Class: GeoRuby::SimpleFeatures::Point
- Defined in:
- lib/geo_ruby/simple_features/point.rb
Overview
Represents a point. It is in 3D if the Z coordinate is not nil
.
Constant Summary collapse
- DEG2RAD =
0.0174532925199433
- HALFPI =
1.5707963267948966
Instance Attribute Summary collapse
-
#m ⇒ Object
Returns the value of attribute m.
-
#r ⇒ Object
readonly
Polar stuff.
-
#t ⇒ Object
(also: #tet, #tetha)
readonly
radium and theta.
-
#x ⇒ Object
(also: #lon, #lng)
Returns the value of attribute x.
-
#y ⇒ Object
(also: #lat)
Returns the value of attribute y.
-
#z ⇒ Object
Returns the value of attribute z.
Attributes inherited from Geometry
Class Method Summary collapse
-
.from_coordinates(coords, srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Object
Creates a point from an array of coordinates.
-
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N.
-
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object
(also: from_rad_tet)
Creates a point using polar coordinates r and theta(degrees).
-
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object
(also: xy, from_xy, from_lon_lat)
Creates a point from the X and Y coordinates.
-
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object
(also: from_lon_lat_m)
Creates a point from the X, Y and M coordinates.
-
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object
(also: xyz, from_xyz, from_lon_lat_z)
Creates a point from the X, Y and Z coordinates.
-
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object
(also: from_lon_lat_z_m)
Creates a point from the X, Y, Z and M coordinates.
Instance Method Summary collapse
-
#-@ ⇒ Object
Invert signal of all coordinates.
-
#==(other) ⇒ Object
Tests the equality of the position of points + m.
- #as_json(options = {}) ⇒ Object
-
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N.
-
#as_latlong(options = {}) ⇒ Object
(also: #as_ll)
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″.
-
#as_long(options = {}) ⇒ Object
(also: #as_lng)
Outputs the geometry coordinate in human format: -20°06′00W″.
-
#as_polar ⇒ Object
Outputs an array containing polar distance and theta.
-
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols.
-
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
-
#binary_geometry_type ⇒ Object
WKB geometry type of a point.
-
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point.
-
#bounding_box ⇒ Object
Bounding box in 2D/3D.
-
#ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula.
-
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
-
#georss_gml_representation(options) ⇒ Object
georss gml representation.
-
#georss_simple_representation(options) ⇒ Object
georss simple representation.
-
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation.
- #html_representation(options = {}) ⇒ Object
-
#human_representation(options = { }, g = { :x => x, :y => y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong.
-
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
constructor
A new instance of Point.
-
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are
:id
,:tesselate
,:extrude
,:altitude_mode
. - #m_range ⇒ Object
-
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720.
-
#rad ⇒ Object
radium and theta.
-
#set_x_y(x, y) ⇒ Object
(also: #set_lon_lat)
Sets all coordinates of a 2D point in one call.
-
#set_x_y_z(x, y, z) ⇒ Object
(also: #set_lon_lat_z)
Sets all coordinates in one call.
-
#spherical_distance(point, r = 6370997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula.
-
#text_geometry_type ⇒ Object
WKT geometry type of a point.
-
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point.
-
#theta_deg ⇒ Object
Outputs theta in degrees.
-
#theta_rad ⇒ Object
Outputs theta.
-
#to_coordinates ⇒ Object
TODO Perhaps should support with_m analogous to from_coordinates?.
-
#to_json(options = {}) ⇒ Object
(also: #as_geojson)
Simple geojson representation TODO add CRS / SRID support?.
-
#to_xy ⇒ Object
Simple helper for 2D maps.
-
#to_xyz ⇒ Object
Simple helper for 3D maps.
Methods inherited from Geometry
#as_ewkb, #as_ewkt, #as_georss, #as_hex_ewkb, #as_hex_wkb, #as_kml, #as_wkb, #as_wkt, #envelope, from_ewkb, from_ewkt, from_geojson, from_georss, from_georss_with_tags, from_hex_ewkb, from_kml
Constructor Details
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
Returns a new instance of Point.
22 23 24 25 26 27 |
# File 'lib/geo_ruby/simple_features/point.rb', line 22 def initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) super(srid, with_z, with_m) @x = @y = 0.0 @z = 0.0 #default value : meaningful if with_z @m = 0.0 #default value : meaningful if with_m end |
Instance Attribute Details
#m ⇒ Object
Returns the value of attribute m.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def m @m end |
#r ⇒ Object (readonly)
11 12 13 |
# File 'lib/geo_ruby/simple_features/point.rb', line 11 def r @r end |
#t ⇒ Object (readonly) Also known as: tet, tetha
radium and theta
11 12 13 |
# File 'lib/geo_ruby/simple_features/point.rb', line 11 def t @t end |
#x ⇒ Object Also known as: lon, lng
Returns the value of attribute x.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def x @x end |
#y ⇒ Object Also known as: lat
Returns the value of attribute y.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def y @y end |
#z ⇒ Object
Returns the value of attribute z.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def z @z end |
Class Method Details
.from_coordinates(coords, srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Object
Creates a point from an array of coordinates
371 372 373 374 375 376 377 378 379 380 381 |
# File 'lib/geo_ruby/simple_features/point.rb', line 371 def self.from_coordinates(coords, srid = DEFAULT_SRID, with_z = false, with_m = false) if ! (with_z || with_m) from_x_y(coords[0], coords[1], srid) elsif with_z && with_m from_x_y_z_m(coords[0], coords[1], coords[2], coords[3], srid) elsif with_z from_x_y_z(coords[0], coords[1], coords[2], srid) else from_x_y_m(coords[0], coords[1], coords[2], srid) end end |
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N
420 421 422 423 424 425 426 427 428 429 |
# File 'lib/geo_ruby/simple_features/point.rb', line 420 def self.from_latlong(lat, lon, srid = DEFAULT_SRID) p = [lat, lon].map do |l| sig, deg, min, sec, cen = l.scan(/(-)?(\d{1,2})\D*(\d{2})\D*(\d{2})(\D*(\d{1,3}))?/).flatten sig = true if l =~ /W|S/ dec = deg.to_i + (min.to_i * 60 + "#{sec}#{cen}".to_f) / 3600 sig ? dec * -1 : dec end point = new(srid) point.set_x_y(p[0], p[1]) end |
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object Also known as: from_rad_tet
Creates a point using polar coordinates r and theta(degrees)
411 412 413 414 415 416 417 |
# File 'lib/geo_ruby/simple_features/point.rb', line 411 def self.from_r_t(r, t, srid = DEFAULT_SRID) t *= DEG2RAD x = r * Math.cos(t) y = r * Math.sin(t) point = new(srid) point.set_x_y(x, y) end |
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object Also known as: xy, from_xy, from_lon_lat
Creates a point from the X and Y coordinates
384 385 386 387 |
# File 'lib/geo_ruby/simple_features/point.rb', line 384 def self.from_x_y(x, y, srid = DEFAULT_SRID) point = new(srid) point.set_x_y(x, y) end |
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_m
Creates a point from the X, Y and M coordinates
396 397 398 399 400 |
# File 'lib/geo_ruby/simple_features/point.rb', line 396 def self.from_x_y_m(x, y, m, srid = DEFAULT_SRID) point = new(srid, false, true) point.m = m point.set_x_y(x, y) end |
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object Also known as: xyz, from_xyz, from_lon_lat_z
Creates a point from the X, Y and Z coordinates
390 391 392 393 |
# File 'lib/geo_ruby/simple_features/point.rb', line 390 def self.from_x_y_z(x, y, z, srid = DEFAULT_SRID) point = new(srid, true) point.set_x_y_z(x, y, z) end |
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_z_m
Creates a point from the X, Y, Z and M coordinates
403 404 405 406 407 |
# File 'lib/geo_ruby/simple_features/point.rb', line 403 def self.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) point = new(srid, true, true) point.m = m point.set_x_y_z(x, y, z) end |
Instance Method Details
#-@ ⇒ Object
Invert signal of all coordinates
336 337 338 |
# File 'lib/geo_ruby/simple_features/point.rb', line 336 def -@ set_x_y_z(-@x, -@y, -@z) end |
#==(other) ⇒ Object
Tests the equality of the position of points + m
192 193 194 195 |
# File 'lib/geo_ruby/simple_features/point.rb', line 192 def ==(other) return false unless other.kind_of?(Point) @x == other.x && @y == other.y && @z == other.z && @m == other.m end |
#as_json(options = {}) ⇒ Object
359 360 361 |
# File 'lib/geo_ruby/simple_features/point.rb', line 359 def as_json( = {}) { :type => 'Point', :coordinates => self.to_coordinates } end |
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N
288 289 290 |
# File 'lib/geo_ruby/simple_features/point.rb', line 288 def as_lat( = {}) human_representation(, { x: x }).join end |
#as_latlong(options = {}) ⇒ Object Also known as: as_ll
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″
301 302 303 |
# File 'lib/geo_ruby/simple_features/point.rb', line 301 def as_latlong( = {}) human_representation().join(', ') end |
#as_long(options = {}) ⇒ Object Also known as: as_lng
Outputs the geometry coordinate in human format: -20°06′00W″
294 295 296 |
# File 'lib/geo_ruby/simple_features/point.rb', line 294 def as_long( = {}) human_representation(, { y: y }).join end |
#as_polar ⇒ Object
Outputs an array containing polar distance and theta
331 332 333 |
# File 'lib/geo_ruby/simple_features/point.rb', line 331 def as_polar [r, t] end |
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols. (:n, :s, :sw, :ne…)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# File 'lib/geo_ruby/simple_features/point.rb', line 163 def bearing_text(other) case bearing_to(other) when 1..22 then :n when 23..66 then :ne when 67..112 then :e when 113..146 then :se when 147..202 then :s when 203..246 then :sw when 247..292 then :w when 293..336 then :nw when 337..360 then :n else nil end end |
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
155 156 157 158 159 160 |
# File 'lib/geo_ruby/simple_features/point.rb', line 155 def bearing_to(other) return 0 if self == other a,b = other.x - self.x, other.y - self.y res = Math.acos(b / Math.sqrt(a*a+b*b)) / Math::PI * 180; a < 0 ? 360 - res : res end |
#binary_geometry_type ⇒ Object
WKB geometry type of a point
206 207 208 |
# File 'lib/geo_ruby/simple_features/point.rb', line 206 def binary_geometry_type#:nodoc: 1 end |
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point. It lacks some headers to be a valid EWKB representation.
198 199 200 201 202 203 |
# File 'lib/geo_ruby/simple_features/point.rb', line 198 def binary_representation(allow_z=true,allow_m=true) #:nodoc: bin_rep = [@x.to_f,@y.to_f].pack('EE') bin_rep += [@z.to_f].pack('E') if @with_z && allow_z #Default value so no crash bin_rep += [@m.to_f].pack('E') if @with_m && allow_m #idem bin_rep end |
#bounding_box ⇒ Object
Bounding box in 2D/3D. Returns an array of 2 points
179 180 181 182 183 184 185 |
# File 'lib/geo_ruby/simple_features/point.rb', line 179 def bounding_box if with_z [Point.from_x_y_z(@x,@y,@z),Point.from_x_y_z(@x,@y,@z)] else [Point.from_x_y(@x,@y),Point.from_x_y(@x,@y)] end end |
#ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula. Lifted entirely from Chris Veness’s code at www.movable-type.co.uk/scripts/LatLongVincenty.html and adapted for Ruby. Assumes the x and y are the lon and lat in degrees. a is the semi-major axis (equatorial radius) of the ellipsoid b is the semi-minor axis (polar radius) of the ellipsoid Their values by default are set to the ones of the WGS84 ellipsoid
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/geo_ruby/simple_features/point.rb', line 75 def ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) f = (a - b) / a l = (point.lon - lon) * DEG2RAD u1 = Math.atan((1-f) * Math.tan(lat * DEG2RAD )) u2 = Math.atan((1-f) * Math.tan(point.lat * DEG2RAD)) sinU1 = Math.sin(u1) cosU1 = Math.cos(u1) sinU2 = Math.sin(u2) cosU2 = Math.cos(u2) lambda = l lambdaP = 2 * Math::PI iterLimit = 20 while (lambda - lambdaP).abs > 1e-12 && --iterLimit > 0 sinLambda = Math.sin(lambda) cosLambda = Math.cos(lambda) sinSigma =\ Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda)) return 0 if sinSigma == 0 # coincident points cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda sigma = Math.atan2(sinSigma, cosSigma) sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma cosSqAlpha = 1 - sinAlpha * sinAlpha cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha # equatorial line: cosSqAlpha=0 cos2SigmaM = 0 if (cos2SigmaM.nan?) c = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha)) lambdaP = lambda lambda = l + (1 - c) * f * sinAlpha * (sigma + c * sinSigma * (cos2SigmaM + c * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM))) end return NaN if iterLimit==0 #formula failed to converge uSq = cosSqAlpha * (a*a - b*b) / (b*b) a_bis = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))) b_bis = uSq/1024 * (256+uSq*(-128 + uSq * (74 - 47 * uSq))) deltaSigma = b_bis * sinSigma * (cos2SigmaM + b_bis / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - b_bis / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))) b * a_bis * (sigma - deltaSigma) end |
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
Euclidian distance in whatever unit the x and y ordinates are.
52 53 54 |
# File 'lib/geo_ruby/simple_features/point.rb', line 52 def euclidian_distance(point) Math.sqrt((point.x - x)**2 + (point.y - y)**2) end |
#georss_gml_representation(options) ⇒ Object
georss gml representation
237 238 239 240 241 242 243 |
# File 'lib/geo_ruby/simple_features/point.rb', line 237 def georss_gml_representation() #:nodoc: georss_ns = [:georss_ns] || "georss" gml_ns = [:gml_ns] || "gml" out = "<#{georss_ns}:where>\n<#{gml_ns}:Point>\n<#{gml_ns}:pos>" out += "#{y} #{x}" out += "</#{gml_ns}:pos>\n</#{gml_ns}:Point>\n</#{georss_ns}:where>\n" end |
#georss_simple_representation(options) ⇒ Object
georss simple representation
224 225 226 227 228 |
# File 'lib/geo_ruby/simple_features/point.rb', line 224 def georss_simple_representation() #:nodoc: georss_ns = [:georss_ns] || "georss" geom_attr = [:geom_attr] "<#{georss_ns}:point#{geom_attr}>#{y} #{x}</#{georss_ns}:point>\n" end |
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation
231 232 233 234 |
# File 'lib/geo_ruby/simple_features/point.rb', line 231 def georss_w3cgeo_representation() #:nodoc: w3cgeo_ns = [:w3cgeo_ns] || "geo" "<#{w3cgeo_ns}:lat>#{y}</#{w3cgeo_ns}:lat>\n<#{w3cgeo_ns}:long>#{x}</#{w3cgeo_ns}:long>\n" end |
#html_representation(options = {}) ⇒ Object
260 261 262 263 264 265 266 |
# File 'lib/geo_ruby/simple_features/point.rb', line 260 def html_representation( = {}) [:coord] = true if [:coord].nil? out = '<span class=\'geo\'>' out += "<abbr class='latitude' title='#{x}'>#{as_lat()}</abbr>" out += "<abbr class='longitude' title='#{y}'>#{as_long()}</abbr>" out += '</span>' end |
#human_representation(options = { }, g = { :x => x, :y => y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# File 'lib/geo_ruby/simple_features/point.rb', line 270 def human_representation( = { }, g = { :x => x, :y => y }) g.map do |k, v| deg = v.to_i.abs min = (60 * (v.abs - deg)).to_i labs = (v * 1_000_000).abs / 1_000_000 sec = ((((labs - labs.to_i) * 60) - ((labs - labs.to_i) * 60).to_i) * 100_000) * 60 / 100_000 str = [:full] ? "%.i°%.2i′%05.2f″" : "%.i°%.2i′%02.0f″" if [:coord] out = str % [deg,min,sec] out += k == :x ? v > 0 ? 'N' : 'S' : v > 0 ? 'E' : 'W' else str % [v.to_i, min, sec] end end end |
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are :id
, :tesselate
, :extrude
, :altitude_mode
. If the altitude_mode option is not present, the Z (if present) will not be output (since it won’t be used by GE anyway: clampToGround is the default)
251 252 253 254 255 256 257 258 |
# File 'lib/geo_ruby/simple_features/point.rb', line 251 def kml_representation( = {}) #:nodoc: out = "<Point#{[:id_attr]}>\n" out += [:geom_data] if [:geom_data] out += "<coordinates>#{x},#{y}" out += ",#{[:fixed_z] || z ||0}" if [:allow_z] out += "</coordinates>\n" out += "</Point>\n" end |
#m_range ⇒ Object
187 188 189 |
# File 'lib/geo_ruby/simple_features/point.rb', line 187 def m_range [@m,@m] end |
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# File 'lib/geo_ruby/simple_features/point.rb', line 131 def orthogonal_distance(line, tail = nil) head, tail = tail ? [line, tail] : [line[0], line[-1]] a, b = @x - head.x, @y - head.y c, d = tail.x - head.x, tail.y - head.y dot = a * c + b * d len = c * c + d * d return 0.0 if len.zero? res = dot / len xx, yy =\ if res < 0 [head.x, head.y] elsif res > 1 [tail.x, tail.y] else [head.x + res * c, head.y + res * d] end # todo benchmark if worth creating an instance # euclidian_distance(Point.from_x_y(xx, yy)) Math.sqrt((@x - xx) ** 2 + (@y - yy) ** 2) end |
#rad ⇒ Object
radium and theta
18 19 20 |
# File 'lib/geo_ruby/simple_features/point.rb', line 18 def r @r end |
#set_x_y(x, y) ⇒ Object Also known as: set_lon_lat
Sets all coordinates of a 2D point in one call
40 41 42 43 44 |
# File 'lib/geo_ruby/simple_features/point.rb', line 40 def set_x_y(x, y) @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y self end |
#set_x_y_z(x, y, z) ⇒ Object Also known as: set_lon_lat_z
Sets all coordinates in one call. Use the m
accessor to set the m.
31 32 33 34 35 36 |
# File 'lib/geo_ruby/simple_features/point.rb', line 31 def set_x_y_z(x, y, z) @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y @z = z && !z.is_a?(Numeric) ? z.to_f : z self end |
#spherical_distance(point, r = 6370997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula. with a radius of 6471000m Assumes x is the lon and y the lat, in degrees. The user has to make sure using this distance makes sense (ie she should be in latlon coordinates)
61 62 63 64 65 66 67 68 69 |
# File 'lib/geo_ruby/simple_features/point.rb', line 61 def spherical_distance(point, r = 6370997.0) dlat = (point.lat - lat) * DEG2RAD / 2 dlon = (point.lon - lon) * DEG2RAD / 2 a = Math.sin(dlat)**2 + Math.cos(lat * DEG2RAD) * Math.cos(point.lat * DEG2RAD) * Math.sin(dlon)**2 c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)) r * c end |
#text_geometry_type ⇒ Object
WKT geometry type of a point
219 220 221 |
# File 'lib/geo_ruby/simple_features/point.rb', line 219 def text_geometry_type #:nodoc: 'POINT' end |
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point
211 212 213 214 215 216 |
# File 'lib/geo_ruby/simple_features/point.rb', line 211 def text_representation(allow_z=true,allow_m=true) #:nodoc: tex_rep = "#{@x} #{@y}" tex_rep += " #{@z}" if @with_z && allow_z tex_rep += " #{@m}" if @with_m && allow_m tex_rep end |
#theta_deg ⇒ Object
Outputs theta in degrees
326 327 328 |
# File 'lib/geo_ruby/simple_features/point.rb', line 326 def theta_deg theta_rad / DEG2RAD end |
#theta_rad ⇒ Object
Outputs theta
316 317 318 319 320 321 322 323 |
# File 'lib/geo_ruby/simple_features/point.rb', line 316 def theta_rad if @x.zero? @y < 0 ? 3 * HALFPI : HALFPI else th = Math.atan(@y/@x) th += 2 * Math::PI if r > 0 end end |
#to_coordinates ⇒ Object
TODO Perhaps should support with_m analogous to from_coordinates?
341 342 343 344 345 346 347 |
# File 'lib/geo_ruby/simple_features/point.rb', line 341 def to_coordinates if with_z [x, y, z] else [x, y] end end |
#to_json(options = {}) ⇒ Object Also known as: as_geojson
Simple geojson representation TODO add CRS / SRID support?
365 366 367 |
# File 'lib/geo_ruby/simple_features/point.rb', line 365 def to_json( = {}) as_json().to_json() end |
#to_xy ⇒ Object
Simple helper for 2D maps
350 351 352 |
# File 'lib/geo_ruby/simple_features/point.rb', line 350 def to_xy [x, y] end |
#to_xyz ⇒ Object
Simple helper for 3D maps
355 356 357 |
# File 'lib/geo_ruby/simple_features/point.rb', line 355 def to_xyz [x, y, z] end |