Method: Geometry::Polygon#union
- Defined in:
- lib/geometry/polygon.rb
#union(other) ⇒ Polygon Also known as: +
Create a new Geometry::Polygon that’s the union of the receiver and a passed Geometry::Polygon
This is a simplified implementation of the alogrithm outlined in the
paper {http://gvu.gatech.edu/people/official/jarek/graphics/papers/04PolygonBooleansMargalit.pdf An algorithm for computing the union, intersection or difference of two polygons}.
In particular, this method assumes the receiver and passed {Polygon}s are "island" type and that the desired output is "regular", as those terms are described in the paper.
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# File 'lib/geometry/polygon.rb', line 99 def union(other) # Table 1: Both polygons are islands and the operation is union, so both must have the same orientation # Reverse the other polygon if the orientations are different other = other.reverse if self.clockwise? != other.clockwise? # Receiver's vertex ring ringA = VertexRing.new self.vertices.each {|v| ringA.push v, (other <=> v)} # The other vertex ring ringB = VertexRing.new other.vertices.each {|v| ringB.push v, (self <=> v)} # Find intersections offsetA = 0 edgesB = other.edges.dup self.edges.each_with_index do |a, indexA| offsetB = 0 ringB.edges_with_index do |b, indexB| intersection = a.intersection(b) if intersection === true if (a.first == b.first) and (a.last == b.last) # Equal edges elsif (a.first == b.last) and (a.last == b.first) # Ignore equal but opposite edges else if a.vector.normalize == b.vector.normalize # Same direction? offsetA += 1 if ringA.insert_boundary(indexA + 1 + offsetA, b.first) offsetB += 1 if ringB.insert_boundary(indexB + 1 + offsetB, a.last) else # Opposite direction offsetA += 1 if ringA.insert_boundary(indexA + 1 + offsetA, b.last) offsetB += 1 if ringB.insert_boundary(indexB + 1 + offsetB, a.first) end end elsif intersection.is_a?(Point) offsetA += 1 if ringA.insert_boundary(indexA + 1 + offsetA, intersection) offsetB += 1 if ringB.insert_boundary(indexB + 1 + offsetB, intersection) end end end # Table 2: Both polygons are islands and the operation is union, so select outside from both polygons edgeFragments = [] [[ringA, other], [ringB, self]].each do |ring, other_polygon| ring.edges do |v1,v2| if (v1[:type] == -1) or (v2[:type] == -1) edgeFragments.push :first => v1[:vertex], :last => v2[:vertex] elsif (v1[:type] == 0) and (v2[:type] == 0) if (other_polygon <=> Point[(v1[:vertex] + v2[:vertex])/2]) <= 0 edgeFragments.push :first => v1[:vertex], :last => v2[:vertex] end end end end # Delete any duplicated edges. Array#uniq doesn't do the right thing, so using inject instead. edgeFragments = edgeFragments.inject([]) {|result,h| result << h unless result.include?(h); result} # Delete any equal-and-opposite edges edgeFragments = edgeFragments.reject {|f| edgeFragments.find {|f2| (f[:first] == f2[:last]) and (f[:last] == f2[:first])} } # Construct the output polygons output = edgeFragments.reduce([Array.new]) do |output, fragment| next output if fragment.empty? polygon = output.last polygon.push fragment[:first], fragment[:last] if polygon.empty? while 1 do adjacent_fragment = edgeFragments.find {|f| fragment[:last] == f[:first]} break unless adjacent_fragment polygon.push adjacent_fragment[:first], adjacent_fragment[:last] fragment = adjacent_fragment.dup adjacent_fragment.clear break if polygon.first == polygon.last # closed? end output << Array.new end # If everything worked properly there should be only one output Polygon output.reject! {|a| a.empty?} output = Polygon.new *(output[0]) # Table 4: Both input polygons are "island" type and the operation # is union, so the output polygon's orientation should be the same # as the input polygon's orientation (self.clockwise? != output.clockwise?) ? output.reverse : output end |