Class: GeoRuby::SimpleFeatures::Point
- Defined in:
- lib/geo_ruby/simple_features/point.rb
Overview
Represents a point. It is in 3D if the Z coordinate is not nil
.
Constant Summary collapse
- DEG2RAD =
0.0174532925199433
- HALFPI =
1.5707963267948966
Instance Attribute Summary collapse
-
#m ⇒ Object
Returns the value of attribute m.
-
#r ⇒ Object
readonly
Polar stuff.
-
#t ⇒ Object
(also: #tet, #tetha)
readonly
radium and theta.
-
#x ⇒ Object
(also: #lon, #lng)
Returns the value of attribute x.
-
#y ⇒ Object
(also: #lat)
Returns the value of attribute y.
-
#z ⇒ Object
Returns the value of attribute z.
Attributes inherited from Geometry
Class Method Summary collapse
-
.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) ⇒ Object
Creates a point from an array of coordinates.
-
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N.
-
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object
(also: from_rad_tet)
Creates a point using polar coordinates r and theta(degrees).
-
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object
(also: xy, from_xy, from_lon_lat)
Creates a point from the X and Y coordinates.
-
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object
(also: from_lon_lat_m)
Creates a point from the X, Y and M coordinates.
-
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object
(also: xyz, from_xyz, from_lon_lat_z)
Creates a point from the X, Y and Z coordinates.
-
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object
(also: from_lon_lat_z_m)
Creates a point from the X, Y, Z and M coordinates.
Instance Method Summary collapse
-
#-@ ⇒ Object
Invert signal of all coordinates.
-
#==(other) ⇒ Object
Tests the equality of the position of points + m.
-
#as_json(_options = {}) ⇒ Object
Outputs the point in json format.
-
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N.
-
#as_latlong(options = {}) ⇒ Object
(also: #as_ll)
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″.
-
#as_long(options = {}) ⇒ Object
(also: #as_lng)
Outputs the geometry coordinate in human format: -20°06′00W″.
-
#as_polar ⇒ Object
Outputs an array containing polar distance and theta.
-
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols.
-
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
-
#binary_geometry_type ⇒ Object
WKB geometry type of a point.
-
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point.
-
#bounding_box ⇒ Object
Bounding box in 2D/3D.
-
#ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula.
-
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
-
#georss_gml_representation(options) ⇒ Object
georss gml representation.
-
#georss_simple_representation(options) ⇒ Object
georss simple representation.
-
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation.
- #html_representation(options = {}) ⇒ Object
-
#human_representation(options = {}, g = { x: x, y: y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong.
-
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
constructor
A new instance of Point.
-
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are
:id
,:tesselate
,:extrude
,:altitude_mode
. - #m_range ⇒ Object
-
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720.
-
#rad ⇒ Object
radium and theta.
-
#set_x_y(x, y) ⇒ Object
(also: #set_lon_lat)
Sets all coordinates of a 2D point in one call.
-
#set_x_y_z(x, y, z) ⇒ Object
(also: #set_lon_lat_z)
Sets all coordinates in one call.
-
#spherical_distance(point, r = 6_370_997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula.
-
#text_geometry_type ⇒ Object
WKT geometry type of a point.
-
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point.
-
#theta_deg ⇒ Object
Outputs theta in degrees.
-
#theta_rad ⇒ Object
Outputs theta.
-
#to_coordinates ⇒ Object
Helper to get all coordinates as array.
-
#to_xy ⇒ Object
Simple helper for 2D maps.
-
#to_xyz ⇒ Object
Simple helper for 3D maps.
Methods inherited from Geometry
#as_ewkb, #as_ewkt, #as_georss, #as_hex_ewkb, #as_hex_wkb, #as_kml, #as_wkb, #as_wkt, #envelope, from_ewkb, from_ewkt, from_geojson, from_georss, from_georss_with_tags, from_hex_ewkb, from_kml, #to_json
Constructor Details
#initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) ⇒ Point
Returns a new instance of Point.
22 23 24 25 26 27 |
# File 'lib/geo_ruby/simple_features/point.rb', line 22 def initialize(srid = DEFAULT_SRID, with_z = false, with_m = false) super(srid, with_z, with_m) @x = @y = 0.0 @z = 0.0 # default value : meaningful if with_z @m = 0.0 # default value : meaningful if with_m end |
Instance Attribute Details
#m ⇒ Object
Returns the value of attribute m.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def m @m end |
#r ⇒ Object (readonly)
11 12 13 |
# File 'lib/geo_ruby/simple_features/point.rb', line 11 def r @r end |
#t ⇒ Object (readonly) Also known as: tet, tetha
radium and theta
11 12 13 |
# File 'lib/geo_ruby/simple_features/point.rb', line 11 def t @t end |
#x ⇒ Object Also known as: lon, lng
Returns the value of attribute x.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def x @x end |
#y ⇒ Object Also known as: lat
Returns the value of attribute y.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def y @y end |
#z ⇒ Object
Returns the value of attribute z.
10 11 12 |
# File 'lib/geo_ruby/simple_features/point.rb', line 10 def z @z end |
Class Method Details
.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) ⇒ Object
Creates a point from an array of coordinates
373 374 375 376 377 378 379 380 381 382 383 |
# File 'lib/geo_ruby/simple_features/point.rb', line 373 def self.from_coordinates(coords, srid = DEFAULT_SRID, z = false, m = false) if !(z || m) from_x_y(coords[0], coords[1], srid) elsif z && m from_x_y_z_m(coords[0], coords[1], coords[2], coords[3], srid) elsif z from_x_y_z(coords[0], coords[1], coords[2], srid) else from_x_y_m(coords[0], coords[1], coords[2], srid) end end |
.from_latlong(lat, lon, srid = DEFAULT_SRID) ⇒ Object
Creates a point using coordinates like 22`34 23.45N
422 423 424 425 426 427 428 429 430 431 432 |
# File 'lib/geo_ruby/simple_features/point.rb', line 422 def self.from_latlong(lat, lon, srid = DEFAULT_SRID) p = [lat, lon].map do |l| sig, deg, min, sec, cen = \ l.scan(/(-)?(\d{1,2})\D*(\d{2})\D*(\d{2})(\D*(\d{1,3}))?/).flatten sig = true if l =~ /W|S/ dec = deg.to_i + (min.to_i * 60 + "#{sec}#{cen}".to_f) / 3600 sig ? dec * -1 : dec end point = new(srid) point.set_x_y(p[0], p[1]) end |
.from_r_t(r, t, srid = DEFAULT_SRID) ⇒ Object Also known as: from_rad_tet
Creates a point using polar coordinates r and theta(degrees)
413 414 415 416 417 418 419 |
# File 'lib/geo_ruby/simple_features/point.rb', line 413 def self.from_r_t(r, t, srid = DEFAULT_SRID) t *= DEG2RAD x = r * Math.cos(t) y = r * Math.sin(t) point = new(srid) point.set_x_y(x, y) end |
.from_x_y(x, y, srid = DEFAULT_SRID) ⇒ Object Also known as: xy, from_xy, from_lon_lat
Creates a point from the X and Y coordinates
386 387 388 389 |
# File 'lib/geo_ruby/simple_features/point.rb', line 386 def self.from_x_y(x, y, srid = DEFAULT_SRID) point = new(srid) point.set_x_y(x, y) end |
.from_x_y_m(x, y, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_m
Creates a point from the X, Y and M coordinates
398 399 400 401 402 |
# File 'lib/geo_ruby/simple_features/point.rb', line 398 def self.from_x_y_m(x, y, m, srid = DEFAULT_SRID) point = new(srid, false, true) point.m = m point.set_x_y(x, y) end |
.from_x_y_z(x, y, z, srid = DEFAULT_SRID) ⇒ Object Also known as: xyz, from_xyz, from_lon_lat_z
Creates a point from the X, Y and Z coordinates
392 393 394 395 |
# File 'lib/geo_ruby/simple_features/point.rb', line 392 def self.from_x_y_z(x, y, z, srid = DEFAULT_SRID) point = new(srid, true) point.set_x_y_z(x, y, z) end |
.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) ⇒ Object Also known as: from_lon_lat_z_m
Creates a point from the X, Y, Z and M coordinates
405 406 407 408 409 |
# File 'lib/geo_ruby/simple_features/point.rb', line 405 def self.from_x_y_z_m(x, y, z, m, srid = DEFAULT_SRID) point = new(srid, true, true) point.m = m point.set_x_y_z(x, y, z) end |
Instance Method Details
#-@ ⇒ Object
Invert signal of all coordinates
350 351 352 |
# File 'lib/geo_ruby/simple_features/point.rb', line 350 def -@ set_x_y_z(-@x, -@y, -@z) end |
#==(other) ⇒ Object
Tests the equality of the position of points + m
199 200 201 202 |
# File 'lib/geo_ruby/simple_features/point.rb', line 199 def ==(other) return false unless other.is_a?(Point) @x == other.x && @y == other.y && @z == other.z && @m == other.m end |
#as_json(_options = {}) ⇒ Object
Outputs the point in json format
345 346 347 |
# File 'lib/geo_ruby/simple_features/point.rb', line 345 def as_json( = {}) { type: 'Point', coordinates: to_coordinates } end |
#as_lat(options = {}) ⇒ Object
Outputs the geometry coordinate in human format: 47°52′48″N
297 298 299 |
# File 'lib/geo_ruby/simple_features/point.rb', line 297 def as_lat( = {}) human_representation(, x: x).join end |
#as_latlong(options = {}) ⇒ Object Also known as: as_ll
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″
310 311 312 |
# File 'lib/geo_ruby/simple_features/point.rb', line 310 def as_latlong( = {}) human_representation().join(', ') end |
#as_long(options = {}) ⇒ Object Also known as: as_lng
Outputs the geometry coordinate in human format: -20°06′00W″
303 304 305 |
# File 'lib/geo_ruby/simple_features/point.rb', line 303 def as_long( = {}) human_representation(, y: y).join end |
#as_polar ⇒ Object
Outputs an array containing polar distance and theta
340 341 342 |
# File 'lib/geo_ruby/simple_features/point.rb', line 340 def as_polar [r, t] end |
#bearing_text(other) ⇒ Object
Bearing from a point to another as symbols. (:n, :s, :sw, :ne…)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# File 'lib/geo_ruby/simple_features/point.rb', line 170 def bearing_text(other) case bearing_to(other) when 1..22 then :n when 23..66 then :ne when 67..112 then :e when 113..146 then :se when 147..202 then :s when 203..246 then :sw when 247..292 then :w when 293..336 then :nw when 337..360 then :n else nil end end |
#bearing_to(other) ⇒ Object
Bearing from a point to another, in degrees.
162 163 164 165 166 167 |
# File 'lib/geo_ruby/simple_features/point.rb', line 162 def bearing_to(other) return 0 if self == other a, b = other.x - x, other.y - y res = Math.acos(b / Math.sqrt(a * a + b * b)) / Math::PI * 180 a < 0 ? 360 - res : res end |
#binary_geometry_type ⇒ Object
WKB geometry type of a point
214 215 216 |
# File 'lib/geo_ruby/simple_features/point.rb', line 214 def binary_geometry_type #:nodoc: 1 end |
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
Binary representation of a point. It lacks some headers to be a valid EWKB representation.
206 207 208 209 210 211 |
# File 'lib/geo_ruby/simple_features/point.rb', line 206 def binary_representation(allow_z = true, allow_m = true) #:nodoc: bin_rep = [@x.to_f, @y.to_f].pack('EE') bin_rep += [@z.to_f].pack('E') if @with_z && allow_z # Default value so no crash bin_rep += [@m.to_f].pack('E') if @with_m && allow_m # idem bin_rep end |
#bounding_box ⇒ Object
Bounding box in 2D/3D. Returns an array of 2 points
186 187 188 189 190 191 192 |
# File 'lib/geo_ruby/simple_features/point.rb', line 186 def bounding_box if with_z [Point.from_x_y_z(@x, @y, @z), Point.from_x_y_z(@x, @y, @z)] else [Point.from_x_y(@x, @y), Point.from_x_y(@x, @y)] end end |
#ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula. Lifted entirely from Chris Veness’s code at www.movable-type.co.uk/scripts/LatLongVincenty.html and adapted for Ruby.
Assumes the x and y are the lon and lat in degrees. a is the semi-major axis (equatorial radius) of the ellipsoid b is the semi-minor axis (polar radius) of the ellipsoid Their values by default are set to the WGS84 ellipsoid.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/geo_ruby/simple_features/point.rb', line 82 def ellipsoidal_distance(point, a = 6_378_137.0, b = 6_356_752.3142) f = (a - b) / a l = (point.lon - lon) * DEG2RAD u1 = Math.atan((1 - f) * Math.tan(lat * DEG2RAD)) u2 = Math.atan((1 - f) * Math.tan(point.lat * DEG2RAD)) sin_u1 = Math.sin(u1) cos_u1 = Math.cos(u1) sin_u2 = Math.sin(u2) cos_u2 = Math.cos(u2) lambda = l lambda_p = 2 * Math::PI iter_limit = 20 while (lambda - lambda_p).abs > 1e-12 && --iter_limit > 0 sin_lambda = Math.sin(lambda) cos_lambda = Math.cos(lambda) sin_sigma = \ Math.sqrt((cos_u2 * sin_lambda) * (cos_u2 * sin_lambda) + (cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos_lambda) * (cos_u1 * sin_u2 - sin_u1 * cos_u2 * cos_lambda)) return 0 if sin_sigma == 0 # coincident points cos_sigma = sin_u1 * sin_u2 + cos_u1 * cos_u2 * cos_lambda sigma = Math.atan2(sin_sigma, cos_sigma) sin_alpha = cos_u1 * cos_u2 * sin_lambda / sin_sigma cos_sq_alpha = 1 - sin_alpha * sin_alpha cos2_sigma_m = cos_sigma - 2 * sin_u1 * sin_u2 / cos_sq_alpha # equatorial line: cos_sq_alpha=0 cos2_sigma_m = 0 if cos2_sigma_m.nan? c = f / 16 * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha)) lambda_p = lambda lambda = l + (1 - c) * f * sin_alpha * (sigma + c * sin_sigma * (cos2_sigma_m + c * cos_sigma * (-1 + 2 * cos2_sigma_m * cos2_sigma_m))) end return NaN if iter_limit == 0 # formula failed to converge usq = cos_sq_alpha * (a * a - b * b) / (b * b) a_bis = 1 + usq / 16_384 * (4096 + usq * (-768 + usq * (320 - 175 * usq))) b_bis = usq / 1024 * (256 + usq * (-128 + usq * (74 - 47 * usq))) delta_sigma = b_bis * sin_sigma * (cos2_sigma_m + b_bis / 4 * (cos_sigma * (-1 + 2 * cos2_sigma_m * cos2_sigma_m) - b_bis / 6 * cos2_sigma_m * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * cos2_sigma_m * cos2_sigma_m))) b * a_bis * (sigma - delta_sigma) end |
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
Euclidian distance in whatever unit the x and y ordinates are.
52 53 54 |
# File 'lib/geo_ruby/simple_features/point.rb', line 52 def euclidian_distance(point) Math.sqrt((point.x - x)**2 + (point.y - y)**2) end |
#georss_gml_representation(options) ⇒ Object
georss gml representation
245 246 247 248 249 250 |
# File 'lib/geo_ruby/simple_features/point.rb', line 245 def georss_gml_representation() #:nodoc: georss_ns = [:georss_ns] || 'georss' gml_ns = [:gml_ns] || 'gml' "<#{georss_ns}:where>\n<#{gml_ns}:Point>\n<#{gml_ns}:pos>#{y} #{x}" \ "</#{gml_ns}:pos>\n</#{gml_ns}:Point>\n</#{georss_ns}:where>\n" end |
#georss_simple_representation(options) ⇒ Object
georss simple representation
232 233 234 235 236 |
# File 'lib/geo_ruby/simple_features/point.rb', line 232 def georss_simple_representation() #:nodoc: georss_ns = [:georss_ns] || 'georss' geom_attr = [:geom_attr] "<#{georss_ns}:point#{geom_attr}>#{y} #{x}</#{georss_ns}:point>\n" end |
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation
239 240 241 242 |
# File 'lib/geo_ruby/simple_features/point.rb', line 239 def georss_w3cgeo_representation() #:nodoc: w3cgeo_ns = [:w3cgeo_ns] || 'geo' "<#{w3cgeo_ns}:lat>#{y}</#{w3cgeo_ns}:lat>\n<#{w3cgeo_ns}:long>#{x}</#{w3cgeo_ns}:long>\n" end |
#html_representation(options = {}) ⇒ Object
267 268 269 270 271 272 273 |
# File 'lib/geo_ruby/simple_features/point.rb', line 267 def html_representation( = {}) [:coord] = true if [:coord].nil? out = '<span class=\'geo\'>' out += "<abbr class='latitude' title='#{x}'>#{as_lat()}</abbr>" out += "<abbr class='longitude' title='#{y}'>#{as_long()}</abbr>" out + '</span>' end |
#human_representation(options = {}, g = { x: x, y: y }) ⇒ Object
Human representation of the geom, don’t use directly, use: #as_lat, #as_long, #as_latlong
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# File 'lib/geo_ruby/simple_features/point.rb', line 277 def human_representation( = {}, g = { x: x, y: y }) g.map do |k, v| deg = v.to_i.abs min = (60 * (v.abs - deg)).to_i labs = (v * 1_000_000).abs / 1_000_000 sec = ((((labs - labs.to_i) * 60) - ((labs - labs.to_i) * 60).to_i) * 100_000) * 60 / 100_000 str = [:full] ? '%.i°%.2i′%05.2f″' : '%.i°%.2i′%02.0f″' if [:coord] out = format(str, deg, min, sec) # Add cardinal out + (k == :x ? v > 0 ? 'N' : 'S' : v > 0 ? 'E' : 'W') else format(str, v.to_i, min, sec) end end end |
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are :id
, :tesselate
, :extrude
, :altitude_mode
. If the altitude_mode option is not present, the Z (if present) will not be output (since it won’t be used by GE anyway: clampToGround is the default)
258 259 260 261 262 263 264 265 |
# File 'lib/geo_ruby/simple_features/point.rb', line 258 def kml_representation( = {}) #:nodoc: out = "<Point#{[:id_attr]}>\n" out += [:geom_data] if [:geom_data] out += "<coordinates>#{x},#{y}" out += ",#{[:fixed_z] || z || 0}" if [:allow_z] out += "</coordinates>\n" out + "</Point>\n" end |
#m_range ⇒ Object
194 195 196 |
# File 'lib/geo_ruby/simple_features/point.rb', line 194 def m_range [@m, @m] end |
#orthogonal_distance(line, tail = nil) ⇒ Object
Orthogonal Distance Based www.allegro.cc/forums/thread/589720
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# File 'lib/geo_ruby/simple_features/point.rb', line 138 def orthogonal_distance(line, tail = nil) head, tail = tail ? [line, tail] : [line[0], line[-1]] a, b = @x - head.x, @y - head.y c, d = tail.x - head.x, tail.y - head.y dot = a * c + b * d len = c * c + d * d return 0.0 if len.zero? res = dot / len xx, yy = \ if res < 0 [head.x, head.y] elsif res > 1 [tail.x, tail.y] else [head.x + res * c, head.y + res * d] end # TODO: benchmark if worth creating an instance # euclidian_distance(Point.from_x_y(xx, yy)) Math.sqrt((@x - xx)**2 + (@y - yy)**2) end |
#rad ⇒ Object
radium and theta
18 19 20 |
# File 'lib/geo_ruby/simple_features/point.rb', line 18 def r @r end |
#set_x_y(x, y) ⇒ Object Also known as: set_lon_lat
Sets all coordinates of a 2D point in one call
40 41 42 43 44 |
# File 'lib/geo_ruby/simple_features/point.rb', line 40 def set_x_y(x, y) @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y self end |
#set_x_y_z(x, y, z) ⇒ Object Also known as: set_lon_lat_z
Sets all coordinates in one call. Use the m
accessor to set the m.
31 32 33 34 35 36 |
# File 'lib/geo_ruby/simple_features/point.rb', line 31 def set_x_y_z(x, y, z) @x = x && !x.is_a?(Numeric) ? x.to_f : x @y = y && !y.is_a?(Numeric) ? y.to_f : y @z = z && !z.is_a?(Numeric) ? z.to_f : z self end |
#spherical_distance(point, r = 6_370_997.0) ⇒ Object
Spherical distance in meters, using ‘Haversine’ formula. with a radius of 6471000m Assumes x is the lon and y the lat, in degrees. The user has to make sure using this distance makes sense (ie she should be in latlon coordinates)
61 62 63 64 65 66 67 68 69 |
# File 'lib/geo_ruby/simple_features/point.rb', line 61 def spherical_distance(point, r = 6_370_997.0) dlat = (point.lat - lat) * DEG2RAD / 2 dlon = (point.lon - lon) * DEG2RAD / 2 a = Math.sin(dlat)**2 + Math.cos(lat * DEG2RAD) * Math.cos(point.lat * DEG2RAD) * Math.sin(dlon)**2 c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)) r * c end |
#text_geometry_type ⇒ Object
WKT geometry type of a point
227 228 229 |
# File 'lib/geo_ruby/simple_features/point.rb', line 227 def text_geometry_type #:nodoc: 'POINT' end |
#text_representation(allow_z = true, allow_m = true) ⇒ Object
Text representation of a point
219 220 221 222 223 224 |
# File 'lib/geo_ruby/simple_features/point.rb', line 219 def text_representation(allow_z = true, allow_m = true) #:nodoc: tex_rep = "#{@x} #{@y}" tex_rep += " #{@z}" if @with_z && allow_z tex_rep += " #{@m}" if @with_m && allow_m tex_rep end |
#theta_deg ⇒ Object
Outputs theta in degrees
335 336 337 |
# File 'lib/geo_ruby/simple_features/point.rb', line 335 def theta_deg theta_rad / DEG2RAD end |
#theta_rad ⇒ Object
Outputs theta
325 326 327 328 329 330 331 332 |
# File 'lib/geo_ruby/simple_features/point.rb', line 325 def theta_rad if @x.zero? @y < 0 ? 3 * HALFPI : HALFPI else th = Math.atan(@y / @x) r > 0 ? th + 2 * Math::PI : th end end |
#to_coordinates ⇒ Object
Helper to get all coordinates as array.
355 356 357 358 359 360 |
# File 'lib/geo_ruby/simple_features/point.rb', line 355 def to_coordinates coord = [x, y] coord << z if with_z coord << m if with_m coord end |
#to_xy ⇒ Object
Simple helper for 2D maps
363 364 365 |
# File 'lib/geo_ruby/simple_features/point.rb', line 363 def to_xy [x, y] end |
#to_xyz ⇒ Object
Simple helper for 3D maps
368 369 370 |
# File 'lib/geo_ruby/simple_features/point.rb', line 368 def to_xyz [x, y, z] end |