from_latlong(lat, lon, srid = DEFAULT_SRID) p = [lat, lon].map do |l| sig, deg, min, sec, cen = \ l.scan(/(-)?(\d{1,2})\D*(\d{2})\D*(\d{2})(\D*(\d{1,3}))?/).flatten sig = true if l =~ /W|S/ dec = deg.to_i + (min.to_i * 60 + "#{sec}#{cen}".to_f) / 3600 sig ? dec * -1 : dec end point = new(srid) point.set_x_y(p[0], p[1]) end |
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object
Creates a point using polar coordinates r and theta(degrees)
427 428 429 430 431 432 433 |
# File 'lib/geo_ruby/simple_features/point.rb', line 427 def self.from_r_t(r, t, srid = DEFAULT_SRID) t *= DEG2RAD x = r * Math.cos(t) y = r * Math.sin(t) point = new(srid) point.set_x_y(x, y) end |
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X and Y coordinates
400 401 402 403 |
# File 'lib/geo_ruby/simple_features/point.rb', line 400 def self.from_x_y(x, y, srid = DEFAULT_SRID) point = new(srid) point.set_x_y(x, y) end |
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y and M coordinates
412 413 414 415 416 |
# File 'lib/geo_ruby/simple_features/point.rb', line 412 def self.from_x_y_m(x, y, m, srid = DEFAULT_SRID) point = new(srid, false, true) point.m = m point.set_x_y(x, y) end |
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y and Z coordinates
406 407 408 409 |
# File 'lib/geo_ruby/simple_features/point.rb', line 406 def self.from_x_y_z(x, y, z, srid = DEFAULT_SRID) point = new(srid, true) point.set_x_y_z(x, y, z) end |
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object
Creates a point from the X, Y, Z and M coordinates
419 420 421 422 423 |
# File 'lib/geo_ruby/simple_features/point.rb', line 419 def self.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) point = new(srid, true, true) point.m = m point.set_x_y_z(x, y, z) end |
Instance Method Details
#-@ ⇒ Object
Invert signal of all coordinates
349 350 351 |
# File 'lib/geo_ruby/simple_features/point.rb', line 349 def -@ set_x_y_z(-@x, -@y, -@z) end |
#==(other) ⇒ Object
Tests the equality of the position of points + m
198 199 200 201 |
# File 'lib/geo_ruby/simple_features/point.rb', line 198 def ==(other) return false unless other.is_a?(Point) @x == other.x && @y == other.y && @z == other.z && @m == other.m end |
#as_json(_options = {}) ⇒ Object
Outputs the point in json format
344 345 346 |
# File 'lib/geo_ruby/simple_features/point.rb', line 344 def as_json( = {}) { type: 'Point', coordinates: to_coordinates } end |
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N
296 297 298 |
# File 'lib/geo_ruby/simple_features/point.rb', line 296 def as_lat( = {}) human_representation(, x: x).join end |
#as_latlong(options = {}) ⇒ Object Also known as: as_ll
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″
309 310 311 |
# File 'lib/geo_ruby/simple_features/point.rb', line 309 def as_latlong( = {}) human_representation().join(', ') end |
#as_long(options = {}) ⇒ Object Also known as: as_lng
Outputs the geometry coordinate in human format: -20°06′00W″
302 303 304 |
# File 'lib/geo_ruby/simple_features/point.rb', line 302 def as_long( = {}) human_representation(, y: y).join end |
#as_polar ⇒ Object
Outputs an array containing polar distance and theta
339 340 341 |
# File 'lib/geo_ruby/simple_features/point.rb', line 339 def as_polar [r, t] end |
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols. (:n, :s, :sw, :ne…)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# File 'lib/geo_ruby/simple_features/point.rb', line 169 def bearing_text(other) case bearing_to(other) when 1..22 then :n when 23..66 then :ne when 67..112 then :e when 113..146 then :se when 147..202 then :s when 203..246 then :sw when 247..292 then :w when 293..336 then :nw when 337..360 then :n else nil end end |
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
161 162 163 164 165 166 |
# File 'lib/geo_ruby/simple_features/point.rb', line 161 def bearing_to(other) return 0 if self == other theta = Math.atan2(other.x - x, other.y - y) theta += Math::PI * 2 if theta < 0 theta / DEG2RAD end |
#binary_geometry_type ⇒ Object
WKB geometry type of a point
213 214 215 |
# File 'lib/geo_ruby/simple_features/point.rb', line 213 def binary_geometry_type #:nodoc: 1 end |
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point. It lacks some headers to be a valid EWKB representation.
205 206 207 208 209 210 |
# File 'lib/geo_ruby/simple_features/point.rb', line 205 def binary_representation(allow_z = true, allow_m = true) #:nodoc: bin_rep = [@x.to_f, @y.to_f].pack('EE') bin_rep += [@z.to_f].pack('E') if @with_z && allow_z # Default value so no crash bin_rep += [@m.to_f].pack('E') if @with_m && allow_m # idem bin_rep end |
#bounding_box ⇒ Object
Bounding box in 2D/3D. Returns an array of 2 points
185 186 187 188 189 190 191 |
# File 'lib/geo_ruby/simple_features/point.rb', line 185 def bounding_box if with_z [Point.from_x_y_z(@x, @y, @z), Point.from_x_y_z(@x, @y, @z)] else [Point.from_x_y(@x, @y), Point.from_x_y(@x, @y)] end end |
#ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula. Lifted entirely from Chris Veness’s code at www.movable-type.co.uk/scripts/LatLongVincenty.html and adapted for Ruby.
Assumes the x and y are the lon and lat in degrees. a is the semi-major axis (equatorial radius) of the ellipsoid b is the semi-minor axis (polar radius) of the ellipsoid Their values by default are set to the WGS84 ellipsoid.
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# File 'lib/geo_ruby/simple_features/point.rb', line 80 def ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) # TODO: Look at https://github.com/rbur004/vincenty/blob/master/lib/vincenty.rb # and https://github.com/skyderby/vincenty_distance/blob/master/lib/vincenty.rb # as reference, or just choose to depend on one of them? f = (a - b) / a l = (point.lon - lon) * DEG2RAD u1 = Math.atan((1 - f) * Math.tan(lat * DEG2RAD)) u2 = Math.atan((1 - f) * Math.tan(point.lat * DEG2RAD)) sin_u1 = Math.sin(u1) cos_u1 = Math.cos(u1) sin_u2 = Math.sin(u2) cos_u2 = Math.cos(u2) lambda = l lambda_p = 2 * Math::PI iter_limit = 20 while (lambda - lambda_p).abs > 1e-12 && --iter_limit > 0 sin_lambda = Math.sin(lambda) cos_lambda = Math.cos(lambda) sin_sigma = \ Math.hypot((cos_u2 * sin_lambda), (cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos_lambda)) return 0 if sin_sigma == 0 # coincident points cos_sigma = sin_u1 * sin_u2 + cos_u1 * cos_u2 * cos_lambda sigma = Math.atan2(sin_sigma, cos_sigma) sin_alpha = cos_u1 * cos_u2 * sin_lambda / sin_sigma cos_sq_alpha = 1 - sin_alpha * sin_alpha cos2_sigma_m = cos_sigma - 2 * sin_u1 * sin_u2 / cos_sq_alpha # equatorial line: cos_sq_alpha=0 cos2_sigma_m = 0 if cos2_sigma_m.nan? c = f / 16 * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha)) lambda_p = lambda lambda = l + (1 - c) * f * sin_alpha * (sigma + c * sin_sigma * (cos2_sigma_m + c * cos_sigma * (-1 + 2 * cos2_sigma_m * cos2_sigma_m))) end return NaN if iter_limit == 0 # formula failed to converge usq = cos_sq_alpha * (a * a - b * b) / (b * b) a_bis = 1 + usq / 16_384 * (4096 + usq * (-768 + usq * (320 - 175 * usq))) b_bis = usq / 1024 * (256 + usq * (-128 + usq * (74 - 47 * usq))) delta_sigma = b_bis * sin_sigma * (cos2_sigma_m + b_bis / 4 * (cos_sigma * (-1 + 2 * cos2_sigma_m * cos2_sigma_m) - b_bis / 6 * cos2_sigma_m * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * cos2_sigma_m * cos2_sigma_m))) b * a_bis * (sigma - delta_sigma) end |
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
Euclidian distance in whatever unit the x and y ordinates are.
49 50 51 |
# File 'lib/geo_ruby/simple_features/point.rb', line 49 def euclidian_distance(point) Math.hypot((point.x - x),(point.y - y)) end |
#georss_gml_representation(options) ⇒ Object
georss gml representation
244 245 246 247 248 249 |
# File 'lib/geo_ruby/simple_features/point.rb', line 244 def georss_gml_representation() #:nodoc: georss_ns = [:georss_ns] || 'georss' gml_ns = [:gml_ns] || 'gml' "<#{georss_ns}:where>\n<#{gml_ns}:Point>\n<#{gml_ns}:pos>#{y} #{x}" \ "</#{gml_ns}:pos>\n</#{gml_ns}:Point>\n</#{georss_ns}:where>\n" end |
#georss_simple_representation(options) ⇒ Object
georss simple representation
231 232 233 234 235 |
# File 'lib/geo_ruby/simple_features/point.rb', line 231 def georss_simple_representation() #:nodoc: georss_ns = [:georss_ns] || 'georss' geom_attr = [:geom_attr] "<#{georss_ns}:point#{geom_attr}>#{y} #{x}</#{georss_ns}:point>\n" end |
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation
238 239 240 241 |
# File 'lib/geo_ruby/simple_features/point.rb', line 238 def georss_w3cgeo_representation() #:nodoc: w3cgeo_ns = [:w3cgeo_ns] || 'geo' "<#{w3cgeo_ns}:lat>#{y}</#{w3cgeo_ns}:lat>\n<#{w3cgeo_ns}:long>#{x}</#{w3cgeo_ns}:long>\n" end |
#html_representation(options = {}) ⇒ Object
266 267 268 269 270 271 272 |
# File 'lib/geo_ruby/simple_features/point.rb', line 266 def html_representation( = {}) [:coord] = true if [:coord].nil? out = '<span class=\'geo\'>' out += "<abbr class='latitude' title='#{x}'>#{as_lat()}</abbr>" out += "<abbr class='longitude' title='#{y}'>#{as_long()}</abbr>" out + '</span>' end |
#human_representation(options = {}, g = { x: x, y: y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# File 'lib/geo_ruby/simple_features/point.rb', line 276 def human_representation( = {}, g = { x: x, y: y }) g.map do |k, v| deg = v.to_i.abs min = (60 * (v.abs - deg)).to_i labs = (v * 1_000_000).abs / 1_000_000 sec = ((((labs - labs.to_i) * 60) - ((labs - labs.to_i) * 60).to_i) * 100_000) * 60 / 100_000 str = [:full] ? '%.i°%.2i′%05.2f″' : '%.i°%.2i′%02.0f″' if [:coord] out = format(str, deg, min, sec) # Add cardinal out + (k == :x ? v > 0 ? 'N' : 'S' : v > 0 ? 'E' : 'W') else format(str, v.to_i, min, sec) end end end |
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are :id
, :tesselate
, :extrude
, :altitude_mode
. If the altitude_mode option is not present, the Z (if present) will not be output (since it won’t be used by GE anyway: clampToGround is the default)
257 258 259 260 261 262 263 264 |
# File 'lib/geo_ruby/simple_features/point.rb', line 257 def kml_representation( = {}) #:nodoc: out = "<Point#{[:id_attr]}>\n" out += [:geom_data] if [:geom_data] out += "<coordinates>#{x},#{y}" out += ",#{[:fixed_z] || z || 0}" if [:allow_z] out += "</coordinates>\n" out + "</Point>\n" end |
#m_range ⇒ Object
193 194 195 |
# File 'lib/geo_ruby/simple_features/point.rb', line 193 def m_range [@m, @m] end |
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/geo_ruby/simple_features/point.rb', line 137 def orthogonal_distance(line, tail = nil) head, tail = tail ? [line, tail] : [line[0], line[-1]] a, b = @x - head.x, @y - head.y c, d = tail.x - head.x, tail.y - head.y dot = a * c + b * d len = c * c + d * d return 0.0 if len.zero? res = dot / len xx, yy = \ if res < 0 [head.x, head.y] elsif res > 1 [tail.x, tail.y] else [head.x + res * c, head.y + res * d] end # TODO: benchmark if worth creating an instance # euclidian_distance(Point.from_x_y(xx, yy)) Math.hypot((@x - xx), (@y - yy)) end |
#r ⇒ Object Also known as: rad
outputs radius
320 321 322 |
# File 'lib/geo_ruby/simple_features/point.rb', line 320 def r Math.hypot(y,x) end |
#set_x_y(x, y) ⇒ Object Also known as: set_lon_lat
Sets all coordinates of a 2D point in one call
37 38 39 40 41 |
# File 'lib/geo_ruby/simple_features/point.rb', line 37 def set_x_y(x, y) @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y self end |
#set_x_y_z(x, y, z) ⇒ Object Also known as: set_lon_lat_z
Sets all coordinates in one call. Use the m
accessor to set the m.
27 28 29 30 31 32 33 |
# File 'lib/geo_ruby/simple_features/point.rb', line 27 def set_x_y_z(x, y, z) # TODO: If you pass nil, nil, nil you get back 0.0, 0.0, 0.0 ... seems legit @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y @z = z && !z.is_a?(Numeric) ? z.to_f : z self end |
#spherical_distance(point, r = 6_370_997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula. with a radius of 6471000m Assumes x is the lon and y the lat, in degrees. The user has to make sure using this distance makes sense (ie she should be in latlon coordinates) TODO: Look at gist.github.com/timols/5268103 for comparison
59 60 61 62 63 64 65 66 67 |
# File 'lib/geo_ruby/simple_features/point.rb', line 59 def spherical_distance(point, r = 6_370_997.0) dlat = (point.lat - lat) * DEG2RAD / 2 dlon = (point.lon - lon) * DEG2RAD / 2 a = Math.sin(dlat)**2 + Math.cos(lat * DEG2RAD) * Math.cos(point.lat * DEG2RAD) * Math.sin(dlon)**2 c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)) r * c end |
#text_geometry_type ⇒ Object
WKT geometry type of a point
226 227 228 |
# File 'lib/geo_ruby/simple_features/point.rb', line 226 def text_geometry_type #:nodoc: 'POINT' end |
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point
218 219 220 221 222 223 |
# File 'lib/geo_ruby/simple_features/point.rb', line 218 def text_representation(allow_z = true, allow_m = true) #:nodoc: tex_rep = "#{@x} #{@y}" tex_rep += " #{@z}" if @with_z && allow_z tex_rep += " #{@m}" if @with_m && allow_m tex_rep end |
#theta_deg ⇒ Object Also known as: t, tet, tetha
Outputs theta in degrees
331 332 333 |
# File 'lib/geo_ruby/simple_features/point.rb', line 331 def theta_deg theta_rad / DEG2RAD end |
#theta_rad ⇒ Object
Outputs theta
326 327 328 |
# File 'lib/geo_ruby/simple_features/point.rb', line 326 def theta_rad Math.atan2(@y, @x) end |
#to_coordinates ⇒ Object
Helper to get all coordinates as array.
354 355 356 357 358 359 |
# File 'lib/geo_ruby/simple_features/point.rb', line 354 def to_coordinates coord = [x, y] coord << z if with_z coord << m if with_m coord end |
#to_xy ⇒ Object
Simple helper for 2D maps
362 363 364 |
# File 'lib/geo_ruby/simple_features/point.rb', line 362 def to_xy [x, y] end |
#to_xyz ⇒ Object
Simple helper for 3D maps
367 368 369 |
# File 'lib/geo_ruby/simple_features/point.rb', line 367 def to_xyz [x, y, z] end |